11 数列的实际应用问题

11 数列的实际应用问题
11 数列的实际应用问题

数列的实际应用问题

例1某种卷筒卫生纸绕在盘上,空盘时盘芯直径40mm ,满盘时直径120mm ,已知卫生纸的厚度为0.1mm ,问:满盘时卫生纸的总长度大约是多少米(精确到0.1m )? 说明:各圈的半径为该层纸的中心线至盘芯中心的距离。

解:卫生纸的厚度为0.1mm ,可以把绕在盘上的卫生纸近似地看作是一组同心圆,然后分别计算各圆的周长,再求总和。

由内向外各圈的半径分别为 20.05,20.15,,59.95 因此各圈的周长分别为 40.1,40.3,,119.9πππ ∵各圈半径组成首项为20.05,公差为0.1的等差数列,设圈数为n ,则

59.9520.05(1)0.1n =+-?, ∴400n =

∴各圈的周长组成一个首项为40.1π,公差为0.2π,项数为40的等差数列, 400(4001)40040.10.232000()2

n S mm πππ?-=?+?= 32000()100()mm m π≈

答:满盘时卫生纸的总长度约是100米.

例2.教育储蓄是一种零存整取定期储蓄存款,它享受整存整取利率,利息免税.教育储蓄的对象是在校小学四年级(含四年级)以上的学生.假设零存整取3年期教育储蓄的月利率为2.1‰.

(1)欲在3年后一次支取本息合计2万元,每月大约存入多少元?

(2)零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少?(精确到1元)? 说明:教育储蓄可选择1年、3年、6年这三种存期,起存金额50元,存款总额不超过2万元。

解:(1)设每月存入A 元,则有(1 2.1A +‰)

(12 2.1A ++?‰)(136 2.1A +++?‰)20000.=

由等差数列的求和公式,得:(3636 2.1A +?‰3635 2.12

?+?‰)20000.= 解得: 535A ≈(元)

(2)由于教育储蓄的存款总额不超过2万元,∴3年期教育储蓄每月至多可存入2000055536≈(元),这样3

年后的本息和为

555(1 2.1+‰)555(12 2.1++?‰)555(136 2.1+++?‰)

555=(3636 2.1+?‰3635 2.12

?+?‰)20756≈(元)。 答:欲在3年后一次支取本息合计2万元,每月大约存入535元。3年期教育储蓄每月至多存入555元,此时3年后本息合计约20756元。

例3.水土流失是我国西部开发中最突出的生态问题.全国9100万亩的坡耕地需要退耕还林,其中西部地区占70%.国家确定2000年西部地区退耕土地面积为515万亩,以后每年退耕土地面积递增12%,那么从2000年起到2005年底,西部地区退耕还林的面积共有多少万亩(精确到万亩)?

解 根据题意,每年退耕还林的面积比上一年增长的百分比相同,所以从2000年起,每年退耕还林的面积(单位:万亩)组成一个等比数列{}n a ,其中

1515,112% 1.12,6,a q n ==+==则66515(1 1.12)41791 1.12S ?-=≈-(万

亩).

答 从2000年起到2005年底,西部地区退耕还林的面积共有4179万亩.

思考:到哪一年底,西部地区基本解决退耕还林问题?

例4.某人从2004年初向银行申请个人住房公积金贷款20万元用于购房,贷款的月利率为3.375%,并按复利计算,每月等额还贷一次,并从贷款后的次月开始归还.如果10年还清,那么每月应还贷多少元? 说明:对于分期付款,银行有如下的规定:(1)分期付款按复利计息,每期所付款额相同,且在期末付款;

(2)到最后一次付款时,各期所付的款额的本利和等于商品售价的本利和.

解:设每月应还贷x 元,付款次数为120次,则

2119120[1(1 3.375%)(1 3.375%)(1 3.375%)]200000(1 3.375%)x +++++++=+即120120[(1 3.375%)1]200000(1 3.375%)(1 3.375%)1x +-=++-,

120

120200000 3.375%(1 3.375%)2029.66(1 3.375%)1]

x ??+=≈+-(元). 答:设每月应还贷2029.66元.

小结:数学应用问题的解答步骤:

一、通过阅读,理解题意,建立数学模型;

二、通过解决数学问题,解决实际问题;

三、回答实际问题.

数列的实际应用问题

(II )如果将该商品每月都投放市场 (II )要保持每个月都满足供应,则每月投放市场的商品数 P (万 件)应 f (n) 即 1 Pn n(n 1)(35 2n), P 150 1 150 (n 1)(35 2n) 丄(n 2 更n 更) 75 2 2 N ,当n 8时, 1)(35 2n)的最大值为1.14万件即P 至少为1.14万件 练习:听P82例2 例2 ?某外商到一开发区投资 72万美元建起一座蔬菜加工厂,第一年各种经费 12万美兀, 出售该厂;②纯利润总和最大时,以 16万元出售该厂,问哪种方案最合算? 解答:由题意知,每年的经费是以 12为首项,4为公差的等差数列,设纯利润与年数的关 系为 f (n),则 f (n) 50n [12n (1 )纯利润就是要求 f(n) 0 , 血 U 4] 72 2n 2 40n 72 2 2n 2 40n 72 (2)①年平均利润 f(n) n 40 2(n 笑)16当且仅当n = 6时取等 口 号。 数列的实际应用问题 例1 .某地区预计从2005年初的前n 个月内,对某种商品的需求总量 f(n)(万件)与月 1 份 n 的近似关系为 f( n) n(n 1)(35 2n)(n N , n 12) 150 (I)求2005年第n 个月的需求量g(n)(万件)与月份 n 的函数关系式,并求出哪个月份 的需求量超过1.4万件。 P 万件,要保持每月都满足供应,则P 至少为多少万件? 以后每年增加4万美元,每年销售蔬菜收入 50 万美兀。设f (n)表示前n 年的纯收入 (f (n)前n 年的总收入一前n 年的总支出一投资额) (1)从第几年开始获取纯利润? (2 )若干年后,外商为开始新项目,有两种处理方案:①年平均利润最大时以 48万美元 解得2 n 18。由n N 知从第三年开始获利 解答: (I ) 由题意知, g 1 f (1) g(n) f(n) f (n 1): 1 n(n 150 1 150 n[(n 1)(35 2n) (n 1)(37 1 11 又一 1 (12 1) 25 g(1), 25 由丄 n(12 n) 14 得:n 2 12n 25 即6月份的需求量超过 1.4 万件 1 、11 「 当 2时, 1 2 3- n 150 2n)— 150 25 1)(35 (n 1) n[35 2(n 1)] 2n)] 1 n(1 2 25 n) 1 g(n ) n (12 25 n)(n N , n 12) 35 0, 5 n 7,又n N , n 6

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列的实际应用

数列的实际应用 一、要点·疑点·考点 1.复利公式 按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x 2.产值模型 原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x 3.单利公式 利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) 二、课前热身 1.某种细胞开始有2个,1小时后分裂成4个,2小时后分裂成8个,3小时后分裂成16个…,按此规律,6小时后细胞的个数是( ) (A)63 (B)64 (C)127 (D)128 2.一种专门占据内存的计算机病毒开始时占据内存2KB,工作时3分钟自身复制一次(即复制后所占内存是原来的2倍),那么,开机后_______分钟,该病毒占据64MB (1MB=210KB) 3.某产品的成本每年降低q%,若三年后成本是a元,则现在的成本是( ) (A)a(1+q%)3元(B)a(1-q%)3元 (C)a(1-q%)-3元(D)a(1+q%)-3元 4.某人到银行存了10000元,利息按单利计算,年利率为5%,则他在10年后的为____元 三、例题分析 1. 等差数列模型 例1.一梯形的上、下底长分别是12cm,22cm,若将梯形的一腰10等分,过每一个分点作平行于底边的直线,求这些直线夹在两腰之间的线段的长度的和. 2. 等比数列模型 例2.某市2003年共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问: (1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的 1/3?3. 等差、等比数列综合问题模型 例3. 在一次人才招聘上,有A,B两家公司分别开出他们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; B公司允诺第一年月工资数为2000元,以后每年月工资在上一年月工资基础上递增5%,设某人年初被A,B两家公司同时录取,试问: (1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其他因素),该人应该选择哪家公司,为什么? 4.递推数列模型 例4.某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b设an为n 年后该地区森林木材存量。 (1)求an的表达式; (2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于7/9a, 如果b=19/72a,那么该地区今后会发生水土流失吗?若会,需经过几年? 变式练习:某下岗职工准备开办一个商店,要向银行贷款若干,这笔贷款按复利计算(即本年利息计入下一年的本金生息),利率为q(0<q<1).据他估算,贷款后每年可偿还A元,30年后还清. ①求贷款金额; ②若贷款后前7年暂不偿还,从第8年开始,每年偿还A元,仍然在贷款后30年还清,试问:这样一来,贷款金额比原贷款金额要少多少元?

数列求和方法及巩固

数列求和的方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()() 11122 n n n a a n n S na d +-= =+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=? =-?-=≠? --? 常见的数列的前n 项和:123+++……+n=(1)2 n n +, 1+3+5+……+(2n-1)=2 n 2222123+++……+n =(1)(21)6n n n ++,3333 123+++……+n =2 (1)2n n +?????? 等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例1、 已知函数( )x f x = (1)证明:()()11f x f x +-=; (2)求128910101010f f f f ?? ?????? + +++ ? ? ? ??? ?? ?? ?? 的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 1928551101010101010f f f f f f ????????????+=+==+ = ? ? ? ? ? ??? ???? ?? ???? 128910101010S f f f f ?? ?? ????=+ +++ ? ? ? ?????????令 982110101010S f f f f ?? ??????=+ +++ ? ? ? ??? ?? ?? ?? 则 两式相加得: 192991010S f f ? ? ????=?+= ? ? ??????? 所以92S =.

(完整版)案例三数列在购房问题中的应用

《数列的应用举例》 一、知识与技能 1、使学生掌握等差数列与等比数列在购物付款方式中的应用; 2、培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识; 二、教学重点难点 重点:抓住分期付款问题的本质分析问题; 难点:建立数学模型,理解分期付款的合理性。 三、过程与方法 通过创设情境、讲授法、讨论法、直观演示法、练习法提高学生发现问题、分析问题、解决问题的能力。 四、情感态度与价值观 通过学生之间,师生之间的交流与配合培养学生的合作意识和团队精神,通过独立运用数学知识解决实际问题,使学生体会学习数学知识的重要性,增强他们对数学学习的兴趣和对数学的情感。 五、实验与教具 多媒体 六、教学过程 创设情境 题型一、等差数列模型(单利问题) 例1、某家庭预购置一套40万元的商品房,要求购房当天首付40% (即16万元),欠款24万元需贷款,贷款期限10年(120个月),每月还欠款2000元,并每月加付欠款利息,月利率为0.4%,购买后下一月当天开始付款,以后每月付款一次,问购买这套商品房实际总价多少元? 解:按等额本金还款方式,设每月还欠款加所欠款产生的利息为数列a n,贝U: 第一月还欠款以及所欠款产生的利息为:a12000 240000 0.4%, 第二月还欠款以及所欠款产生的利息为:a22000 (240000 2000) 0.4%, 第三月还欠款以及所欠款产生的利息为:a32000 (240000 2000 2) 0.4%, 以此类推: 第n月还欠款以及所欠款产生的利息为:a n2000 [240000 2000 (n 1)] 0.4% ???各月还欠款以及所欠款产生的利息成等差数列 ???10 年还清欠款总额为:S120 120(2960 2008) 298080 (元)2 购买这套商品房实际总价为:S 298080 160000 458080 (元) 答:该家庭购买这套商品房实际总价为458080元。 题后感悟:等额本金还款法,等差数列问题 题型二、等比数列模型(复利问题) 例2、某家庭预购置一套40万元的商品房,要求购房当天首付16万元,欠款24万元需贷款,贷款期限10年(120个月),按分期付款的方式偿还欠款,每月等额还款,月利率为

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列的实际应用举例 教学设计

数列的实际应用举例 清远工贸职业技术学校 班级:13春工学计机3班 蔡健星 【学习目标】 1.掌握以数列知识为数学本质的实际应用问题,涉及增长率问题、复利计算问题等. 2.培养学生用数列知识解决实际问题的能力,提高学生对数学的学习兴趣. 一、复习 1、本单元我们学习了两种数列,分别是:等差数列和等比数列 例如:1,3,5,7,9… 2,5,8,11,14… 2,4,8,16,32… 1,3,9,27,81… 2、两种数列共有八条公式,分别是: 等差数列 等比数列 通项公式: 中项公式: 求和公式: 二、新课讲授 1.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数是( ) A.9 B.10 C.19 D.20 【解析】设堆成n 层,由题意得1+2+3+…+n ≤200,即n(n +1)≤400成立的最大正整数n 代入检验知n =19 2.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( ) A.1997 B.1999 C.2001 D.2003 d n a a n )1(1-+=11-=n n q a a 2b a A +=ab G ±=2)(1n n a a n S +=d n n na S n 2)1(1-+=q q a S n n --=1)1(1q q a a S n n --=11

【解析】设出第四册的年份为x 由题意得(x -6)+(x -4)+(x -2)+x +(x +2)+(x +4)+(x +6)=13979 即7x =13979,∴x =1997 ∴x +6=2003 3.夏季高山的温度从山脚起每升高100 m ,降低0.7 ℃,已知山顶温度是14.8 ℃,山脚温度是26 ℃,则山的相对高度是 m . 【解析】从山脚到山顶温度降低了26 ℃-14.8 ℃=11.2 ℃ 而每降0.7 ℃,升高100米 11.2 / 0.7 =16 ∴共升高16×100=1600 m . 4、某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( ) A. B. C. D. 【解析】一次砍伐后木材的存量为:S(1+25%)-x 二次砍伐后木材存量为[S(1+25%)-x ](1+25%)-x 由题意知%)501(45)45(2+=--S x x S 解得x =36S 5、银行有一种储蓄业务叫做零存整取,即每月定时存入一笔相同数目的现金,到约定日期可以取出全部本利和。若某人每月初存入100元,月利率为0.3%,问到第12个月末整取时本利和时多少? 【分析】本利=本金+利息。第1个月计利12个月,到期本利时100+100×0.3%×12, 第2个月计利11个月,到期本利时100+100×0.3%×11,… 第12个月计利1个月,到期本利时100+100×0.3%×1, 由此可知,每月存入的100元到期本利构成一个等差数列,其和就是所求的1232S 34S 36S 38S

数列求和常用公式

数列求和常用公式: 1、1+2+3+......+n=n ×(n+1)÷2 2、12+22+32+......+n 2=n(n+1)(2n+1)÷6 3、 13+23+33+......+n 3=( 1+2+3+......+n)2 =n 2×(n+1)2÷4 4、 1×2+2×3+3×4+......+n(n+1) =n(n+1)(n+2)÷3 5、 1×2×3+2×3×4+...+n(n+1)(n+2)=n(n+1)(n+2)(n+3)÷4 6、 1+3+6+10+15+... =1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+...+n) =[1×2+2×3+3×4+...+n(n+1)]/2=n(n+1)(n+2) ÷6 7)1+2+4+7+11+...=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) = (n+1)×1+[1×2+2×3+3×4+......+n(n+1)]/2=(n+1)+n(n+1)(n+2) ÷6 8)12 +12×3 +13×4 +1n(n+1) =1-1/(n+1)=n ÷(n+1)

9)1 1+2+ 1 1+2+3 + 1 1+2+3+4 + 1 1+2+3+4+…+n = 2 2×3 + 2 3×4 + 2 4×5 + 2 n(n+1) =(n-1) ÷(n+1) 10) 1 1×2 + 2 2×3 + 3 2×3×4 + (n-1) 2×3×4×…×(n-1) = 2×3×4×…(n-1) 2×3×4×…×n 11)12+32+52+..........(2n-1)2=n(4n2-1) ÷3 12)13+33+53+..........(2n-1)3=n2(2n2-1) 13)14+24+34+..........+n4=n(n+1)(2n+1)(3n2+3n-1) ÷30 14)15+25+35+..........+n5=n2 (n+1)2 (2n2+2n-1) ÷12 15)1+2+22+23+......+2n=2(n+1)–1

等差数列的应用

五年级奥数试题(1) 等差数列的应用姓名 1,下图中有多少三角形。 分析:从图上看,独立的三角形有A、B、C、D四个;两两组合的有3个,即AB、BC、CD;三个三个组阁的有ABC、BCD两个;四个组合的有一个即ABCD。那么一共就有4+3+2+1=10(个) A B C D 解:4+3+2+1=10(个)答:共有10个三角形。 2,在一个平面上,两条直线相交,只有一个交点;三条直线相交,最多有3个交点;四条直线相交最多有6个交点;那么20条直线在一个平面上相交最多有多少个交点? 2条 1个交点 3条 3个交点 4条 6个交点 5条 10个交点

1 1+(3-1) 1+2+(4-1) 1+2+3+(5-1)…… 这一组数是一组等差“1”的数列,计算时可以应用求等差数列和的公式进行计算。 解: 1+2+3+……+(20-1)答:20条直线在一个平面上相交最多有190个交点。 3,下图中共有多少个长方形。 分析:按例1的分析方法,用阴影表示沿长和宽,沿长边有4+3+2+1=10(个)长方形,宽边有5+4+3+2+1=15(个)长方形,那么这个图里共有 15×10=150(个)长方形。 解:(4+3+2+1)×(5+4+3+2+1)=150(个) 答:这个图中一共有150个长方形。 4,若干名小学生进行体操训练,排成一个中空方阵,最外层每边12人,共4层,求组成这个方阵的小学生一共有多少人? 分析:方阵问题中每层人数是一个等差为8的数列,也就是外面一层人数比紧邻内层的人数多8。根据题意,求出最外层人数为(12-1)×4=44(人),再根据首项=末项-(项数-1)×公差得最里面层共有:44-(4-1)×8=20(人),继而求出四层总人数为(44+20)×4÷2=128(人) 解:最外层:(12-1)×4=44(人)最里层:44-(4-1)×8=20(人)

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

数列求和常用方法(经典讲解)

求数列前n 项和常用方法(经典讲解) 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1(21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 2 1 例2 设123n S n =++++,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50)8(12+-n n 50 1 ≤ ∴ 当 8 8-n ,即8n =时,501 )(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那 么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列综合应用举例教案

《数列综合应用举例》教案学校名称:北京市电气工程学校 授课教师卜丽娜课题名称数列综合应用举例授课 专业 机电专业 授课年级、 班级 高二(9)授课地点北京市电气工程学校课时 1 课型新授课 教学目标知识与技能目标 初步掌握利用数列的基础知识来解决实际问题的方法。培养学生搜集资料、分析资料的良好习惯,提高分析问题、解决问题的 能力及人际交往与协作能力。 过程与方法目标 经历数列实际问题的解决过程,发展学生的思维,领悟解决数列实际问题的方法,获得教学活动的经验。 情感态度价值观 通过情境创设,活动参与,体会数列在社会生活中的广泛应用,提高学习数学的兴趣,并初步培养与他人合作交流的意识;培养 学生探索的精神,并使数学能够为实际生产生活服务,为学生的 专业学习打下良好的基础。 教学重点数列的综合应用举例 教学难点1.数列的实际应用举例。 2.用数学建模思想解决数列的实际问题。 教学方法启发法、讨论法、情境教学法 教学手段多媒体、黑板 板书设计课题:数列综合应用举例 应用题解题一般步骤问题1:问题2: 解:(详细)解:(略写)审题 转化 求解 检验

教师活动 学生活动 设计意图 一、创设情境,激发兴趣 多媒体演示:数学史小故事 棋盘上的麦粒 古印度舍罕王打算奖赏国际象棋的发明人——宰相达依尔。宰相说:“请您在棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给我2粒,第3个小格给4粒,以后每一小格都比前一小格加一倍。请您把棋盘上64格的麦粒,都赏给您的仆人吧!” 国王觉得这个要求太容易满足了,就命令给她这些麦粒。结果发现:就是把全国的麦粒全拿来,也满足不了宰相的要求。原来宰相要求的麦粒总数为: 人们推算发现当时全国所有的麦粒加在一起的总和也没有这么多! 板书课题:数列综合应用举例 二、互动交流,问题探究 探究一:数列在生活中的应用 我校机电专业近期计划购进一批新型的制冷压缩机,总价值20万元,以分期付款的方式购买。由于机电专业向学校申请的是内部无息贷款,故还款时并不涉及利息问题,有如下两种付款方式: 第一种:首付款15500元,从第二年起每年比前一年多付1000元; 问题1:此种付款方式我们需要几年能够还清贷款? 观看媒体演示,倾听老师完整的叙述故事 观察数列,找到该等比数列的首项、公比,并会利用公式计算 学生按小组活动,分小组进行思考、讨论并解答。 得出结论:问题一是等差数 从生活中以学生感兴趣的数学史故事入手引入,调动学生的学习热情,同时让学生体会到数学来源于生活,为整节课的教学创设良好的开端。 这则小故事说明:数列 在实际问题中有着广泛的应用,进而引出课题即本节课所要研究的主要内容为数列在实际问题中的综合应用。 从学生的兴趣出发,与本专业结合,将知识应用到学生熟悉的并且感兴趣的问题中,有利于激发学生的学习数学的兴趣和学习数学的积极性。 ) (37095516151844674407122...2221646332粒=-=+++++

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

第10讲 数列的实际应用

数列的实际应用 主讲教师:庄肃钦 【知识概述】 数列是反映自然规律的重要数学模型,日常生活中的大量实际问题都可以转化为数列问题解决,如增长率、减少率、银行信贷、工厂的生产量、浓度匹配、养老保险、存款利息、出租车收费、校园网问题、放射性物质的衰变等。通过这节课的学习,希望同学们能够掌握数列作为生活工具的应用方法,解决问题。 实际应用题常见的数列模型: 1.储蓄的复利公式:本金为a元,每期利率为r,存期为n期,则本利和y =a(1+r)n. 2.总产值模型:基数为N,平均增长率为p,期数为n,则总产值y = N (1 + p)n. 3.递推猜证型:递推型有a n+1 = f (a n)与S n+1 = f (S n)或S n = f (a n)类,猜证型主要是写出前若干项,猜测结论,并用数学归纳法加以证明. 【学前诊断】 1.[难度] 易 某种细菌在培养过程中每20分钟分裂一次(一次分裂两个),经过3小时,这种细菌由一个可以繁殖为() A.511个B.512个C.1023 D.1024个 2.[难度] 易 某商品降价10%后,欲恢复原价,则应提价_______. 3.[难度] 中 某工厂连续数年的产值月平均增长率为p%,则它的年平均增长率为_______.

【经典例题】 例1. 银行按规定每经过一定时间结算存(贷)款的利息一次,结息后即将利息并入本 金,这种计算利息的方法叫复利,现在有某企业进行技术改造,有两种方案: 甲方案——一次性贷款10万元,第一年便可获利1万元,以后每年比前一 年增加30%的利润; 乙方案——每年贷款1万元,第一年可获利1万元,以后每年比前一年多获 利5千元. 两方案使用贷款期限均为10年,到期一次性归还本息.若银行贷款利息均按 年息10%的复利计算,试比较两种方案哪个获利更多?(计算结果精确到千元, 参考数据:10101.1 2.594,1.313.768==) 例2. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产 业,根据规划,本年度投入800万元,以后每年投入将比上年减少15 ,本年度当地旅游业估计收入为400万元,由于该项目建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14 。 (1) 设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元,写 出,n n a b 的表达式; (2) 至少经过几年,旅游业的总收入才能超过总投入? 例3. 某城市2009年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的 6%,并且每年新增汽车数量相同,为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? 例4. 【本课总结】 对于数列应用题的考查,主要考查学生运用观察、归纳、猜想等手段,建立有关等差(比)数列、递推数列的数学模型,再综合其他相关知识来解决问题的能力.解答数列应用性问题,既要有坚实的基础知识,又要有良好的思维能力和分析与解决问题的能力. 解题方法 1.主要模型: (1) 等差数列模型(增加的量或减少的量相同); (2) 等比数列模型(增长率相同或减少率相同); (3) 等差数列与等比数列综合模型; (4) 递推数列模型等等.

(完整word版)数列求和的各种方法

教学目标 1熟练掌握等差、等比数列的前 n 项和公式. 2 ?掌握非等差、等比数列求和的几种常见方法. 3?能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1求数列的前n 项和的方法 (1) 公式法 ①等差数列的前n 项和公式 n n 1 , =na i + d . 2 ②等比数列的前n 项和公式 (I )当 q = 1 时,S n = na i ; (2) 分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 倒序相加法 这是推导等差数列前 n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5) 错位相减法 这是推导等比数列的前 n 项和公式时所用的方法,主要用于求 {a n ? b n }的前n 项和,其中{a n }和{b n } 分 别是等差数列和等比数列. ⑹并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如 a n = (— 1)n f (n)类型,可采用两项 合并求解. 例如,S n = 1002— 992+ 982 — 972+…+ 22 — 12= (100 + 99) + (98 + 97)+…+ (2 + 1) = 5 050. 数列求和的方法 n a i a n Si=— 2 (n )当q 丰1时, a i 1 q n 1 q a 1 — a n q 1 - q ③常见的数列的前 n 项和:1 +n=垃 1) , 1+3+5+??…+(2r — 1)= n 2 2 12 22 32 +n 2 n(n 罟,13 23 33 +n 3 2 n(n 1)等 2

数列求和的常见方法

数列求和的常见方法 数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。 一 、公式求和法 通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和。因此有必要熟练掌握一些常见的数列的前n 项和公式. 正整数和公式有: ()(); 2 13211+=++++n n n ()()(); 6 121212222++=+++n n n n ()().212132 3 3 3 ?? ? ???+=+++n n n 例1 设S n =1+2+3+…+n,n ∈N * ,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f , 【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列 的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题. 二、分组求和法 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如: ①{}n n b a +,其中{}{}?? ?是等比数列; 是等差数列;n n b a ②()()?? ?∈=-==* N k k n n g k n n f a n ,2,,12, 例2 已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.

常用一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

数列求和常见法

数列求和常见法 数列是高中代数的重要内容,数列求和是数列的重要内容之一。数列求和是对按照一定规律排列的数进行求和。除了等差数列和等比数列有求和公式外, 大部分数列的求和都需要一定的技巧。 常见的方法有公式法、错位相减法、倒序相加法、分解分组法、裂项法、通项化归、并项求和等等。 1. 公式法: 适用题型:直接是等差数列或是等比数列形式的可以直接利用公式求和 s n = 2 ) ( 1a a n n + = n a 1 +2 )1(d n n - s n =n a 1 (q=1) Sn= q q a n --1) 1(1 (q ≠1) 例如 :已知数列﹛a n ﹜满足a 1 =2 3,a a n n n 11 3--+=(n ≥2),求数列的前n 项和。 解: 11=a 31 12=-a a 32 23=-a a (31) 1--=-n n n a a 所有等式的左边与左边相 加等于右式与右式相加(叠加法)得 a n =2 3n ,所以﹛ a n ﹜是以2 3 为首项,以3为公比的等比数列,直接应用公式31)1(233--=n n s 4 3 3 1-=+n 注意:有些题目需要经过转化才能利用公式。 2.错位相减法(倍差法) 适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 ,如 { a n }、 {}b n 分别是等差数列和等比数列. 则s n = b a b a b a n n ++2 2 1 1 例如: 13-=n a n 2n n b = c n =a n b n 求c n 的前n 项和T n 。 解:T n = 2×2 1 +5× 2 2 +8×2 3 +………(3n-1)×2n (1) 2 T n = 2×2 2 +5× 2 3 +………(3n -4) × 2 n +(3n-1) 2 1 +n (2) (1)-(2)得 - T n = 2× 2 1 + 3× 2 2 +3× 2 3 +…………3× 2 n -(3n-1) 2 1 +n 从第二项起

相关文档
最新文档