某温度控制系统的MATLAB仿真

某温度控制系统的MATLAB仿真
某温度控制系统的MATLAB仿真

课程设计报告

题目某温度控制系统的MATLAB仿真(题目C)

过程控制课程设计任务书

题目C :某温度控制系统的MATLAB 仿真

一、 系统概况:

设某温度控制系统方块图如图:

图中G c (s)、G v (s)、G o (s)、G m (s)、分别为调节器、执行器、过程对象及温度变送器的传递函数;,且电动温度变送器测量范围(量程)为50~100O C 、输出信号为4~20mA 。G f (s)为干扰通道的传递函数。

二、系统参数

二、 要求:

1、分别建立仿真结构图,进行以下仿真,并求出主要性能指标:

(1)控制器为比例控制,其比例度分别为δ=10%、20%、50%、100%、200%时,系统广义对象输出z(t)的过渡过程;

(2)控制器为比例积分控制,其比例度δ=20%,积分时间分别为T I =1min 、3min 、5min 、10min 时,z(t)的过渡过程;

(3)控制器为比例积分微分控制,其比例度δ=10%,积分时间T I =5min ,微分时间T D = 0.2min 时,z(t)的过渡过程。

2、对以上仿真结果进行分析比对,得出结论。

3、撰写设计报告。

0m v o

0f o

o =5min =2.5min =1.5(kg/min)/mA =5.4C/(kg/min) =0.8 C C T T K K K x(t)=80f(t)=10;

;;;

;给定值;阶跃扰动

注:调节器比例带δ的说明

比例控制规律的输出p(t)与输入偏差信号e(t)之间的关系为 式中,K c 叫作控制器的比例系数。

在过程控制仪表中,一般用比例度δ来表示比例控制作用的强弱。比例度δ定义为

式中,(z max -z min )为控制器输入信号的变化范围,即量程;(p max -p min )为控制器输出信号的变化范围。

这时δ 与K c 便互成倒数关系,即:

但如果调节器的输入、输出不是相同性质的信号,则系数K ≠1,需要根据量程和输出信

号范围进行计算。

例:某温度系统中,调节器为电动比例调节器,配用的电动变送器测量范围为40~150 O C ,

=c p(t)K e(t)

max min

(

)

=100%

)

max min e z z p (p -p δ-?=100%

c

1

K δ?

输出为4~20mA,若选用比例度δ=10%,问该比例调节器的比例系数K c为多少?

解:

max min

max min

=

204

= 1.45

0.115040

c

c

p p

1

K

z z

1

K

δ

-

?

-

-

∴?=

-

Q

仿真过程

一,控制器为比例控制P

对于比例控制器:

其传递关系为:(t))(e K y p t = 控制器的传递函数为:p t K G =)( 纯比例控制仿真结构图如下:

(1)当比例度为δ=10%

2

.350-1004

-201.01--1

min max min

max =?=∴?

=

c c K Z Z P P K δΘ 即仿真图中Kc 为3.2,给定值和阶跃扰动分别设置为80,10

则有仿真得系统广义对象输出z(t)的过渡过程如图:

其主要性能指标如下: 上升时间tr=2.4min; 峰值时间tp=3.2min ; 最大超调量

48.75%80

80-119==p σ;

过渡时间ts=10min; 震荡次数N=3; 稳态误差ss e =10OC

(2)比例度为δ=20%

1.650-1004-20

2.01=?=

c K ,将仿真图中Kc 参数改为1.6即可,仿真得系统广义对象输出z(t)

的过渡过程如下图:

主要性能指标如下: 上升时间tr=3min; 峰值时间tp=4min ; 最大超调量

31.25%80

80-105==p σ;

过渡时间ts=10min; 震荡次数N=2; 稳态误差ss e =5OC

(3)比例度为δ=50%

0.6450

-1004-205.01=?=c K ,将图1中K 参数改为0.64即可,仿真得系统广义对象输出z(t)的过渡过程如下图:

主要性能指标如下: 上升时间tr=4.2min; 峰值时间tp=5min ; 最大超调量

12.5%80

80-90==p σ;

过渡时间ts=10min; 震荡次数N=1; 稳态误差ss e =-5OC

(4)比例度为δ=100%

0.32

50-1004-2011=?=c K ,将图1中K 参数改为0.32即可,仿真得系统广义对象输出z(t)的

过渡过程如下图:

由图可知比例度度为δ=100%时,最大值小于80,达不到系统要求的稳定范围

(5)比例度为δ=200%

0.16

50-1004-2021=?=c K ,将图1中K 参数改为0.16即可,仿真得系统广义对象输出z(t)的

过渡过程如下图:

由图可知比例度度为δ=200%时,最大值同样小于80,达不到系统要求的稳定范围。二,控制器为比例积分控制PI

其传递关系为:

?

+

=t

p

t dt

t e

e

K

y

I

p

)

()(

T

K

(t)

控制器的传递函数为:

)

1

1(

S

T

K

G

I

p

s+

=

建立比例积分仿真结构图如下:

(1)比例度δ=20%,积分时间为T I=1min

由比例环节可知,比例系数为1.6,仿真得系统广义对象输出z(t)的过渡过程如下图:

由于系统为发散型,所以不稳定,各项指标没有意义

(2)比例度δ=20%,积分时间为T I =3min

把仿真图中PI 控制器改为S S 36.18.4+, 仿真得系统广义对象输出z(t)的过渡过程如下图:

主要性能指标如下: 上升时间tr=2.7min; 峰值时间tp=4.2min ; 最大超调量

68.75%80

80-135

==p σ;

过渡时间ts=10min; 震荡次数N=2; 稳态误差ss e =20OC

(3)比例度δ=20%,积分时间为T I =5min

把仿真图中PI 控制器改为S

S 56

.18+,仿真得系统广义对象输出z(t)的过渡过程如下图:

主要性能指标如下: 上升时间tr=2.7min; 峰值时间tp=4.2min ; 最大超调量

56.25%80

80-125==p σ;

过渡时间ts=10min; 震荡次数N=2; 稳态误差ss e =10OC

(4) 比例度δ=20%,积分时间为T I =10min

把仿真图中PI 控制器改为S

S 106

.116+,仿真得系统广义对象输出z(t)的过渡过程如下图:

主要性能指标如下:上升时间tr=2.7min; 峰值时间tp=4.2min;

最大超调量

43.75%

80

80

-

115=

=

p

σ

过渡时间ts=10min;

震荡次数N=2;

稳态误差ss e=2OC

三,控制器为比例积分微分控制PID

其传递关系为:

]

)(

1

)(

)(

[

)

(?

+

+

=t

I

d

p

t dt

t e

T

dt

t

de

T

t e

K

y

控制器地传递函数为:

)

1

1(

S

T

S

T

K

G

I

d

p

s+

+

=

已知要求为比例度δ=10%,积分时间TI=5min,微分时间TD = 0.2min,所以建立仿真结构图如图:

仿真得系统广义对象输出z(t)的过渡过程如下图

主要性能指标如下:上升时间tr=2.4min; 峰值时间tp=3.4min;

最大超调量

43.75%

80

80

-

115=

=

p

σ

过渡时间ts=10min;

震荡次数N=2;

稳态误差ss e=0OC

分析结论

(1)比例控制:

由比例控制过程的仿真可知,当δ从10%,20%,50%,100%,200%变化过程中,Kc逐渐减小。随着Kc的逐渐减小,系统的响应速度,超调量都减小,但是当Kc少于0.32以后,系统响应变慢,且系统达不到调节要求。

由此可知,比例系数Kc越大,系统响应越快,但是过大时会导致系统不稳定。但是如果Kc 过小,也不能达到调节要求,系统响应慢,静态特性差。

(2)比例积分控制:

从仿真的结果来看,随着积分时间的增加,积分的控制作用在减小,系统的稳定性在加强。积分控制主要是消除静差,积分作用的强弱同时取决于积分时间的长短。采用比例积分调节控制,可以实现误差调节。

(3)比例积分微分控制:

由仿真过程可以看出,运用PID调节,不仅可以消除误差,由于微分环节的加入,还能够提高系统的稳定性,是一种比较理想的调节方式。

收获与体会

通过本次课程设计,使我对比例控制,比例积分控制,以及比例积分微分控制(PID)三种系统控制手段有了一个更深的认识,从单它们一的控制作用,再到三者对比,使我基本理解了它们的控制规律,也认识到了它们各自的控制优势与不足。同时我也熟悉了MATLAB运行环境,掌握了Simulink的仿真过程。

这次课程设计也使我学到了很多书本之外的东西。在课设的过程中,通过查找资料及同学之间

的探讨,使自己将理论知识上升到实践的高度。最后,感谢老师在我们学习过程中无私的指导。

附录:参考文献

[1] 邵裕森、戴先中:过程控制工程.机械工业,2000(5).

[2] 鄢景华:自动控制原理.哈尔滨工业大学,2012(10).

[3] 张普格、陈丽兰:控制系统CAD—基于MATLAB语言.机械工业,2010(8).

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

多点温度控制系统

多点温度控制系统 1.概述 电子技术的飞速发展,给人类的生活带来了根本的的变革,特别是随着大规模集成电路的产生而出现了微型计算机,更是将人类社会带入了一个新的时代。利用微机的强大功能。人们可以完成各种各样的控制。然而,微机造价高,对于大多数的工业控制来说,也并不需要微机那样强大的功能,于是单片机就运用而生了。单片机其实就是一个简化的微机,将微机的CPU,存储器,I/O接口。定时器/计数器等集成在一片芯片上就是单片机了,它主要用来完成各种控制功能。相对微机来说,单片机价格低,非常适合于应用在简单的控制场合以降低成本。另外,单片机是按照工业控制要求设计的,其可靠性很高,可在工业现场复杂的环境下运行。单片机依靠其高的可靠性和极高的性价比,在工业控制,数据采集,智能化仪表,家用电器等方面得到极为广泛的应用。 现代工业设计,工程建设及日常生活中温度控制都起着重要的作用,早期的温度控制主要用于工厂时间生产中,能起到实时采集温度数据,提高生产效率,产品质量之用。随着人们生活质量的提高,现代社会中的温度控制不仅应用在工厂生产方面也应用于酒店,厂房以及家庭生活中,在有些应用中,如高精度的生产厂房,对温度的要求极其严格,温度的变化极有可能对生产的产品造成极大的影响。因此,这就需要一种能够及时检测温度变化以及温度变化的设备,提供温度数据值,使人们对温度的变化做及时的调整,多点温度控制可根据人们不同的应用环境自行设置该环境的温度值,及时反映生产,生活中温度变化使人们能及时看到温度变化的第一手资料,提示人们温度变化情况,协助人们能及时的调整,起到温度报警作用,使温度控制更好的服务于社会生产,生活。

简易温度控制系统doc

目录 一、要求 (3) 二、摘要 (4) 三、前言 (5) 四、方案分析 (6) 五、实现 (10) 六、结论 (14) 七、附录 (15)

简易温度控制系统 设计并制作一个简易的单片机温度自动控制系统(见图一)。控制对象为自定。 图一 恒温箱控制系统 设计要求如下 (1)温度设定范围为40℃~90℃,最小区分度为1℃ (2)用十进制数码显示实际温度。 (3)被控对象温度采用发光二极管以光柱形式和数码形式显示。 (4)温度控制的静态误差≤2℃。 扩充功能: 控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。 可 编程 控制器 显示器 设置键盘 电源 执行器 恒温箱 温度传感器 变送器 220V AC

本次设计的主要目的是实现对温度的控制,其主要思路是通过温度传感器感应物体的温度,通过数码管显示出来,由于本此设计的温度设定范围是在40度到90度之间,因此如果物体的温度不在这个设定范围内,那么就需要通过加热或降温使物体的温度达到这个范围。另外本次设计设定了键盘,通过键盘输入设定的数,然后通过调温使该物体的温度达到设定的数值。本次设计采用单片机原理,共有温度感应模块、显示模块、键盘输入模块、比较模块四大块。通过温度动态显示,可以显示被测物体的温度,而通过键盘扫描可以求出设定的温度值,通过温度传感器可以感应物体的温度。那么,本次设计所能实现的功能就是可以测定物体的温度并能实现自动调整和手动键盘调整。

三、前言 随着社会的发展和科技的进步以及测温仪器在各个领域的应用,智能化是现代温控系统发展的主流方向,特别是今年来,温度控制系统已应用到生活的各个方面,但是温度控制一直是一个未开发的领域,是与人们息息相关的一个问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景和实际意义。 温度是科学技术中最基本的物理量之一。物理、化学、生物等学科都离不开温度,在工业生产等许多领域,温度常常是表征对象和过渡状态的重要物理量。各行各业对温度的要求越来越高,可见温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用越来越广泛,各种试用于不同场和的温度控制器应运而生。

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

某温度控制系统的MATLAB仿真

课程设计报告 题目某温度控制系统的MATLAB仿真(题目C)

过程控制课程设计任务书 题目C :某温度控制系统的MATLAB 仿真 一、 系统概况: 设某温度控制系统方块图如图: 图中G c (s)、G v (s)、G o (s)、G m (s)、分别为调节器、执行器、过程对象及温度变送器的传递函数;,且电动温度变送器测量范围(量程)为50~100O C 、输出信号为4~20mA 。G f (s)为干扰通道的传递函数。 二、系统参数 二、 要求: 1、分别建立仿真结构图,进行以下仿真,并求出主要性能指标: (1)控制器为比例控制,其比例度分别为δ=10%、20%、50%、100%、200%时,系统广义对象输出z(t)的过渡过程; (2)控制器为比例积分控制,其比例度δ=20%,积分时间分别为T I =1min 、3min 、5min 、10min 时,z(t)的过渡过程; 0m v o 0f o o =5min =2.5min =1.5(kg/min)/mA =5.4C/(kg/min) =0.8 C C T T K K K x(t)=80f(t)=10; ;;; ;给定值; 阶跃扰动

(3)控制器为比例积分微分控制,其比例度δ=10%,积分时间T I=5min,微分时间T D = 0.2min时,z(t)的过渡过程。 2、对以上仿真结果进行分析比对,得出结论。 3、撰写设计报告。 注:调节器比例带δ的说明 比例控制规律的输出p(t)与输入偏差信号e(t)之间的关系为 式中,K c叫作控制器的比例系数。 在过程控制仪表中,一般用比例度δ来表示比例控制作用的强弱。比例度δ定义为 式中,(z max-z min)为控制器输入信号的变化范围,即量程;(p max-p min)为控制器输出信号的变化范围。 = c p(t)K e(t) max min ( ) =100% ) max min e z z p(p-p δ - ?

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 目录 (2) 1、题目................................................................................................................. 错误!未定义书签。 2、换热器概述..................................................................................................... 错误!未定义书签。 换热器的用途............................................................................................... 错误!未定义书签。 换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。 3、控制系统 (3) 控制系统的选择 (3) 工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 被控变量的选择 (4) 操纵变量的选择 (4) 被控对象特性 (5) 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 测温元件及变送器 (7) 执行器 (10) 调节器 (12) 、仪表型号清单列表 (12) 6、系统方块图 (13) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13) 调节控制参数 (13) PID参数整定及系统仿真 (14) 系统性能分析 (16) 8、参考文献 (17)

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

DS18B20多点温度检测系统的设计(论文)

目录 摘要2 ABSTRACT 3 第一章绪论4 §1.1系统背景4 §1.2 系统概述4 第二章方案论证5 §2.1 传感器部分5 §2.2主控制部分6 §2.3 系统方案6 第三章硬件电路设计7 §3.1 电源以及看门狗电路7 §3.2键盘以及显示电路9 §3.2温度测试电路11 §3.3 串口通讯电路15 §3.4 整体电路16 第四章软件设计16 §4.1 概述16 §4.2 主程序方案16 §4.3 各模块子程序设计18 第五章系统调试20 §5.1 分步调试20 §5.2 统一调试20 结束语21 参考文献22 附录一:软件流程图24 附录二:电路原理图25 致谢27 多点温度检测系统 设计作者:谭诗炜(电信200201班) 指导老师:冯杰 摘要 DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠.本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图. 该系统由上位机和下位机两大部分组成.下位机实现温度的检测并提供标准RS232通信接口,芯片使用了ATMEL公司的A T89C51单片机和DALLAS公司的DS18B20数字温度传感器.上位机部分使用了通用PC.该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域. 关键字:温度测量;单总线;数字温度传感器;单片机

Abstract As a kind of high-accuracy digital net temperature sensor,DS18 B20 can be used building a sensor net easily. It can also make the net simple and reliable with it's special 1-wire interface .This paper introduces the application of DS18B20 with single chip processor. The system is constituted by two parts the temperature measured part and displayed part. The temperature measured part has a RS232 interface. It used AT89C51 of A TMEL company and DS18B20 of DALLAS company .The displayed part uses PC .This system is applied in such domains as warehouse detecting temperature;air-conditioner controlling system in building and supervisory productive process etc. Key words:temperature measure;single bus;digital thermometer;single chip processor; 第一章绪论 §1.1系统背景 在工、农业生产和日常生活中,对温度的测量及控制占据着极其重要地位.首先让我们了解一下多点温度检测系统在各个方面的应用领域:消防电气的非破坏性温度检测,电力、电讯设备之过热故障预知检测,空调系统的温度检测,各类运输工具之组件的过热检测,保全与监视系统之应用,医疗与健诊的温度测试,化工、机械…等设备温度过热检测.温度检测系统应用十分

2020年换热器温度控制系统简单控制系统

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 目录 目录 (1) 1、题目........................................................ 错误!未定义书签。 2、换热器概述.................................................. 错误!未定义书签。 2.1换热器的用途............................................ 错误!未定义书签。 2.2换热器的工作原理及工艺流程图............................ 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (10) 5.3 调节器 (13) 5.4、仪表型号清单列表 (13) 6、系统方块图 (14) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (14) 7.1调节控制参数 (14)

7.2 PID参数整定及系统仿真 (15) 7.3 系统性能分析 (18) 8、参考文献 (19) 1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及 其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有 下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行; ②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度 范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变 量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、 调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可 以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别 通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

温度控制系统曲线模式识别及仿真

锅炉温度定值控制系统模式识别及仿真专业:电气工程及其自动化姓名:郭光普指导教师:马安仁 摘要本文首先简要介绍了锅炉内胆温度控制系统的控制原理和参数辨识的概念及切线近似法模式识别的基本原理,然后对该系统的温控曲线进行模式识别,而后着重介绍了用串级控制和Smith预估器设计一个新的温度控制系统,并在MATLAB的Simulink中搭建仿真模型进行仿真。 关键词温度控制,模式识别,串级控制,Smith预测控制 ABSTRACT This article first briefly introduced in the boiler the gallbladder temperature control system's control principle and the parameter identification concept and the tangent approximate method pattern recognition basic principle, then controls the curve to this system to carry on the pattern recognition warm, then emphatically introduced designs a new temperature control system with the cascade control and the Smith estimator, and carries on the simulation in the Simulink of MATLAB build simulation model. Key Words:Temperature control, Pattern recognition, Cascade control, Smith predictive control

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

多点温度采集控制系统的开题报告

哈尔滨工业大学华德应用技术学院毕业设计(论文)开题报告题目:多点温度采集控制系统 系(部)应用电子与通信技术系 专业电子信息工程 学生路春雨 学号1089212220 班号0892122 指导教师顾伟东 开题报告日期2011.10.17 哈工大华德学院

说明 一、开题报告应包括下列主要内容: 1.通过学生对文献论述和方案论证,判断是否已充分理解毕业设计(论文)的内容和要求 2.进度计划是否切实可行; 3.是否具备毕业设计所要求的基础条件。 4.预计研究过程中可能遇到的困难和问题,以及解决的措施; 5.主要参考文献。 二、如学生首次开题报告未通过,需在一周内再进行一次。 三、开题报告由指导教师填写意见、签字后,统一交所在系(部)保存,以备检查。 指导教师评语: 指导教师签字:检查日期:

一、综述部分 1、课题的开发背景与需求分析 温度是工业、农业生产中常见的和最基本的参数之一,在生产过程中常需对温度进行检测和监控,采用微型机进行温度检测、数字显示、信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要的作用。伴随工业科技、农业科技的发展,温度测量需求越来越多,也越来越重要。但是在一些特定环境温度监测环境范围大,测点距离远,布线很不方便。这时就要采用无线方式对温度数据进行采集。 多路无线温度采集系统可被广泛应用于温度测量或相应的可转换为温度量或供电故障监控的工业、农业、环保、服务业、安全监控等工程中,例如:城市路灯故障检测和供电线路防盗监视、城市居民小区供热检测、大型仓库温度检测、工业生产测控、农业生产温度测控、环保工程、故障监控工程等。考虑到许多工业环境中对多点温度进行监控,一般需要测量几十个点以上。本文设计多路无线温度监控系统。 2、调研分析 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和室内中的温度进行检测和控制。采用STC89C51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且能大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,能说多少乎80%的工业部门都不得不考虑着温度的因素。 二、方案论证 控制系统由硬件电路和软件程序两部分组成,其中硬件部分主要有温度采集电路、显示模块(数码管显示)、键盘接口、蜂鸣报警、单片机电路几部分组成。

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

温度控制系统的设计与仿真

: 远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 、 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: " 2013 年 2 月 28 日

) 摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB &

( 目录 1单片机在炉温控制系统中的运用 (6) 1、1系统的基本工作原理 (6) 2温控系统控制算法设计 (7) 温度控制算法的比较 (7) 数字PID算法 (11) 、 3 结论 (21) 致谢 (22) 参考文献 (23) [

自动温度控制系统的设计

上海电力学院电子系统设计实验报告 题目:自动温度控制系统的设计 院系:电子与信息工程学院 专业:电子科学与技术 班级:2013142班 学号:20132481 姓名:当当当

自动温度控制系统的设计 1、任务要求 以单片机为核心控制器件,通过温度传感器进行温度测量,设置温度的上下限。当温度超出正常范围,则由指示灯和蜂鸣器报警提示。当温度低于下限值时,要求通风电机停转,当温度高于上限值时,通风电机转动。 2、设计方案 本设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:设定需求的温度为30~60摄氏度,当温度低于设定温度下限30摄氏度时,指示灯和蜂鸣器报警提示并且通风电机停转,使温度上升。当温度高于设定温度上限60摄氏度时,指示灯和蜂鸣器报警提示且通风电机转动,使温度下降。当温度达到设定温度界限时,通风机停止工作。为了实现以上功能首先完成了系统的整体设计,硬件以及软件的设计。在硬件上采用了由DS18B20温度传感器采集温度,送入单片机与设定温度进行对比处理,再通过显示器进行显示使其很直观的了解当前的状态。在软件设计上完成了系统的各个功能程序以及流程图包括系统程序主要包括主程序,读出温度子程序,复位应答子程序,写入子程序等,并且采用与C51系列单片机相对应的51汇编语言和结构化程序设计方法进行软件编程。 总体设计框图 3.硬件电路设计 3.1最小系统 按键设置 单 片 机 降热 温度采集 显示 加热

3.1.1 AT89C51的单片机 采用STC89C51芯片作为硬件核心。STC89C51内部具有8KB ROM 存储空间,512字节数据存储空间,带有2K字节的EEPROM存储空间,与MCS-51系列单片机完全兼容,STC89C51可以通过串口下载。 引脚介绍 ①主电源引脚(2根) VCC(Pin40):电源输入,接+5V电源 GND(Pin20):接地线 ②外接晶振引脚(2根) XTAL1(Pin19):片内振荡电路的输入端 XTAL2(Pin20):片内振荡电路的输出端 ③控制引脚(4根) RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。ALE/PROG(Pin30):地址锁存允许信号 PSEN(Pin29):外部存储器读选通信号 EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

温度控制系统

温度控制系统 1.0 功能概述 结合本设计的要求和技术指标,通过对系统大致程序量的估计和系统工作速度的估计,考虑价格因素。选定at89s51单片机作为系统的主要控制芯片,8位数模转换器ad0809。采用AD0809进行温度采集,温度设定范围为-10℃~ 45℃,通过温度采集系统,对温度进行采样并进行A、D转换,再输给单片机。以空调为执行器件,通过单片机程序完成对室内温度控制。 1.1系统的主要要求 (1)温度设定范围为,最小区分温度为,标定温差小于 (2)用二位十进制数码显示当前温度 (3)能根据设定的温度进行加热或降温处理。 (4)设计出系统控制单元 1.2系统的工作原理 在温度控制系统中,需要对温度的变换转换为对应的电信号的变化,选用89S51单片机为中央处理器,通过温度传感器对空气温度进行温度采集,将采集到的温度信号传输给单片机,再有单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温循环对空气进行处理,从而模拟实现空调温度控制单元的动作情况。 工作流程说明如下 开始,先接通电源,三段数码显示器就自动显示当前温度,并且显示出设置温度的缺省值000. 按下S1键,功能转换键,按此键则开始键盘控制。 此时通过键盘输入预设值的温度,按下S2加,按此键则温度设定加一度。按下S3减,按此键则设定温度减一度。S4复位键,使系统复位。 就这样通过温度芯片的反馈信息,实现温度保持在设定温度上,从而达到自动控制温度的功能。 1.3系统的主要技术指标 测温范围:-55℃- +100℃ 温度分辨率:±0.5V LED显示位数:3 2 系统的结构框图 系统的硬件电路有温度传感器、A/D转换、LED显示等部分组成,总体方案结构见下图所示

简易温度控制器的设计(DOC)

" 简易温度控制器的设计 摘要 简易温度控制器是采用热敏电阻作为温度传感器,由于温度的变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象即加热器进行控制。其电路可分为三大部分:测温电路,比较/显示电路,控制电路。 关键词:测温,显示,加热 ! }

目录 一、设计任务和要求 0 设计内容 0 设计要求 0 二、系统设计 0 系统要求 0 系统工作原理 0 方案设计 0 三.单元电路设计 (1) 温度检测电路 (1) 电路结构及工作原理 (1) 电路仿真 (2) 、元器件的选择及参数的确定 (3) 比较/显示电路 (3) 电路结构及工作原理 (3) 电路仿真 (4) 元件的选择及参数的确定 (5) 、温度控制单元电路 (5) 电路结构及工作原理 (5) 温度控制单元仿真电路 (6) 电源部分 (7) 四.系统仿真 (9) 结论 (9) 致谢 (9) 参考文献 (9)

一、设计任务和要求 设计内容 采用热敏电阻作为温度传感器,由于温度变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,从而通过输出电平对加热器进行控制。 设计要求 首先通过电源变压器把220V的交流电变成所需要的5V电压;当水温小于40℃时,H1、H2两个加热器同时打开,将容器内的水加热;当水温大于50℃,但小于70℃时,H1加热器打开,H2加热器关闭;当水温大于50℃时,H1、H2两个加热器同时关闭;当水温小于30℃,或者大于80℃时,红色发光二极管报警;当水温在30℃~80℃之间时,用绿色发光二极管指示水温正常[2]。 二、系统设计 系统要求 系统主要要求将温度模拟量转化为数字量,再将其转化为控制信号,从而对显示电路和控制电路进行控制,从而自动的调节水温, 系统工作原理 通过对水温进行测量,将所测量的温度值与给定值进行比较,利用比较后的输出信号至加热部分,让加热部分调控水温,从而实现对水温控制的目的。同时也反应到显示部分,让其正确的表示温度的状态。温度值的变化引起电阻值的变化,从而最终引起测温电路输出的电压值的变化,经过后边比较电路进行比较,从而控制显示电路和加热电路。 方案设计 为了使信号输出误差很小,选用桥式测压电路,这样可以得出较为准确的与温度相对应的电压值,关于比较部分可以选用比较器LM339构成窗口比较器,再利用滑动变阻

相关文档
最新文档