数字化变电站的简介

数字化变电站的简介
数字化变电站的简介

数字化变电站

数字化变电站是由智能化一次设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)构建,建立在IEC61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。

数字化变电站是应用IEC61850进行建模和通信的变电站,数字化变电站体现在过程层设备的数字化,整个站内信息的网络化,以及开关设备实现智能化。数字化变电站有如下特点:

(一)智能化的一次设备

一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

(二)网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

(三)自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能及时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

浅析数字化变电站简介

1.前言2006年12月13日,在内蒙古乌兰察布市杜尔伯特草原,全国第一座220千伏数字化变电站—杜尔伯特变电站一次启动成功投入生产运行。杜尔伯特变电站采用南自新宁公司的数字化变电站系统,具有国内领先水平的数字化电流(电压)互感器取代传统互感器,光缆代替电缆

作为系统运行测量、系统运行控制、设备运行保护和电能计量的信息采集和传输设备。杜尔伯特变电站是一座具有一次设备智能化、二次设备网络化、运行管理系统自动化的变电站。杜尔伯特变电站是内蒙古电力公司在乌兰察布电业局密切配合下完全自主设计、施工、安装和调试并一次启动成功投入生产运行的数字化变电站。我国首座220千伏数字化变电站的建设成功,不仅标志着乌兰察布电业局全面贯彻国家电网公司自主创新方针,践行又好又快发展的指导思想迈出了重要一步,也是乌兰察布电业局大胆创新、锐意进取的一个重要举措。同时也充分体现了内蒙古电力公司科技创新的效益和水平。2.数字化变电站与常规综自站比较数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约IEC61850构建通信网络,保护、测控、计量、监控、远动、VQC等系统均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。常规综自站与数字化变电站对比如图1所示。 3.数字化设备 3.1光电互感器光电互感器与传统互感器外形相似,但体积小,重量轻。主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。本站的光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式互为备用,自动切换。3.2合并器主控室内在各间隔测控屏上增加合并器装置,合并器的作用是将各电流互感器传回的电流数据和由电压互感器合并器传来的电压数据处理后打包输出。输出数据分别提供给保护、测

控、母差、电度表、低周、小电流选线等装置,每个装置用一根光缆即可。每根光缆可以提供多个信号,例如:三个相电流,一个零序电流,三个测量电流、三个相电压、一个零序电压、一个线路电压等。因此数字化变电站采用少量光缆可以代替大量电缆,同时实现信息共享。电压互感器合并器接入两段母线电压处理打包后分别向各间隔提供电压量。同时,合并器可接入传统电压、电流互感器。合并器上装有激光发生器,用来为光电互感器传感头部件提供能量。3.3同步装置与常规综自站相比,增加一个同步装置。一个二次设备同时接收多个合并器的数据,则这几个合并器需要同步工作。因此,同步装置可以使全站合并器采样同步。只有采样同步,才能保证采样数据有参考价值,用于做出处理和判断。同步信号通过光缆送入各合并器,其误差小于125纳秒。3.4一次设备智能化数字化变电站使用常规断路器和主变,需进行数字化改造。在断路器就地安装智能单元,完成控制信号的光电转换。从测控装置到智能单元采用光缆通信,从智能单元到断路器内部仍用常规电缆,实现断路器跳、合闸和预告信号等功能。对于主变加装智能单元,可完成调压、温度、瓦斯等功能的实现。 3.5低电压等级互感器的处理对于10kV、35kV的光电互感器,为降低成本,传感头中的采集器、A/D转换器和光发生器LED部分取出,由合并器完成其功能,合并器和测控保护装置就地安装于开关柜上。因此只提供常规电源即可,可节省能量线圈和激光电源,同时由于绝缘简单,互感器制造工艺要求降低,因而大大节省造价。数字化设备与其他二次设备厂家连接,仅需增加一块光电转换插件即可。从合并器引出光缆进入其他厂家设备,先由光电转换插件将光信号转换为电信号,然后进行处理。例如:低周低压装置和小电流选线装置。本站电度表采用新宁公司生产的光电度表,无须转换,可直接接入光缆。4.数字化变电站的特点4.1高性能①通信网络采用统一的通信规约IEC61850,不需要进行规约转换,加快了通信速度,降低了系统的复杂度和设计、调试和维护的难度,提高了通信系统的性能。②数字信号通过光缆传输避免了电缆带来的电磁干扰,传输过程中无信号衰减、失真。无L、C滤波网络,不产生谐振过电压。传输和处理过程中不再产生附加误差,提升了保护、计量和测量系统的精度。③光电互感器无磁饱和,精度高,暂态特性好。 4.2高安全性①光电互感器的应用,避免了油和SF6互感器的渗漏问题,很大程度上减少了运行维护的工作量,不再受渗漏油的困扰,同时提高了安全性。

②光电互感器高低压部分光电隔离,使得电流互感器二次开路、电压互感器二次短路可能危及人身或设备等问题不复存在,大大提高了安全性。③光缆代替电缆,避免了电缆端子接线松动、发热、开路和短路的危险,提高了变电站整体安全运行水平。4.3高可靠性①设备自检功

能强,合并器收不到数据会判断通讯故障或互感器故障而发出告警,既提高了运行的可靠性又减轻了运行人员的工作量。②采集器的电源由能量线圈或激光电源提供,两者自动切换,互为备用。 4.4高经济性①采用光缆代替大量电缆,降低成本。用光缆取代二次电缆,简化了电缆沟、电缆层和电缆防火,保护、自动化调试的工作量减少,减少了运行维护成本。同时,缩短工程周期,减少通道重复建设和投资。②实现信息共享,兼容性高,便于新增功能和扩展规模,减少变电站投资成本。③光电互感器采用固体绝缘,无渗漏问题,减少了停运检修成本。④数字化变电站技术含量高,电缆等耗材节约,具有节能、环保、节约社会资源的多重功效。4.5应用中应注意的事项①激光发生器不能空载运行,否则易损坏。如激光发生器在工作状态,将数据光缆或能量光缆拔开可造成激光发生器空载而烧坏。今后应考虑加装闭锁或保护功能。②不得用眼睛观察激光孔或激光光缆,会烧伤眼睛。③光电互感器工作电源采用激光电源和取能线圈双电源方式,即一次电流10A 以上用取能线圈作电源,10A以下用激光电源,异常时否能切换到激光电源,不至使光电互感器停止工作,有待在实际运行中观察。④巡视时要特别注意:光纤及与二次设备连接的尾纤应可靠连接,防尘帽无破裂、脱落,密封良好。光纤、尾纤自然弯曲,无折痕,弯曲半径不得小于10倍光、尾纤直径,外皮无破损。 5.结束语数字化变电站的建成投产为电网数字化建设奠定了基础,在变电站发展历程史上具有划时代的意义,是一次变电技术的革命。在数字化建设的整个过程中,所有设备均采用具有我国知识产权的国产化设备,填补了我国数字化变电站建设中的多项空白。通过220千伏杜尔伯特数字化变电站示范工程的实施,积累了数字化变电站在建设、管理、维护和运行中的大量经验。为内蒙古电力公司培养第一代数字化变电站的管理和操作人才进行了有益的探索。

数字化变电站技术浅析

中国电力网 2008年3月19日11:38 来源: 点击直达中国电力社区浙江省杭州市余杭供电局 李逸荣 夏红军 唐建民中国电力网两

会代表委员说电力专题

摘要:随着智能化电气设备的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,数字化变电站从理论变为现实,一个数字化变电站时代即将来临。该文主要从数字化变电站自动化系统的技术特征、系统组成、网络结构及应用中存在的问题等几个方面进行论述。访问中国电力网

关键词:数字化变电站;光电/电子式互感器;IEC61850中国电力网资料频道提供电力行业最新统计资料

中图分类号:TM619 文献标识码:B 文章编号:1003-

0867(2008)01-0056-03

变电站自动化技术的发展直接表现为变电站自动化系统结构的变迁,从集中式到分层分布式。厂站自动化技术在结构上增强了变电站自动化系统功能的同时,提高了系统的实时性、可靠性、可扩展性和灵活性,基本达到了节省投资、简化维护等目的。数字化变电站的系统结构继承并发展了分层分布式变电站结构的特点,同时随着电子式互感器、智能开关技术的应用,使得数字化变电站的系统结构又有了不同于常规变电站的革命性变化,也呈现了与常规变电站迥异的鲜明的技术特征。

1 数字化变电站的技术特征

各类数据从源头实现数字化,真正实现信息集成、网络通信、数据共享。在电流、电压的采集环节采用数字化电气测量系统,如光电/电子式互感器,实现了电气量数据采集的数字化应用,并为实现常规变电站装置冗余向信息冗余的转变,为实现信息集成化应用提供了基础。打破常规变电站的监视、控制、保护、故障录波、量测与计量等几乎都是功能单一、相互独立的装置的模式,改变了硬件重复配置、信息不共享、投资成本大的局面。数字化变电站使得原来分散的二次系统装置,具备了进行信息集成和功能合理优化、整合的基础。

系统结构更加紧凑,数字化电气量监测系统具有体积小、重量轻等特点,可以有效地集成在智能开关设备系统中,按变电站机电一体化设计理念进行功能优化组合和设备布置。

系统建模实现标准化,IEC 61850确立了电力系统的建模标准,为变电站自动化系统定义了统一的、标准的信息模型和信息交换模型,实现智能设备的互操作,实现变电站信息共享。对一、二次设备进行统一建模,资源采用全局统一命名规则,变电站内及变电站与控制中心之间实现了无缝通信,从而简化系统维护、配置和工程实施。

设备实现广泛在线监测,使得设备状态检修更加科学可行。在数字化变电站中,可以有效地获取电网运行状态数据、各种智能电子装置IED(Intelligent ElectronicDevice)的故障和动作信息及信号回路状态。数字化变电站中将几乎不再存在未被监视的功能单元,在设备状态特征量的采集上没有盲区。设备检修策略可以从常规变电站设备的“定期检修”变成“状态检修”,这将大大提高系统的可用性。

2 数字化变电站的系统组成

数字化变电站是智能化的一次设备、网络化的二次设备在

IEC62850通信协议技术上分层构建的,能够实现智能设备间信息共享和互操作。下面分别对三个组成部分进行介绍。

图1 数字化变电站自动化系统示意图

2.1 智能化的一次设备

智能化的一次设备包括光电/电子式互感器,智能化断路器等。光电/电子式互感器的最大特点是可以输出低压模拟量和数字量信号,直接用于微机保护和电子式计量设备,适应电子系统数字化、智能化和网络化的需要,由于其动态范围比较大,能同时适用于测量和保护两种功能的应用。光电/电子式互感器具有良好的绝缘性能、较强的抗电磁干扰能力、测量频带宽、动态范围大等特点。

智能化断路器由微机、电力电子组成执行单元,代替常规机械结构的辅助开关和辅助继电器,实现按电压波形控制跳、合闸角度,精确控制跳、合闸时间,减少暂态过电压幅值。检测电网中断路器开断前一瞬间的各种工作状态信息,自动选择和调节操动机构以及灭弧室状态相适应的合理工作条件,以改变现有断路器的单一分闸特性。在轻载时以较低的分闸速度开断,而在系统故障时又以较高的分闸速度开断等,这样就可获得开断时电气和机构性能上的最佳开断效果。断路器设备的信息由设备内微机直接处理,并独立执行当地功能,而不依赖于变电站级的控制系统。

2.2 变电站内的二次设备

变电站内的二次设备,如继电保护装置、测量控制装置、防误闭锁装置、远动装置、故障录波装置及正在发展中的在线状态监测装置,全部基于标准化、模块化的微处理器设计制造,二次设备不再出现常规功能装置重复的I/O现场接口,它们之间的连接全部采用高速的网络通信,并且通过网络真正实现数据共享、资源

2.3 IEC 61850

IEC 61850是国际电工委员会TC57工作组制定的《变电站通信网络和系统》系列标准,它是基于网络通信平台的变电站自动化系统唯一的国际标准,它不仅规范保护测控装置的模型和通信接口,而且还定义了数字式TA、TV、智能式开关等一次设备的模型和通信接口。它将变电站通信体系分为3层:变电站层、间隔层、过程层。在变电站层和间隔层之间的网络采用抽象通信服务接口映射到制造报文规范(MMS)、传输控制协议/网际协议(TCP/IP)以太网或光纤网。在间隔层和过程层之间的网络采用单点向多点的单向传输以太网。变电站内的智能电子设备(IED,测控单元和继电保护)均采用统一的协议,通过网络进行信息交换。

该标准通过对变电站自动化系统中的对象统一建模,采用面向对象技术和独立于网络结构的抽象通信服务接口,增强了设备之间的互操作性,可以在不同厂家的设备之间实现无缝连接。它解决了变电站自动化系统产品的互操作性和协议转换问题。采用该标准还可使变电站自动化设备具有自描述、自诊断和即插即用的功能,极大的方便了系统的集成,降低了变电站自动化系统的工程费用。在我国采用该标准系列将大大提高变电站自动化系统的技术水平,提高变电站自动化系统安全稳定运行水平,节约检修维护的人力物力、实现完全的互操作性。

3 数字化变电站的网络结构

根据IEC61850通信协议定义,数字化变电站自动化系统分为三层网络结构。这三个层次分别称为“过程层”、“间隔层”、“站控层”。各层次内部及层次之间采用高速网络通信,通信媒介为网络线或光纤,见图1。

3.1 过程层

过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:电力运行实时的电气量检测;运行设备的状态参数检测;操作控制执行与驱动。电力运行的实时电气量检测,主要包括电流和电压幅值、相位以及谐波分量的检测,与常规方式相比所不同的是传统的电磁式互感器被光电/电子式互感器取代,传统模拟量被直接采集数字量所取代。 运行设备的状态参数在线监测与统计,变电站需要进行状态参数检测的设备主要有变压器、断路器、隔离开关、母线、电容器、电抗器以及直流电源系统。在线检测的内容主要有温度、压力、密度、绝缘、机械特性以及工作状态等数据。操作控制的执行与驱动包括变压器分接头调节控制,电容、电抗器投切控制,断路器、隔离开关合分控制,直流电源充放电

3.2 间隔层

间隔层设备的主要功能是:汇总本间隔过程层实时数据信息,实施对一次设备保护控制功能,和本间隔操作闭锁、操作同期及其他控制功能;对数据采集、统计运算及控制命令的发出具有优先级别的控制;承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工作方式,以提高信息通道的冗余度,保证网络通信的可靠性。

3.3 站控层

站控层设备的主要功能是:通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;按既定规约将有关数据信息送向调度或控制中心;接收调度或控制中心有关控制命令并转间隔层、过程层执行;具有在线可编程的全站操作闭锁控制功能;具有站内当地监控,人机联系功能,如显示、操作、打印、报警、图像、声音等多媒体功能;具有对间隔层、过程层诸设备的在线维护、在线组态、在线修改参数的功能。

4 数字化变电站应用中存在的问题

目前光电/电子式互感器的生产厂家数量有限,产品可选型号相对较少,部分高电压等级的电流互感器变比较大,不能满足现场运行需要。如内蒙古220 kV杜尔伯特数字化变电站,线路电流互感器变比为1200/5,为满足现场实际需要,只能在合并器(作用是将各电流互感器传回的电流数据和由电压互感器传来的电压数据处理后打包输出,供各保护和测控装置使用)上采用软件的方法修改变比,使得TA的输出精度可能无法满足要求,给变电站的计量、保护都带来一定的负面影响。

由于光电/电子式互感器本身的结构特点和工作方式,导致互感器的角差、比差现场试验难以进行,甚至极性试验也无法开展,只能等到设备投运带电后,才能检验接线的准确性。另外,光电/电子式互感器的局放试验、伏安特性试验的试验方法和标准也与常规设备有很大的区别,这都需要设备厂家和运行主管单位专门制定。

数字化变电站保护校验相对复杂,在变电站运行的条件下对部分间隔保护校验的难度很大,目前的常规继电保护校验装置无法提供数字化保护所需的电流量和电压量,因为电流量和电压量必须经过合并器才能进入保护装置,而要完成试验必须自带合并器提供模拟试验中的电流量和电压量,要完成母差保护这类需要大量电流电压量的保护校验便显得尤为困难。

IEC 61850通信协议本身并未对变电站网络系统的安全性做任何

规定,同时协议本身的开放性和标准性给变电站的网络安全带来重大隐患。要做到二次系统信息的保密性、完整性、可用性和确定性,符合二次系统安全防护的要求,是自动化厂家仍需考虑和完善的技术环节。虽然目前已投运的变电站采取了防火墙、分层分区隔离等手段进行防护,但防护的效果仍有待时间的考验。

数字化变电站新技术的发展现状及其对行业影响浅探概要

第37卷第7期电力系统保护与控制Vol.37 No.7 2009年4月1日 Power System Protection and Control Apr.1, 2009 数字化变电站新技术的发展现状及其对行业影响浅探 陈天香1,王若醒2,魏勇2 (1.江苏南通供电公司,江苏南通 226006;2.许继电气技术中心,河南许昌 461000 摘要:数字化变电站是变电站未来发展的方向,四大领域的技术创新是数字化变电站得以发展和突破的基石。新技术的应用将给传统行业带来巨大的冲击和深远的影响,该文试对此做出分析和探讨,以图抛砖引玉。 关键词: 数字化变电站; 新技术; 行业影响 New technology development status of digital substation and its effect to industry CHEN Tian-xiang1, WANG Ruo-xing2, WEI Yong2 (1. Nantong Power Company Co., Nantong 226006, China; 2.XJ Electric Technology Center,Xuchang 461000,China Abstract: Digital substation is a developing direction in the future,the technology innovation of the four domain is the base of digital substation development.The application of new technology will make traditional industry large affection and impact.This paper try to analyze and discuss. Key words: digital substation; new technology; effect to industry 中图分类号: TM76 文献标识码:A 文章编号: 1674-3415(200907-0086-05 0 引言 变电站综合自动化系统技术经过10余年的发展,目前已经基本成熟,得到了广泛的工程应用,获得了巨大的成功。但是综自系统采用传统的互感器及开关设备,需要铺设大量的采集和控制、信号等二次电缆,数据采集环节冗余,各子系统的功能重复

数字化变电站背景材料资料

数字化变电站设计建设研究工作素材 一、数字化变电站的主要特征和特点 (一)主要特征 1.一次设备数字化 采用数字输出的电子式互感器、智能开关(或配智能终端的传统开关)等智能一次设备。一次设备和二次设备间用光纤传输数字编码信息的方式交换采样值、状态量、控制命令等信息。 2.二次设备网络化 二次设备间用通信网络交换模拟量、开关量和控制命令等信息,取消常规自动化系统一次设备和二次设备之间的控制电缆,采用光纤网络直接通信。 3.管理系统信息化、自动化 应包括自动故障分析系统、设备健康状态监测系统

和程序化控制系统等自动化系统,提升自动化水平,减少运行维护的难度和工作量。 (二)近、中、远景特征 近期数字化变电站的建设主要是基于IEC61850的二次设备发展。一次智能设备明显滞后于二次智能设备的发展,一次设备的数字化仅依靠二次设备厂家的附加设备将一次设备数字化后接入数字化变电站二次采集系统,而基于IEC61850的二次设备取得全面提升。此阶段电子式互感器的应用还处于试用和起步阶段。而数字化变电站的建设和管理正处于积累经验的阶段,开始对基于现阶段技术水平的数字化变电站提出一些运行、管理上的规范。 中期数字化变电站的电子式互感器的发展已经较成熟,开始全面应用于数字化变电站,由此带动二次智能设备装置性能提升、功能分布更加合理。有革命性变革的智能一次设备开始逐渐应用于变电站中,但技术和应用

程度都有待进一步提高。基于IEC61850的二次系统更加完善,互操作、网络技术等发展已经趋于成熟和稳定。整个数字化变电站管理体系已经逐渐成熟。 远景智能一次设备已经基本发展成熟,在数字化变电站中全面应用,完全意义上的数字化变电站开始出现,基本掌握与之相适应的数字化变电站技术、管理系统。 (三)关键技术 1.数字化变电站体系研究 电网发展对数字化变电站的要求研究 数字化变电站及其架构研究 2.数字化一次设备应用研究 电子式互感器在数字化变电站中的应用研究 数字化高压电器在数字化变电站中的应用研究 一次设备在线监测 3.数字化变电站自动化系统研究 基于IEC61850标准的变电站自动化系统总体方案研究

全数字化变电站实施方案(110KV)

全数字化变电站自动化系统实施方案 (110kV及以下) 编写:李延新 黎 强 批准:徐成斌 深圳南瑞科技有限公司

全数字化变电站实施方案 目录 1.适用范围 (1) 2.全数字化实施方案 (1) 2.1.系统特点 (1) 2.2.系统网络结构 (2) 2.3.校时及采样同步方案 (2) 2.4.站控层设备及其组网 (3) 2.5.间隔层设备及其组网 (4) 2.6.过程层设备及其组网 (6) 2.7.电子互感器设备 (12) 3.110KV典型数字化站设备配置清单 (13) 3.1.数字化计算机监控系统 (13) 3.2.保护设备 (14) 3.3.测控及MU (15) 3.4.电子互感器 (16) 3.5.端子箱(智能操作箱) (17) 3.6.其它 (17) 4.WB800系列平台简介 (18)

全数字化变电站实施方案(110kV及以下) 深圳南瑞科技有限公司 1. 适用范围 本实施方案使用于以下设计方案的变电站: z站控层、过程层均按照数字化变电站设计,可以是传统式互感器。 z110kV及其以下电压等级变电站:110/35/10kV、110/35kV、110/10kV、35/10kV。 z全部集中组屏,或110kV及主变集中组屏、35/10kV分散就地。 z110kV可以是线路变压器组方式(内桥或外桥接线)。 z单母分段主接线方式。 2. 全数字化实施方案 2.1. 系统特点 z PRS-7000数字化变电站系统采用深圳南瑞研发的WB800系列新一代硬件平台,可以为各种模式的数字化站要求提供完整高效的解决方案。 z站控层采用双以太网,100MBase-FX或100MBase-TX,设备直联,符合IEC61850协议。 z过程层设备提供足够多的以太网接口(100MBase-FX),即可采用交换机组网互联,也可采用设备点对点互联。 z同步系统对于需要同步的设备提供多种解决方案:可采用全站秒脉冲同步,或IEEE1588同步校时(复用以太网,采用采样点插值同步方式,无需专用校时网)。 z过程层通用间隔合并器采用深圳南瑞PRS-7390-1,传输规约为IEC61850-9-1/2,与二次保护测量设备点对点联接。 z过程层电压间隔合并器采用深圳南瑞 PRS-7390-3,采集本段母线电压,同时合并相邻段母线电压,实现电压并列功能,传输规约为IEC61850-9-1。 z过程层智能终端安装在开关附近的端子箱内,采集断路器及刀闸的位置、状态信息等,转换成数字信号用光纤上送到保护测控设备;保护测控设备的下行命令(分合闸等)通过光纤传输到过程层智能终端,由过程层智能终端的控制回路控制一次设备。其中智能操作箱采用深圳南瑞PRS-7389,本体操作箱采用深圳南瑞PRS-7361,就地安装于端子箱或开关柜,每台装置提供8个GOOSE接口,支持交换机组网联接和点对点互联。 z110kV间隔及主变各侧配置ECT、EPT,采用IEC60044-8交互协议。过程层配置智能操作箱和间隔合并器。间隔层配置PRS-7000系列的成套保护测控装置,其中变压器保护测控装置即可采用传统的保护测控分立、主后备分立的配置方式,也可采用集成的系统保护(变压器保护测控装置)双套配置方式。系统保护可以独立配置或集成选配备自投及母线保护功能。 z35/10kV各间隔配置低电压信号输出或数字信号输出的组合式电子互感器,采用保护测控一体化装置,接入电子式互感器和传统开关,可接入GOOSE操作网。

智能变电站辅助系统综合监控平台介绍

智能变电站辅助系统综合 监控平台介绍 Prepared on 24 November 2020

智能变电站辅助系统综合监控平台 一、系统概述 智能变电站辅助系统综合监控平台以“智能感知和智能控制”为核心,通过各种物联网技术,对全站主要电气设备、关键设备安装地点以及周围环境进行全天候状态监视和智能控制,完成环境、视频、火灾消防、采暖通风、照明、SF6、安全防范、门禁、变压器、配电、UPS等子系统的数据采集和监控,实现集中管理和一体化集成联动,为变电站的安全生产提供可靠的保障,从而解决了变电站安全运营的“在控”、“可控”和“易控”等问题。 二、系统组成 (一)、系统架构 (二)、系统网络拓扑

交换机服务器 站端后台机 网络视频服务器 门禁 摄像摄像头 户外刀闸温 蓄电池在线监测开关柜温度监测 电缆沟/接头温度监测SF6监测 空调仪表 电压UPS 温湿度电流烟感 电容器打火红外对射 门磁 非法入侵玻璃破碎电子围栏 水浸 空调 风机灯光 警笛 警灯 联动 协议转换器协议转换器协议转换器 消防系统 安防系统 其他子系统 TCP/IP 网络 上级监控平台 采集/控制主机 智能变电站辅助系统综合监控平台将各种子系统通过以太网或 RS232/485接口进行连接,包括前端的摄像机、各种传感器、中心机房的存储设备、服务器等,并通过软件平台进行集成和集中监视控制,形成一套辅助系统综合监控平台。 (三)、核心硬件设备:智能配电一体化监控装置 PDAS-100系列智能配电一体化监控装置,大批量应用在变电站、开闭所 和基站,实践证明产品质量的可靠性,能够兼容并利用现有绝大部分设备,有效保护客户的已有投资。能够实现大部分的传感器解析和设备控制,以及设备内部的联动控制,脱机实现联动、报警以及记录等功能。工业级设计,通过EMC4级和国网指定结构检测。 智能配电一体化监控装置是针对电力配电房的电缆温度以及母线温度无 线检测,变压器运行情况以及油温检测、配电、环境、有害气体以及可燃气体

数字化变电站简介及常规检测 周利明

数字化变电站简介及常规检测周利明 发表时间:2018-01-26T17:56:38.217Z 来源:《电力设备》2017年第27期作者:周利明丁洪波 [导读] 摘要:本文主要介绍了数字化变电站的定义、特点,数字化变电站检测专用仪器的使用及常规检测项目开展及注意事项。 (云南电力技术有限责任公司云南昆明 650061) 摘要:本文主要介绍了数字化变电站的定义、特点,数字化变电站检测专用仪器的使用及常规检测项目开展及注意事项。为数字化变电站的了解及检测项目的开展提供参考。 关键词:数字化变电站;检测;光数字测试仪 随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,越来越多的地方建了数字化的变电站,部分新能源如风电场、光伏电站的升压站也建成了数字化升压站,对于数字化变电站的学习及检测有必要加强。 1数字化变电站介绍 1.1数字化变电站的定义 数字化变电站是指按照站控层、间隔层、过程层构建,过程层采用具有数字化接口的智能一次设备,以网络通信平台为基础,采用DL/T860 数据建模和通信服务协议,实现了变电站监测信号、控制命令、保护跳闸命令的数字化采集、传输、处理和数据共享,可实现网络化二次功能、程序化操作、智能化功能等的变电站。 1.2数字化变电站的特点 通过光纤通讯来传递信息,取代原来复杂的二次电缆,可以节省大量投资;电缆很少,方便做好防火措施,可以降低火灾风险;可以减少电缆施工、接线等大量工作量,缩短工程时间;二次机柜内二次接线很少,机柜内看着很整洁;可以避免电缆带来的电磁兼容、传输过电压和两点接地等问题。 用电子式(或光)互感器解决传统互感器的固有问题,电力互感器是电力系统中的一种测量传感器,负责基本参数的测量,为系统的计量、保护监控单元提供依据信号。传统互感器存在有功率损耗大、体积大、造价贵;因受铁芯磁饱和限制,通常在使用时,将测量用电流互感器与保护用电流互感器分开处理;当短路电流过大,致使电流互感器铁芯饱和而使电流信号畸变等缺点。电子式互感器有简单的绝缘结构,优良的绝缘性能;消除了磁饱和与磁滞问题;二次侧无开路危险,抗电磁干扰性能好;体积小、重量轻、节约空间;适应电力测量和保护数字化、微机化和自动化发展的潮流等优点。从图1和图2可以得出电子式互感器还可以提高测量精度。 采用IEC61850通信标准,系统开放性高,按统一的通信协议传输,实现不同设备和不同功能的信息共享,解决了不同厂家间通讯兼容问题,变电站设备选型更加方便、实用,变电站的扩建、维修将更容易,不会受制于单一厂家。 通过智能终端对一次设备进行信息采集、传输、处理、控制,智能终端作为一个过程层装置,通过光纤GOOSE网或点对点的光纤连接接收相关联的间隔层设备的控制指令,完成对断路器等一次设备的操作,同时采集断路器等一次设备的相关状态信号通过光纤上送给间隔层设备。 合并单元,对一次互感器传输过来的电气量进行合并和同步处理,并将处理后的数字信号按照特定格式转发给间隔级设备使用的装置。通过合并单元实现电流、电压的采集及数据共享。 2数字化变电站检测及注意事项 数字化变电站检测项目和常规变电站差异不大,但是需要使用专门的检测仪器,如光数字测试仪、数字保护测试仪等专门的数字化检测设备。 2.1光数字测试仪的使用 DM5000H手操光数字测试仪,可以模拟合并单元输出标准的光数字报文,对光数字保护测控装置进行测试。 检测使用一般步骤: 1)导入文件。找到最新的SCD文件,安装SD卡内的工具软件转换成KSCD文件,不转换的SCD文件无法导入测试仪,转换好后存入SD卡,打开测试仪,导入对应KSCD文件,(设置—全站配置文件—Enter—导入—选择文件Enter—ESC 后自动导入)。 2)导入成功后,选择该KSCD文件,进行参数设置,选择基本设置(根据实际参数修改PT、CT变比)。 3)基本设置—SMV发送设置(SMV类型:选择 IEC 61850-9-2;交直流设置—所有通道都是交流,确有直流量对应修改;SMV发送1—光口1(与实际接入的光口对应。 4)SMV测试:选择导入IED—选择需要测试的测控装置—确认—导入本IED—作为被测对象导入—Enter —导入完成—ESC (可在SMV发送设置里看到SMV发送列表)。 5)电流电压功能:密码(654321)进入设置页面,设置好电流电压值、角度、步长等参数,全部发送,根据实际需求改变参数完成测试。 6)B码对时:系统设置(光串口接收设置—正向B码/反向B码/正向PPS/反向PPS),光串口接收信号定义(正向、反向)修改以上两个参数,进入B码对时界面确认对时正常。 2.2常规检测项目 测控装置遥测采样精度测试,使用DM5000H加量,将需要检测的装置IED导入,作为被测对象导入,进入‘电压电流’项目,输入密码,根据试验要求设置电压电流的步长,修改角度,‘发送SMV’,在测控装置上记录电压、电流、有功、无功一次值,同时观察后台数据是否正常。记录时应观察数据是否满足要求,不满足要求,应检查装置、仪器变比等参数是否设置一致。如后台数据不正常,检查画面测点是否链接正确,变比等参数是否正确。 测控装置遥信核对,使用DM5000H加量,将需要检测的装置IED导入,作为被测对象导入,进入‘电压电流’项目,输入密码,按F1切换为GSE项目,选择检测的遥信信号,手动改变遥信信号的状态,检查后台信号变位及报警是否正确。 测控装置遥控试验,进入‘设置’—基本设置—GOOSE发送设置—添加GOOSE—从全站配置中选择GOOSE—选择所在IED—Enter—

对数字化变电站的几点认识

对数字化变电站的几点认识 当前变电站综合自动化系统在我国220kV及以下等级电网得到了 广泛的应用,对提高电网的安全经济运行水平起到了重要作用,基本达到了无人值班、简化运维、节省投资等目的。随着国家电网公司智能电网建设全面展开,数字化变电站也将大行其道。数字化变电站是变电站综自发展的下一个阶段。 2010年5月初,孝感电网第一座iiokv汉川福科数字化变电站投入运行。至今运行良好,没有发生保护误动或拒动情况,所有运行监测数据均正确可靠。整个变电站站容站貌整洁有序、设备集成化程度高、电气一二次接线简洁,极大地提升了变电站的档次。 与传统变电站相比,数字化变电站具有以下优势: 1、大幅减少二次接线。同等规模的传统110kV变电站全站用于控制、测量、信号的二次电缆大约需要18000m,按照当前市场行情估算价值30万元;而福科变仅使用数千米低廉的普通光缆,还不算二次电缆展放及接线施工发生的人工费。二次接线工作量只有原来的10%左右。虽然集成一次设备投资高于普通设备,但数字化变电站大幅减少设备安装调试时间,更容易打造标准化变电站。 2、提升计量测量精度。传统变电站采用电磁式电压电流互感器将高电压大电流转换成100V、5A的二次标准模拟量后,综自系统再转换成毫伏毫安级别,最后进行模拟量转数字量,系统识别后数据库自动根据变比换算成一次实际值。过程比较繁琐易产生累计误差。而数字化变电站直接使用高精度的光电互感器,光信号直接通过光纤传输计算机,基本没有损耗,计量测量精度大为提升。 3、提高信号传输的可靠性。避免电缆带来的电磁兼容、传输过电压和两点接地等问题,全站操作回路电气、机械及程序闭锁三道关 口防止误操作,变电站的各种功能可共享统一的信息平台,避免设备

数字化变电站技术规范

数字化变电站技术规范

中国南方电网有限责任公司企业标准 数字化变电站技术规范 (审查稿) Q/CSG ×××××-2009 2009- - 发布 2009- - 实施中国南方电网有限责任公司发布

目次 前言 (1) 1范围 (3) 2 引用标准 (3) 3 术语与定义 (5) 4 系统构成 (6) 5 系统配置 (8) 6 设备技术要求 (10) 7 软件技术要求 (20) 8应用功能 (23) 9 总体性能指标 (50) 10 设计要求 (52) 11 产品验证技术要求 (53) 附录A 典型应用方案(资料性附录) (54) 附录B 建模原则(资料性附录) (58) 附录C 服务(资料性附录) (77)

前言 近年来,随着工业级网络通信技术、集成应用技术、电子及光电采集技术、信息技术,特别是IEC61850标准的颁布,数字化变电站技术具备了基本应用基础。数字化变电站是以变电站一、二次系统为数字化对象,对数字化信息进行统一建模,将物理设备虚拟化,采用标准化的网络通信平台,从而以信息共享、硬件平台综合集成应用、软件功能插接复用、逻辑功能智能化策略的全新模式,实现变电站运行监视、快速保护、智能分析、标准化操作、设备状态监测等基本功能,并为数字化电网以及广域控制技术的发展奠定基础。 在公司生产、调度等部门的领导下,各级科研和生产单位在数字化变电站和电力生产数字化建设方面进行了积极探索和开展了卓有成效的应用实践。数字化变电站已经成为当前建设的一大热点,一些数字化变电站的试点应用工程已经建成并投入试运行。总体来看,数字化变电站试点工程运行良好,充分体现了新技术的优势,也为电网的可持续发展提供了宝贵经验;同时也暴露了建设标准不统一、设备良莠不齐等问题。为

数字化变电站自动化系统分析

数字化变电站自动化系统分析 摘要:随着电网的不断发展和电力市场改革的深入,人们对电网安全经济运行和供电质量的要求越来越高。变电站作为输配电系统的信息源和执行终端,要求提供的信息量和实现的集成控制越来越多,数字化、信息化以及信息模型化的要求越来越迫切。因此,数字化变电站将成为变电站自动化的发展方向。本文就数字化变电站自动化系统相关问题进行了探讨。 关键词:数字化;自动化;系统 数字化变电站是以变电站一、二次设备为数字化对象,以高速网络通信平台为基础。将物理设备虚拟化,对数字化信息进行标准化。实现信息共享和互操作,满足安全可靠、技术先进、经济运行要求的变电站。数字化变电站自动化系统的结构在物理上可分为两类即智能化的一次设备和网络化的二次设备。在逻辑结构上可分为3个层次:“过程层”、“间隔层”、“站控层”,各层次内部及层次之间采用高速网络通信。符合1EC61850标准的变电站通信网络和系统、智能化的一侧设备、网络化的二次设备、自动化的运行管理系统,是其最主要的技术特征。 1数字化变电站自动化系统的特点 1.1智能化的一次设备 通常一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换不言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。 1.2 网络化的二次设备 变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I∕O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。 1.3 自动化的运行管理系统 变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。

对数字化变电站的几点认识

对数字化变电站的几点认识当前变电站综合自动化系统在我国220kV及以下等级电网得到了广泛的应用,对提高电网的安全经济运行水平起到了重要作用,基本达到了无人值班、简化运维、节省投资等目的。随着国家电网公司智能电网建设全面展开,数字化变电站也将大行其道。数字化变电站是变电站综自发展的下一个阶段。 2010年5月初,孝感电网第一座110kV汉川福科数字化变电站投入运行。至今运行良好,没有发生保护误动或拒动情况,所有运行监测数据均正确可靠。整个变电站站容站貌整洁有序、设备集成化程度高、电气一二次接线简洁,极大地提升了变电站的档次。 与传统变电站相比,数字化变电站具有以下优势: 1、大幅减少二次接线。同等规模的传统110kV变电站全站用于控制、测量、信号的二次电缆大约需要18000m,按照当前市场行情估算价值30万元;而福科变仅使用数千米低廉的普通光缆,还不算二次电缆展放及接线施工发生的人工费。二次接线工作量只有原来的10%左右。虽然集成一次设备投资高于普通设备,但数字化变电站大幅减少设备安装调试时间,更容易打造标准化变电站。 2、提升计量测量精度。传统变电站采用电磁式电压电流互感器将高电压大电流转换成100V、5A的二次标准模拟量后,综自系统再转换成毫伏毫安级别,最后进行模拟量转数字量,系统识别后数据库自动根据变比换算成一次实际值。过程比较繁琐易产生累计误差。而数字化变电站直接使用高精度的光电互感器,光信号直接通过光纤传输计算机,基本没有损耗,计量测量精度大为提升。 3、提高信号传输的可靠性。避免电缆带来的电磁兼容、传输过电压和两点接地等问题,全站操作回路电气、机械及程序闭锁三道关

数字化变电站的特点

随着计算机技术的不断发展,计算能力提高,变电站自动化在技术上也不断提升,所涵盖的方面也越来越高。特别是无人值守变电站大规模推广,对变电站的数字化要求更加全面和深入。数字变电站将在此基础上发展起来 功能特点: 在高压和超高压变电站中,保护装置,测控装置,故障录波及其他自动装置的I/O单元,如A/D变换,光隔离器件,控制操作回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器,数字化控制回路代替了常规继电保护装置,测控等装置的I/O部分;而在中低压变电站则将保护,监控装置小型化,紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。 性能指标: 在变电站自动化领域中,智能化电气的发展,特别是智能开关,光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。 新型数字变电站的的主要特征系统由四部分组成: (1)基于全数字和光纤的信号采集系统 (2)继电保护和综合自动化系统 (3)数字遥视监控系统 (4)基于智能高效的电能质量调节系统 数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC6185A通信协议草案定义,这三个层次分别称为“过程层”,“间隔层”,“站控层”。 数字化变电站的主要优点有六个方面:一是各种功能共用统一的信息平台,避免设备重复投入。二是测量精度高、无饱和、无CT二次开路。三是二次接线简单。四是光纤取代电缆,电磁兼容性能优越。五是信息传输通道都可自检,可靠性高。六是管理自动化。数字化变电站的主要特点也是六个方面:一是变电站传输和处理的信息全数字化。二是过程层设备智能化。三是统一的信息模型:数据模型、功能模型。四是统一的通信协议:数据无缝交换。五是高质量信息:可靠性、完整性、实时性。六是各种设备和功能共享统一的信息平台。

变电站智能辅助监控系统

变电站智能辅助监控系统

变电站智能辅助监控系统 摘要:介绍了一种变电站智能辅助监控系统,系统以智能控制为核心,对变电站关键设备、安装地点以及周围环境进行全天候的状态监视和智能控制,并能将站端状态、环境数据、火灾报警信息、SF6监测、防盗报警等监测信息传输至调度管理中心。该系统满足了变电站安全生产和安全警卫的需求,具有非常好的推广应用价值。 关键词:智能;监控;网络;变电站 传统的变电站安防智能化系统受传统理念和技术的影响,各个子系统都是孤立的,以至于出现了一种监控“孤岛”现象,无形中降低了系统的实用性、稳定性和安全性,而且增加了投资成本。尤其是现在变电站系统平常的生产过程大量采用无人值守或少人值守的模式。而对于变电站这样的场所来说,远程、实时、多维、自动的智能化综合安保系统是变电站安全运作必备的前提条件。 系统总体设计 根据智能化变电站实际应用需求,把变电站智能辅助控制系统分为三级中心、九大子系统。

三级中心 变电站智能辅助控制系统(以下简称“辅助系统”)为分层、分区的分布式结构,按变电站智能辅助控制省级监控中心、变电站智能辅助控制地区级监控中心、变电站智能辅助控制区域监控中心系统和变电站智能辅助控制站端系统四 级构建,如图1所示。 变电站智能辅助控制系统从区域上分为三级中心,每级中心从技术上都分为主控中心、客户端和接口系统(预留),用于扩充与其他系统之间的衔接,以及WEB浏览功能。主控中心:包含数据库和管理平台,实现数据存储、权限控制、实时监控、配置管理等全部功能。客户端:在变电站和其他必要的地方电脑上安装客户端,根据权限的不同,操作员可以进行相应的监控、管理和操作。接口系统:系统通过采用IEC61850通信规约与综合自动化等系统的接口和联动。WEB浏览:系统另外提供浏览器的方式,供值班和相关人员实时监控每个变电站区域的环境状态、报警状态、人员进出状态等实时状态。 九大子系统 辅助控制系统必须把环境、视频、火灾消防、SF6、防

数字化变电站关键技术及未来展望

数字化变电站关键技术及未来展望 国得到迅速发展。数字化变电站就是把变电站的信息采集、处理、传输以及输出全部实现数字化。由于这项技术汇集多方面、多层次技术革新,所以它的发展将会是一个比较长期的过程。主要阐述了数字化变电站的背景和特征,着重介绍了变电站数字化过程中的关键技术,同时介绍了变电站数字化之后对未来产生的影响。 为了提高电力系统的自动化水平和可靠性,提高电网企业的经济效益和管理水平,我国电力企业积极进行变电站的数字化。随着国家标准的不断完善以及智能断路器、非常规互感器和网络技术的发展,数字化将是未来变电站自动化发展的必然趋势。 一、数字化变电站的特点 随着数字化技术的出现和应用,数字化变电站的概念也被提出。数字化变电站可以实现信息的整体和统一处理,同时具备变电站内IED之间、控制中心和变电站之间协同互动运行的能力。一般情况下,数字化变电站具备以下几个技术特点。 1.层次化 由于所具备的功能差异,变电站的结构逻辑可分成间隔层、过程层以及变电站层。间隔层的作用是通过本间隔的数据作用于自身间隔的一

次设备。所有与一次设备接口功能的实现是通过过程层完成的。利用全站的数据,变电站层可以对全站的一次设备进行监视以及控制,同时可以实现与远方控制中心进行交换数据。 2.一次设备的智能化 可编程(PLC)控制器可以替换变电站二次回路中的继电器及其配套的逻辑回路,光电数字和光纤将会代替变电站目前普通的模拟信号和控制线路被。 3.二次设备的网络化 变电站的二次设备不设功能装置重复的输入/输出接口,通过网络可以真正实现数据共享、资源共享,普通的功能装置也会演变成逻辑的功能模块。 4.运行管理实现自动化 日常运行、维护、数据记录可以实现无纸化办公和自动化的信息分流交换;变电站发生故障时,及时提出故障原因和维修意见;系统可以自动发出变电站设备状态检修报告。 二、数字化变电站中的关键技术

我国数字化变电站发展现状及趋势

我国数字化变电站发展现状及趋势 作者:全国电力系统管理及其信息交换标准化技术委员会何卫来源:赛尔电力自动化总第80期 数字化变电站技术是变电站自动化技术发展中具有里程碑意义的一次变革,对变电站自动化系统的各方面将产生深远的影响。数字化变电站三个主要的特征就是“一次设备智能化,二次设备网络化,符合IEC61850标准”,即数字化变电站内的信息全部做到数字化,信息传递实现网络化,通信模型达到标准化,使各种设备和功能共享统一的信息平台。这使得数字化变电站在系统可靠性、经济性、维护简便性方面均比常规变电站有大幅度提升。 数字化变电站在我国发展迅速,从1995年德国提出制定IEC61850的设想开始,中国就一直关注IEC61850的发展。全国电力系统管理及其信息交换标准化技术委员会自2 000年起,将对IEC61850的转化作为工作重点之一。从CD(委员会草案)到CDV,从F DIS到正式出版物,标委会及其工作组专家密切跟踪IEC标准的进展,用近5年的时间,二十多位专家的辛勤工作,完成了IEC61850到行业标准DL/T860的转化。 标准转化的同时,国内顶级设备制造商如南瑞集团、北京四方、国电南自、许继电器等同步开展了标准研究和软硬件开发。2006年以来,相继有采用IEC61850标准的变电站投入运行,从110kV到500kV,从单一厂家到多家集成,国内对数字化变电站工程实践的探索正在向纵深发展。 在国调中心的领导下,从2004底开始,标委会成功组织了6次大规模互操作试验,极大地推动了基于IEC61850标准的设备研制和工程化。 为规范IEC61850在国内的有效有序应用,2007年,标委会将DL/T860标准工程实施技术规范纳入工作计划,并迅速组织有关专家进行起草,经广泛征求意见,2008年该规范通过标委会审查报批。成为指导DL/T860标准国内工程实施的重要配套文件。 目前,国内各网省公司都进行了数字化变电站试点,对DL/T860标准的应用程度和技术水平各不相同,有单在变电站层应用DL/T860的,也有在过程层试验的,还有结合电子式互感器应用的;有单一厂家实现的,也有多达十多加设备制造商参与的。数字化变电站的试点已经较为充分,现在应该到了总结成功经验、探讨发展策略的时候了。

数字化变电站技术

数字化变电站 晋阳珺 2009.11 内容提要 数字化变电站的定义和组成 非常规CT、PT技术 合并单元技术介绍 数字化变电站工程应用 数字化变电站推荐方案 数字化变电站设计、检修、维护 数字化变电站发展展望

数字化变电站的定义与组成 一次设备智能化,二次设备网络化 变电站层 监控、远动、故障信息子系统 间隔层 保护装置、测控装置 过程层 合并单元(MU)、智能单元 数字化变电站的定义与组成

数字化变电站的定义与组成 控制中心监控主机远动主站 交换机路由器r 站控总线 保护A 测控单元r 光电互感器保护B 保护A 测控单元传统一次设备保护B IEC61850-9-1 IEC61850-8 智能终端 传统一次设备间隔层 过程层r 站控层r 光电互感器 数字化变电站与常规SAS 比较 常规变电站数字化变电站 一次设备: 电磁式互感器非常规互感器 传统开关智能组合电器 二次设备: 传统保护测控设备网络化装置 电缆硬连接SV/GOOSE 通信协议: 私有协议IEC61850

常规互感器与非常规互感器的比较 绝缘性能优良,造价低。电磁式互感器一次侧与二次侧之间通过铁心耦合,绝缘结构复杂,其造价随电压等级的升高呈指数关系上升。在光电式互感器中,高压侧信息通过光纤传输到低压侧,其绝缘结构简单,造价一般随电压等级的升高呈线性增加。 消除了磁饱和、铁磁谐振等问题。光电式互感器无铁心,消除了磁饱和及磁谐振现象,互感器运行暂态响应好、稳定性好。 常规互感器与非常规互感器的比较 暂态响应范围大。电磁式互感器因存在磁饱和问题,难以实现大范围测量。光纤互感器有很宽的动态范围,一个测量通道额定电流可达到几十安培至几千安培,过电流范围可达几万安培,可同时满足测量和继电保护的需要。 没有易燃、易爆炸等危险,无需检压检漏。非常规互感器一般无需油或SF6绝缘,避免了漏油、漏气、爆炸等问题。

数字化变电站的主要特征和关键技术概

数字化变电站的主要特征和关键技术概 摘要:数字化变电站必然会成为未来变电站发展的趋势。建设以光电式互感器、智能化集成开关、智能变压器等数字化一次设备和其他智能电子设备为基础的新 型变电站自动化系统。实现数字化变电站站内各层间的无缝通信。笔者就数字化 变电站的主要特征和关键技术加以阐述探讨,并对其主要内容进行分析研究。 关键词:数字化变电站;主要特征;关键技术 一、前言 数字化变电站是由智能化一次设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)构建。作为一门新兴技术,数字化变电站从提出开始就受到了 极大的关注。目前已成为我国电力系统研究的热点之一。随着相关软硬件技术的不断发展和 成熟,数字化变电站将成为变电站技术的发展方向。 二、进行对数字化变电站的主要特征 1.实现自动变电站内部的自动检修功能 所谓数字化变电站,顾名思义指的是在进行变电站内部使用的的基础之上,根据对设备的 检修结果的整理和分析,有效的根据数字化概念制订出一套合理的变电站设备的各个项目的 状态检修的时间和流程。具体来说,就是在发现了变电站设备状态存在问题之后,在第一时 间对要进行检查或修缮内部的设备进行检修工作,保证变电站内部的各个设备可以安全高效 运行。数字化变电站要在变电站内部设备的运行状态研究的基础之上,结合计算机科学技术、电子通信技术等手段,准确找出变电站内部设备运行状态存在的问题。具体来说,变电站设 备状态检修的内容包括:变电站设备运行状态实时监测、变电站设备带电运行检测、变电站 设备故障诊断检测等。截至目前,数字化变电站设备状态检修工作都是预防性质的检测与修 缮工作,在这样的检测背景下,很难全面完善变电站内部设备存在的问题。针对这样的情况,尽可能的完善数字化变电站设备状态检修工作的功能,发现设备剩余的问题,以待后续解决。 2 通过数字化技术进行对变电站设备的准确评估 在进行数字化变电站设备状态检修的时候,监测的主要内容是对变电站内部设备的运行状 态进行检测。与此同时,为了有效保证变电站设备状态检修的有效性和准确性,需要对变电 站运行设备进行寿命评估。一般情况下,变电站设备检测的主要内容包括:变电站设备进行 交流测量、变电站设备进行直流测量,检测变电站设备是否存在信号干扰问题、检测变电站 逻辑系统,看看变电站设备是否具有自动修复功能、检测变电站通信系统和电流屏蔽系统。 一般情况下,变电站内部设备交流测量主要通过系统内部的 PT、CT 回路进行输入交流电处理,以便测量变电站内部设备线路是否有效运行;变电站内部设备进行直流操作,检测变电站内 部设备是否存在信号干扰问题主要是通过接通直流电,检测变电站内部设备是否可以在通直 流电基础上,保证变电站设备的自动运行;变电站内部逻辑系统检测主要指的是查看变电站 系统内部是否具有自动化的控制能力。 3 通过数字化技术合理选择设备评测方法 为了有效发挥数字化变电站设备状态检修效果,需要选择合适的检修方法,与一次设备状 态检修方法相比,设备状态检修主要是依靠变电站内部的传感器设备。针对这样的情况,在 进行设备状态检修的过程中,可以尽可能的减少对成本资金的消耗。与此同时,为了有效提 升设备状态检修的效果,还可以引进一些比较先进的科技,例如,在设备状态检修过程中引 进 PT,CT 的断线检测技术、保险熔断报警等先进技术,防止变电站设备存在未检测出来的问题,有效保证变电站内部设备的高效运行。 三、数字化变电站的关键技术 1 通过数字化电磁抗干扰技术提升变电站运行的准确率 在进行数字化变电站设备状态检修的过程中,由于利用了较多的电子传感器设备和相应的 计算机处理设备,因此,这些高端精密的电子仪器很容易受到来自电磁信号的干扰,导致设 备状态检修的准确性和精密性难以保证,最终导致收集到的变电站内部设备运行参数不准确、变电站内部设备损坏等问题的出现。针对这样的情况,需要在进行设备状态检修的过程中,

数字化变电站系统结构概要

2006年12月Power System Technology Dec. 2006 文章编号:1000-3673(200624-0073-05 中图分类号:TN734; TM764 文献标识码:A 学科代码:520·3040 数字化变电站系统结构 张沛超1,高翔2 (1.上海交通大学电气工程系,上海市徐汇区200030;2.浙江大学电气工程学院,浙江省杭州市310027 System Architecture of Digitized Substation ZHANG Pei-chao1,GAO Xiang2 (1.Department of Electrical Engineering,Shanghai Jiaotong University,Xuhui District,Shanghai 200030,China; 2.College of Electrical Engineering,Zhejiang University,Hangzhou 310027,Zhejiang Province,China ABSTRACT: The system architecture and design principles of digitized substation are expounded and the technical fundamentals for the proposed system architectures are analyzed. The basic scheme of network composition for process bus and station bus are presented. Digitized substation architectures with high reliability are proposed in the matter of functional redundancy and network fault tolerance, and the solutions for the connecting of conventional devices are put forward in the process level and bay level. KEY WORDS:power system;digitized substation;system architecture;communication;IEC 61850 摘要:阐述了数字化变电站的系统结构和设计原则,讨论了过程总线和变电站总线的基本组网方案,分别从功能冗余及网络容错等方面提出了多种具有高可靠性的数字化变电站系统结构,并从过程层和间隔层方面提出了常规设备的接入方案。

数字化变电站的构成及发展趋势

数字化变电站的构成及发展趋势 随着61850规约的广泛使用,数字化变电站在我国逐步得到推广、使用,首先,什么是数字化变电站,数字化变电站由哪些设备构成,数字化变电站的优势在哪里,只有了解了这些才能有助于我们新产品的研发,现在我将数字化变电站的整体构成和几个保护装置生产厂家在数字化变电站上所做的工作做简单介绍,希望通过这个介绍让大家了解数字化变电站的一些基本情况,更有助于我们新产品(PWF)的推广。 一、数字化变电站的构成: 1、数字化变电站的定义:数字化变电站是由智能化一次设备(电子式互感器、智能化开 关等)和网络化二次设备分层(过程层、间隔层、站控层)构建,建立在IEC61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。 2、各层所包含的主要设备: 1)站控层:包括监控系统中的监控工作站、打印机、维护工程师站等,就地信息上传 到调度的远动系统(通讯服务器、路由器等),微机五防闭锁系统,变电站直流系统,全站的GPS等。 2)间隔层:保护装置、测控装置、保护测控一体化装置、智能仪表等。 3)过程层:光电互感器(ECT/EPT)、MU、智能开关设备(如果是与传统开关配 合就是智能单元) MU(合并单元)的作用:一是解决同步采样问题(常规互感器与电子式互感器会并存,如电压、电流之间,变压器不同的电压等级之间 —三相电流、电压采样必须同步, —变压器差动保护从不同电压等级的多个间隔获取数据存在同步问题

—母线差动保护从多个间隔获取数据也存在同步问题 —线路纵差保护线路两端数据采样也存在同步问题) 二是解决数据传送标准问题。 3、间隔层与过程层之间的连接方式及比较: 我们测试仪注重的是间隔层设备与过程层设备之间的联系,所以这里只介绍这部分的连接方式。 1)110kV及以上电压等级新建变电站标准连接方式 这两种方案看着比较相近,但是点到点的拓扑连接只是将原来的电缆用光纤代替,二次回路上并没有简化多少,数据、信息没有真正意义上实现共享。由交换机组成的星型拓扑连接方式简化了二次回路,数据、信息真正做到共享。点到点的连接方式二次回路虽然比较复杂,但是由于从MU到保护装置的时延相同,所以保护装置算法上不存在由于时延造成的误动或拒动。星型拓扑连接方式会有时延时间不同的现象,对交换机的要求比较高,需要在硬件和软件做的工作较多。 2)110kV及以上电压等级改造变电站标准连接方式

智能变电站的对时系统(一)

智能变电站的对时系统(一) 摘要:时间是基本物理量,那么时间也就会有精度的问题,不同时间源有着不同的精度。如Apple Watch与iPhone配合使用,同UTC时间误差不超过50ms。50ms误差对于人类的感知可以忽略,可是如果用在智能变电站中就显得不尽人意了。 Apple Watch的发售将智能手表提高到一个新的热度,时下不管哪个厂家的Watch都是在手表的基本时间功能上进行扩展,如加入心跳的测量,从而变成智能化。提到时间,不同的人对时间有不同的理解,古代文人将时间的流逝描绘成一首首耐人寻味的诗句;哲学家将时间看成抽象概念,表达事物的生灭排列;科学家给出了时间科学的定义:事件过程长度和发送顺序的度量,是物理学中的七个基本物理量之一。 时间是基本物理量,那么时间也就会有精度的问题,不同时间源有着不同的精度。如今人们生活获取的时间都是国际标准时间(UTC),不同的设备都是获取UTC进行对时,这样就产生了不同的精度,如Apple Watch与iPhone配合使用,同UTC时间误差不超过50ms。50ms误差对于人类的感知可以忽略,可是如果用在智能变电站中就显得不尽人意了。 变电站对时系统的重要性 电网系统是时间相关的系统,对于电网的运行和事故系统性分析需要有描述电网暂态过程的电流、电压波形,断路器、保护装置动作时序的时间,各种事件发生的时间序列在电网运行或故障分析过程中起着决定性的作用,同时全站的时间同步技术也是智能化变电站乃至智能电网稳定运行的关键技术之一。智能变电站的二次系统通常包含电子式互感器、合并单元、交换机、保护测控等设备。这些装置必须基于统一的时间基准运行,方能满足事件顺序记录(SOE)、故障录波、实时数据采集时间一致性的要求,确保线路故障测距、相量和攻角动态监测、机组和电网参数校验的准确性。这些要求对智能变电站的时钟同步系统提出严格的要求。 IEC61850标准将变电站分为站空层、间隔层和过程层,对时间同步精度的要求,各层设备是不同的。间隔层设备需要到达ms精度;而过程层设备,由于主要传输采样值、跳闸信息,需要达到μs的同步精度。智能变电站的测试设备DT6000系列(DT6000、DT6000E 和DT6000S)的对时精度可达μs的同步精度,完全满足变电站各层的设备的对时精度。

相关文档
最新文档