二部图完美匹配计数与禁位排列

二部图完美匹配计数与禁位排列

二部图完美匹配计数与禁位排列

图论中的二部图可以建模公司求职、资源分配、时间分配、人员择偶等问题,是一个非常有用的图论建模工具。本文主要研究了二部图的完美匹配问题,对于求解一般二部图的最大匹配问题已经有经典的理论及算法,而求解出一个二部图的所有完美匹配目前还没有太多的研究。

事实上,经典的算法只能求解出一个完美匹配,而求出所有的最优分配,就能为决策者提供多种分配方案,这将会更有意义。本文通过将该问题转化为禁位排列问题,并且都转化为0-1矩阵的一种自定义的了禁位排列的个数和二部图的完美匹配个数。

通过类比行列式计算研究了per运算的初行列变换性质以及按行展开性质,得到per(A)值的计算方法,从而得到了两个部集顶点个数相等的一般二部图的完美匹配计数公式和生成算法。按照这种方法,在文中计算了几类重要计数问题的结果,其中三正则循环二部图G(n)的完美匹配个数为Fn+Fn+2个。

此外,文中还研究了错位排列的两种推广,完全有向图中不含k圈的1-因子计数和不含k-不动点的排列计数。通过排列的圈表示方法,采用生成函数方法推导出了完全有向图中不含k圈的1-因子计数公式和不含k-不动点排列的指数生成函数,从而得到了它们的计数公式以及递推公式。

当k为素数时,不含k阶不动点排列的排列个数递推式为。

图形找规律专项练习60题(有标准答案解析)

图形找规律专项练习60题(有答案) 1.按如下方式摆放餐桌和椅子: 填表中缺少可坐人数_________ ;_________ . 2.观察表中三角形个数的变化规律: 图形 012…n 横截线 条数 6… 三角形 个数 若三角形的横截线有0条,则三角形的个数是6;若三角形的横截线有n条,则三角形的个数是_________ (用含n的代数式表示). 3.如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条. 4.如图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x的值是_________ ,y的值是_________ .

5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有_________ 个单位正方 形. 6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有_________ 根火柴 棒. 7.图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是_________ 个. 8.观察下列图案: 它们是按照一定规律排列的,依照此规律,第6个图案中共有_________ 个三角形.

9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________ ;第六个正方形的面积是 _________ . 10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有_________ 个小正方形. 11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_________ . 12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n条“金鱼”需用火柴棒的根数为_________ . 13.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有_________ 个交点,二十条直线相交最多有_________ 个交点.

国家公务员:排列组合之错位排序

国家公务员:排列组合之错位排序 排列组合的数量题目当中,有一些技巧我们常常会用到,今天我们就一起来看一下排列组合问题中常用的方法——错位排序。 我们来讨论一个问题:这是一个很经典的数学问题:有一个人写了n封信件,对应n个信封,然而粗心的秘书却把所有信件都装错了信封,那么一共有多少种装错的装法? 这个问题可抽象为以下一个数学问题:已知一个长度为n的有序序列{a1,a2,a3,…,an},打乱其顺序,使得每一个元素都不在原位置上,则一共可以产生多少种新的排列?首先考虑几种简单的情况: 原序列长度为1 序列中只有一个元素,位置也只有一个,这个元素不可能放在别的位置上,因此原序列长度为1时该为题的解是0。 原序列长度为2 设原序列为{a,b},则全错位排列只需将两个元素对调位置{b,a},同时也只有这一种可能,因此原序列长度为2时该问题的解是1。 原序列长度为3 设原序列为{a,b,c},则其全错位排列有:{b,c,a},{c,a,b},解是2。 原序列长度为4 设原序列为{a,b,c,d},则其全错位排列有:{d,c,a,b},{b,d,a,c},{b,c,d,a},{d,a,b,c},{c,d,b,a},{c,a,d,b},{d,c,b,a},{c,d,a,b},{b,a,d,c},解是9。 在往下数,次数会更多,那我们就可以用不完全归纳得出规律:f(n)=(n-1)f(n-2)+(n-1)*f(n-1)=(n-1)[f(n-2)+f(n-1)] 。 很明显,规律不太好记。但是我们不用记,因为在公务员考试当中,题目一般情况下比较简单,我们只需要记住D1=0;D2=1;D3=2;D4=9;D5=44。即可下面我们一起来看一道例题: 【例】(2015-山东-59)某单位从下属的5个科室各抽调了一名工作人员,交流到其他科室,如每个科室只能接收一个人的话,有多少种不同的人员安排方式?()

初一找规律经典题带答案

初一找规律经典题带答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、数字排列 1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 (2) (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个( ) 二、几何图形变化 1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222?=+?=+?=+?=+ =+?=+b a a b a b 则符合前面式子的规律,,若 (21010) 规律发现

错位重排专题

错位重排问题专项 错位重排 1-6个元素的错位重排数分别为0,1,2,9,44,265递推公式:Dm=(m-1)*[D(m-1)+D(m-2)]; 错位重排模型:把编号为1-m的小球分别放入编号为1-n的箱子错位重排(即1号球不在1号箱子、2号球不在2号箱子…m号球不在m号箱子),且每个箱子一个球,有多少种不同情况? 楚香凝证明:假设总情况数为D(m)种,如果让1号球先选,有(m-1)种选择;假设1号球选的2号箱子,接下来让2号球选箱子,进行分类讨论: ①如果2号球选的1号箱子,相当于剩下的(m-2)个球进行错位重排,有D(m-2)种; ②如果2号球选的不是1号箱子,则题目可转化为把编号为2→m的小球分别放入编号为 1、3→m的箱子错位重排(即2号球不在1号箱子、3号球不在3号箱子…m号球不在m号箱子),相当于m-1个球错位重排,有D(m-1)种; 所以可得D(m)=(m-1)*[D(m-1)+D(m-2)],得证; 例1:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求所有车都不得停在原来的车位中,则一共有多少种不同的停放方式?【北京2014】 A.9 B.12 C.14 D.16 楚香凝解析: 解法一:四种元素错位重排有9种,选A 解法二:ABCD四辆车分别停放在一二三四号位置,A先选有三种情况,假设A选了二号,那么B再选、有三种选择,剩下C和D都只有一种选择,共3*3=9种,选A 例2:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求有三辆车不能停在原来的车位中,则一共有多少种不同的停放方式? A.2 B.6 C.8 D.9 楚香凝解析:先选出停的正确的那辆车C(4 1)=4种,剩下三辆车错位重排有2种,共4*2=8种,选C 例3:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求有两辆车不能停在原来的车位中,则一共有多少种不同的停放方式? A.2 B.6 C.8 D.9 楚香凝解析:先选出停的正确的两辆车C(4 2)=6种,剩下两辆车错位重排有1种,共6*1=6种,选B

全错位排列

全错位排列与多个特殊元素特殊位置 (C .T ) T 2=1,T 3=2,T n = (n -1) ( T n -1+T n -2) ,(n ≥3)( T n 为全错位排列数) 错位排列问题 题一 4名同学各写一张贺卡,先集中起来,然后每人从中拿出一张别人写的贺卡,则四张贺卡的不同分配方式共有 种. 题二 将编号为1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同,则共有 种不同的放法. 这两个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把这种限制条件的排列问题叫做全错位排列问题(所有元素均为特殊元素). 题三 五位同学坐在一排,现让五位同学重新坐,至多有两位同学坐自己原来的位置,则不 同的坐法有 种. 题三可以分类解决:第一类,所有同学都不坐自己原来的位置; 第二类,恰有一位同学坐自己原来的位置; 第三类,恰有两位同学坐自己原来的位置. 对于第一类,就是上面讲的全错位排列问题; 对于第二、第三类有部分元素还占有原来的位置,其余元素可以归结为全错位排列问题, 我们称这种排列问题为部分错位排列问题. (多个特殊元素,多个特殊位置) 部分错位排列(多个特殊元素,多个特殊位置) 例1:5个人站成一排,其中甲不站第一位,共有多少种不同的站法。 解一:(特殊元素特殊位置优先处理)第一步:安排甲这特殊元素,有14C 种; 第二步:安排其他人,其余的四个人(元素),不受限制,故有44A 种站法。由分步乘法原理 得14C 44A =96种站法。 解二:(排除法)先考虑5个人的全排列,有55A 种不同的排法,然后除去甲排第一(有44A 种) 这样得到共有:55A -44A =96种。 例2:5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。 解一:(特殊元素特殊位置优先处理) 分析:有两个特殊元素,分类讨论,减少限制条件。 第一类:甲站在第二位,则其他的四人(含乙),不受限制,有44A 种站法。 第二类:第一步安排特殊元素甲,甲不站在第二位,则甲也不能站在第一位,故甲的站法有 13C 种;第二步安排乙,乙不站第二位,也不能选择甲以经站的一个位置,故乙的站法有13C 种; 第三步安排其他人,其余的三个人(元素),不受限制,故有33A 种站法。由分步乘法原理得 13C 13C 33A 种站法。 由分类加法原理得44A +13C 13C 33A =78种。

数字规律探究一(含详细答案解析)

数字规律探究一 类型一: 1.如图中的数字都是按一定规律排列的,其中x的值是() A.179 B.181 C.199 D.210 2.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是() A.110 B.158 C.168 D.178 3.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a+b的值为() A.32 B.33 C.34 D.35 4.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到a+b+c的值为() A.79 B.100 C.110 D.120 5.下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m的值是() A.58 B.66 C.74 D.112 6.下面每个表格中的四个数都是按相同规律填写的 根据此规律确定x的值为() A.252 B.209 C.170 D.135

7.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x的值为() A.135 B.170 C.209 D.252 8.如图,下列图形中的三个数之间均有相同的规律.根据此规律,图形中n的值是() A.3950 B.3951 C.2500 D.2499 类型二: 1.将正整数按如图所示的位置顺序排列:根据排列规律,则2009应在() A.A处B.B处C.C处D.D处 2.将正整数按如图所示的位置顺序排列: 根据上面的排列规律,则2017应在() A.A位置B.B位置C.C位置D.D位置 3.将正数1、2、3、4、5按以下方式排列: 根图规律,从2006到2008的箭头依次为() A.B.C.D.

4.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为() A.29,C B.﹣29,D C.30,B D.﹣31,E 类型三: 1.观察下列数字: … 在上述数字宝塔中,第4层的第二个数是17,则数字2517的位置为() A.第50层第17个数B.第50层第18个数 C.第20层第17个数D.第2017层第500个数 2.把所有正偶数从小到大排列,并按如下规律分组: 第一组:2,4; 第二组:6,8,10,12; 第三组:14,16,18,20,22,24 第四组:26,28,30,32,34,36,38,40 …… 则现有等式A m=(i,j)表示正偶数m是第i组第j个数(从左到又数),如A10=(2,3),则A2018=()A.(31,63)B.(32,17)C.(33,16)D.(34,2) 3.将正偶数按表1排成5列:

错位排列和禁位排列

错位排列和禁位排列

错位排列和禁位排列 1.问题提出 (1)某省决定对所辖8个城市的党政一把手进行任职交流,要求把每个干部都调到另一个城市去担任相应的职务,问共有多少种不同的干部调配方案? (2)有5个客人参加宴会,他们把衣帽寄放在室内,宴会后每人戴了一顶帽子回家,回家后,他们的妻子都发现,他们戴了别人的帽子,问5个客人都不戴自己帽子的戴法有多少种? 上述两个问题,实质上是同一种类型的问题,被著名数学家欧拉 (Leonard Euler ,1707 —1783)称为“组合数论”的一个妙题的“装错信封问题”的两个特例。“装错信封问题”是由当时最有名的数学家约翰?伯努利(John Bernoulli ,1667—1748) 的儿子丹尼尔?伯努利 (Danid Bernoulli ,1700—1782)提出来的,大意如下:一个人写了 n 封不同的信及相应的n 个不同的信封,他把这n 封信都装错了信封。问全部装错了信封的装法有几种? 2.错位排列和禁位排列 1)错位排列:n 个相异元素中()m m n ≤个元素1 2 ,,,m i i i a a a ???,其中 () 1,2,,k i a k m =???不在第()1,2,,k i k m =???个位置(一下简称其为k i a 的本 位),而其他n m -个元素中的任何一个都在原来的位置(本位)的排列。如果n 个元素都不在本位,称为全错位排列。

2)禁位排列(一个元素禁止排在一个位置):n 个相异元素中()m m n ≤个元素1 2 ,,,m i i i a a a ???,其中()1,2,,k i a k m =???不能排在第 () 1,2,,k j k m =???个位置的排列。 3)两者的区别在于:错位排列中除这m 个元素之外的其他n m -个元素都在本位,即这m 个元素只能在m 个位置 12,,,m i i i ???中排列,且不出现()1,2,,k i a k m =???在k i 位的情况;而禁位 排列中只限制m 个元素不在本位,因此()1,2,,k i a k m =???可以排 在1,2,,n ???中除k i 之外的任何位置。 3.禁位排列与全错位排列的种数 1)禁位排列数: 求禁位排列数,只需从n 个元素的全排列中除去指定元素占本位的排列即可,其中有1个元素占本位的排列数是11 1 n m n C P --,有两个元素占本位的排列数是211 n m n C P --,……,n 个元素占本位的排列数是m n m m n m C P --. 记错位排列和禁位排列的排列数分别为,m m n n D E ,用n D 表示n 个元素全错位排列。则由容斥原理有: 【禁位排列公式】()()()()012121m m m n m m m m E C n C n C n C n m =--+--???+--!!!! 【证明】①当0m =时,等式左边为0 n E ,表示n 个元素没有 限制,所以有n n P n =! , 等式右边本应该有1m +项,当0m =时,只有1项,就是00 C n n =!!. 等式成立; ②假设()01k i k i n i n k n i i E C P --==-∑; ③那么当1m k =+时,设第1k +个元素为a ,则前k 个元素不

图形找规律专项练习60题有答案

图形找规律专项练习 60 题(有答案) ffl:: ? ? ? ? ? ? ■ ? ■ 1234 可坐56£10 填表中缺少可坐人数___________ 2 ?观察表中三角形个数的变化规律: 条数 三角6 ? ? …? 形 个数

若三角形的横截线有 0条,则三角形的个数是 6;若三角形的横截线有 n 条,则三角形的个数是 _________ (用含n 的代数式表示) 3?如图,在线段 AB 上,画1个点,可得3条线段;画2个不同点,可得 6条线段;画3个不同 点,可得10条线段;…照此规律,画 10个不同点,可得线段 ___________ 条C B A C D B 方 据它的规律,则最下排数字中 x 的值是 __________ ,y 的值是 1 0 1 1 1 C 0 1 2 2 5 5 4 2 0 0 5 10 14 1 6 16 61 61 56 4S 32 16 0 ________ ? 觀 x 富 审 畀* 审* 5.下列图形都是由相同大小的单位正方形构成, 依照图中规律,第六个图形中有 棒. 7?图1是一个正方形,分别连接这个正方形的对边中点,得到图 2;分别连接图2中右下角的 小正方形对边中点,得到图 3;再分别连接图3中右下角的小正方形对边中点,得到图 4;按此 方法继续下去,第 n 个图的所有正方形个数是 ______________ 个. 4 ?如图是由数字组成的三角形,除最顶端的 1以外,以下岀现的数字都按一定的规律排列?根 形. 1---图形找规律 页20共页第 6?如图,用相同的火柴棒拼三角形,依此拼图规律 ,第 7个图形中共有 根火柴 △ 第三个图案 第二个图案

听说“9”和“44”与错位排列更配哦-全错位排列问题

听说“9”和“44”与错位排列更配哦-全错位排列问题亲,如果我说记住两个数字就能搞定数量关系中的一类难题,你信吗? 先不用忙着回答! 或许你将信将疑,但等你看完此文,你一定能找到足够的理由让自己相信。 一、问题导入 【引例1】唐僧、孙悟空、猪八戒、沙和尚4人在某公司不同岗位任职,现在需要调换岗位,要求每个人都不能在自己原来的岗位,则共有种不同的安排方法。 【引例2】有4名同学各写了一张贺卡,先全部收集起来,然后每人从中拿出一张贺卡,要求每个人都不拿自己的贺卡,则四张贺卡的不同分配方式共有种。 【引例3】将编号为1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同(即1不放1,2不放2,3不放3,4不放4,也就是说4个全部放错),则共有种不同的放法。 不难发现,以上三个引例都是同一类问题,答案是多少呢?下面用枚举法给大家答案:假设原来顺序:A、B、C、D 枚举的时候注意按照一定规律进行,如果看成1、2、3、4号位置,那么第一步A可以放2、3、4号位置中的任意一个,第二步把B的位置确定,第三步确定C和D的位置:第1种错位排列:B、A、D、C(A在2位,B在1位,C、D位置就唯一确定了); 第2种错位排列:D、A、B、C(A在2位,B在3位,C、D位置就唯一确定了); 第3种错位排列:C、A、D、B(A在2位,B在4位,C、D位置就唯一确定了); 第4种错位排列:B、D、A、C(A在3位,B在1位,C、D位置就唯一确定了); 第5种错位排列:C、D、A、B(A在3位,B在4位,C、D位置可以是1、2); 第6种错位排列:D、C、A、B(A在3位,B在4位,C、D位置也可以是2、1); 第7种错位排列:B、C、D、A(A在4位,B在1位,C、D位置就唯一确定了); 第8种错位排列:C、D、B、A(A在4位,B在3位,C、D位置可以是1、2); 第9种错位排列:D、C、B、A(A在4位,B在3位,C、D位置也可以是2、1)。 可见,4个元素的错位排列一共有9种。即以上三道引例的答案都是9种。 那么,问题来了:图图老湿,我不想一个一个的枚举,眼睛都看花了,肿么办?而且如果下次不是4个元素了呢?答案又肿么办? 请耐心看下文。提前声明一下:接下来这一段需要一定的数学知识,如果觉得自己数学还不错的话可以详细逐字阅读;如果说NO,也没关系嗒,只需你记住最后结论即可哦! 二、理论推导

找规律题型汇总

规律探索 一.前后相差同一个数 1.【2012山西】如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有 规律的图案,则第n个图案中阴影小三角形的个数是__________ (用含有n的代数式表示). (I)⑵(3) 糾 2.【2014四川】为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼” T) 比赛,如图所示:按照上面的规律,摆第( )图,需用火柴棒的根数为 ⑴ _________________ 3) 3.观察下列一组图形: ① ② ③ ④ 4.它们是按照一定规律排列的,依照此规律,第n个图形中共有―个^ . 5.用黑白两种正六边形地面瓷砖按如图所示规律拼成若干图案,则第个图案中有白色地面瓷砖_____ 块 第1个第2个第3个 6.【2014娄底】如图是一组有规律的图案,第1个图案由4个▲组成,第 2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13 个▲组成,….,则第"(用为正整数)个图案由__________ 个▲组成。 < A ▲▲

▲▲▲蠹止丄左s — * A ▲▲▲邕▲▲▲▲▲▲▲▲ 第一个图案第二个图案第三个图案第四个图峯 7.【2015?山东临沂】观察下列关于x的单项式,探究其规律:x, 3X2, 5x3, 7x4, 9x5, 11x6,…按照上述规律,第2015个单项式是() (B) 4029 x2014. ( C) 4029 x2015. ( D) 4031 x2015. (A) 2015 x2015. 9. 【2015重庆】下列图形都是由同样大小的小圆圈按一定规律所组成的。其中 第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈……..,按此规律排列,则第7个图形中小圆圈的个数为()。 (S$o6 … OOO OOOO OOOOO 图L 图2 图3 A: 21 B: 24 C: 27 D: 30 10. 有这样一列数:5,4,3,2,1,0 , -1…则第n个数为 __________ 11.观察下列等式: a\ = --- ---- - = —x (1 — 第1个等式:.’一■; _ 1 _ 1 J 1. 第2个等式:’「?;-‘」-:; _ 1 _ 1 J I. 第3个等式 1 1 4 - (IA = --------- = —X (———) 第4个等式:,I 」'; 请解答下列问题: (1)按以上规律列出第5个等式:= __________

图形找规律专项练习60题(有标准答案解析)

图形找规律专项练习60 题(有答案) 1.按如下方式摆放餐桌和椅子: 填表中缺少可坐人数;. 2.观察表中三角形个数的变化规律: 图形 横截线012?n 条数 三角形6???? 个数 若三角形的横截线有0 条,则三角形的个数是6;若三角形的横截线有n 条,则三角形的个数是(用含n 的代数式表示). 3.如图,在线段AB 上,画 1 个点,可得 3 条线段;画 2 个不同点,可得 6 条线段;画 3 个不同点,可得10条线段;?照此规律,画10个不同点,可得线段条. 4.如图是由数字组成的三角形,除最顶端的 1 以外,以下出现的数字都按一定的规律排列.根据它的规律,则最 下排数字中x 的值是,y的值是. 5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有个单位正方 形.

6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7 个图形中共有根火柴 棒. 7.图 1是一个正方形,分别连接这个正方形的对边中点,得到图 2 ;分别连接图 2 中右下角的小正方形对边中点, 得到图 3;再分别连接图 3 中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n 个图的所有正方形个数是个. 8.观察下列图案: 它们是按照一定规律排列的,依照此规律,第 6 个图案中共有个三角形. 9.如图,依次连接一个边长为 1 的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点, 得到第三个正方形,按此方法继续下去,则第二个正方形的面积是;第六个正方形的面积是. 10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有 1 个小正方形,第 2 个图形有 3 个小正方形,第 3 个图形有 6 个小正方形,第 4 个图形有10个小正方形?,按照这样的 规律,则第10 个图形有个小正方形. 11.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为.

图形找规律专项练习60题(有答案)

图形找规律专项练习60 题(有答案) 車子张数 1 2 3 4 n 可 6 S 10 3?如图,在线段 AB 上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线 段;…照此规律,画 10个不同点,可得线段 ________________________ 条. Λ C BACD B ACDE B 4.如图是由数字组成的三角形,除最顶端的 1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最 下排数字中 X 的值是 ___________ , y 的值是 _____________ . 1 0 1 1 1 0 0 12 2 5 5 4 2 0 Q 5 10 14 16 16 61 61 56 45 32 lδ O *x**7≠** 5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有 2.观察表中三角形个数的变化规律: 含n 的代数式表示) ( 用 _________ 个单位正方 1按如下方式摆放餐桌和椅子:

7.图1是一个正方形,分别连接这个正方形的对边中点,得到图 2;分别连接图2中右下角的小正方形对边中点, 得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是个. &观察下列图案: 9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点, 得到第三个正方形,按此方法继续下去,则第二个正方形的面积是 6?如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有根火柴 △ 第一个團耒 第二个图亲 第三个图案 第1个图案第2个图霧第3个图案 它们是按照一定规律排列的,依照此规律,第6个图案中共有____________ 个三角形. ;第六个正方形的面积是 10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现: 正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有规律,则 第10个图形有个小正方形. 第1个图形有1个小 10个小正方形…,按照这样的11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为 图3

句子排序方法及习题附问题详解

句子排序方法及习题附答案 怎样排列顺序错乱的句子 把排列错乱的句子整理成一段通顺连贯的话,能训练对句子的理解能力、有条理表达能力和构段能力。这样的练习一般可按五步进行。 第一步,仔细阅读每句话或每组句子,理解它们的主要内容;第二步,综合各句的意思,想想这些话主要说的是什么内容;第三步,想想全段的内容按什么顺序排列好,即找出排列顺序的依据,如,是按事情发展顺序,还是时间顺序,或方位,还是“总分”等;第四步,按确定的排列依据排列顺序;第五步,按排好的顺序仔细读两遍,看排得对不对,如发现有的句子排得位置不对,就进行调整,直到这段话排得通顺连贯为止。把错乱的句子排列好,这是小学阶段语文练习中的一个重要形式,必须好好掌握。学会排列句子,不仅能提高我们的思维能力,还能提高我们的写作能力。那么,如何学会排列好句子呢?我们可以按下列方法进行。 一、按事情发展的顺序排列 有些错乱的句子,我们在排列时,应仔细分析句与句之间的联系。常见的错乱句子,往往叙述了一件完整的事,或者活动的具体过程。那么,我们就可以按事情发展的顺序来排列。 二、按时间先后顺序排列 对一些错乱的句子,我们可以找出表示时间概念的词语,如,早晨、上午、中午、下午等词,然后按时间先后顺序进行排列句子。 三、按先总述后分述的顺序排列 根据这段话的特点,找出这句话是个中心句,其他句子都是围绕着这句话来说的。显而易见,我们可按先总后分的顺序来排列句子。 四、按空间推移的顺序排列 所谓空间推移,就是由地点的转移,表达出不同的内容。排列时,要十分注意,不要与其他的方法相混淆。 对练习排列句子有帮助 把错乱的句子排列好,这是小学阶段语文练习中的一个重要形式,必须好好掌握。学会排列句子,不仅能提高我们的思维能力,还能提高我们的写作能力。那么,如何学会排列好句子呢?我们可以按下列方法进行。 一、按事情发展的顺序排列 有些错乱的句子,我们在排列时,应仔细分析句与句之间的联系。常见的错乱句子,往往

7、排列组合问题之全错位排列问题(一个通项公式和两个递推关系)

排列组合问题之全错位排列问题 (一个通项公式和两个递推关系) 一、问题引入: 问题1、4名同学各写一张贺卡,先集中起来,然后每人从中拿出一张别人写的贺卡,则四张贺卡的不同分配方式共有多少种? 问题2、将编号为1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同,则共有多少种不同的放法? 这两个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把这种限制条件的排列问题叫做全错位排列问题。 问题3、五位同学坐在一排,现让五位同学重新坐,至多有两位同学坐自己原来的位置,则不同的坐法有多少种? 解析:可以分类解决:第一类,所有同学都不坐自己原来的位置; 第二类,恰有一位同学坐自己原来的位置; 第三类,恰有两位同学坐自己原来的位置。 对于第一类,就是全错位排列问题;对于第二、第三类有部分元素还占有原来的位置,其余元素可以归结为全错位排列问题,我们称这种排列问题为部分错位排列问题。 设n 个元素全错位排列的排列数为n T ,则对于问题3,第一类全错位排列的排列数为 5T ;第二类先确定一个排原来位置的同学有5种可能,其余四个同学全错位排列,所以第 二类的排列数为45T ;第三类先确定两个排原位的同学,有2 510C =种可能,其余三个同学 全错位排列,所以第三类的排列数为310T ,因此问题3的答案为:543510109T T T ++=。 由于生活中很多这样的问题,所以我们有必要探索一下关于全错位排列问题的解决方法。 二、全错位排列数的递推关系式之一: ()()121n n n T n T T --=-+ ()3n ≥ ①定义:一般地,设n 个编号为1、2、3、… 、i 、…、j 、…、n 的不同元素1a 、 2a 、3a 、…、i a 、…、j a 、…、n a ,排成一排,且每个元素均不排在与其编号相同的位 置,这样的全错位排列数为n T ,则 21T =;32T =;()()121n n n T n T T --=-+,()3n ≥。 ②递推关系的确立: 显然当1n =、2时,有10T =,21T =。 当3n ≥时,在n 个不同元素中任取一个元素i a 不排在与其编号相对应的i 位,必排在剩下1n -个位置之一,所以i a 有1n -种排法。 对i a 每一种排法,如i a 排在j 位,对应j 位的元素j a 的排位总有两种情况: 第一种情况:j a 恰好排在i 位上。此时,i a 排在j 位,j a 排在i 位,元素i a ,j a 排位已定。还剩2n -个元素,每个元素均有一个不能排的位置,它们的排位问题就转化为2n - 个元素全错位排列数,应有2n T -种。 第二种情况:j a 不排在i 位上。此时,i a 仍排在j 位,j a 不排在i 位,则j a 有1n -个位置可排。除i a 外,还有1n -个元素,每个元素均有一个不能排的位置,问题就转化为1n -n 个元素全错位排列数,应有1n T -种。 由乘法原理和加法原理可得:()()121n n n T n T T --=-+,()3n ≥。 利用此递推关系可以分别算出49T =,544T =。

全装错信问题即全错位排列问题及拓展

全装错信问题即全错位排列问题及拓展 ——龙城老欧全装错信问题又称全错位排列问题,最早由瑞士数学家伯努利提出,最后由伯努利与他的学生欧拉讨论解决,这个问题就是—— 我们将编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信都和信封的编号不同,即1不能装进1,2不能装进2,3不能装进3……问有多少种装法? 看到这个问题时,我们的第一反应就是退到简单处入手研究,如果只有一封信,2封信,3封信,4封信,……,然后从中再思考,之间是否有共性,是否有关联,共性用归纳,关联构成递推,或者其他。 〖解法〗 容易知道:a[1]=0,a[2]=1,a[3]=2,a[4]=6; 依我们设a[i]为i封信的全错位排列数据递归推理那么有 a[i]=(a[i-1]+a[i-2])×(i-1), (i>=3)。 为什么?为什么?为什么?大多数人看不明白。 不急,尽量先自己思考,不行的话,听我来解释: 思考1:对于插入第i个元素,只可能有两种情况: 第一种情况:插入第i个元素时,前i-1个已经错位排好,则选择其中任意一个与第i个互换一定满足要求,选择方法共i-1种,前i-1位错排f[i-1]种,记f[i-1]*(i-1),如下图: 第二种情况:插入第i个元素时,前i-1个中恰有一个元素恰好在自己的位置上,即恰好只有一个元素不满足错位排列,其他i-2个错位排好,则将i与j交换,j在i-2位中的插入共i-1种,前i-2位错排a[i-2]种,记f[i-2]*(i-1),如下图: 以上两种情况求和可得: a[i]=(a[i-1]+a[i-2])×(i-1) (i>=3) 我们还可以这样思考: 思考2:有(i-1)个人已经都坐在在自己的板凳上了,现在第i个人张三带着自己的板凳来了,下面我们来对这i个人进行全错位排排坐, 方法1:前面(i-1)个人中的某一个带着板凳出来与第i个人张三互换板凳坐(有(i-1)种方法),其它(i-2)个人进行全错位排列(有a[i-2]种方法),这样就整体上都是全错位;

规律探索题(含答案)

专题训练(一) [规律探索题] 1.[2018·烟台] 如图ZT1-1所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为() 图ZT1-1 A.28 B.29 C.30 D.31 2.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么计算71+72+73+…+72020的结果的个位数字是 () A.9 B.7 C.6 D.0 3.[2017·自贡] 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值为() 图ZT1-2 A.180 B.182 C.184 D.186 4.[2017·重庆A卷] 下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()

图ZT1-3 A.73 B.81 C.91 D.109 5.请你计算:(1-x)(1+x),(1-x)(1+x+x2),(1-x)(1+x+x2+x3),…,猜想(1-x)(1+x+x2+…+x n)的结果是() A.1-x n+1 B.1+x n+1 C.1-x n D.1+x n 6.图ZT1-4中的图形都是由同样大小的棋子按一定的规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为() 图ZT1-4 A.51 B.70 C.76 D.81 7.[2018·贺州] 如图ZT1-5,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为() 图ZT1-5 A.()n-1 B.2n-1 C.()n D.2n 8.[2017·遵义] 按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.

全错位排列

一、问题导入 【引例1】唐僧、孙悟空、猪八戒、沙和尚4人在某公司不同岗位任职,现在需要调换岗位,要求每个人都不能在自己原来的岗位,则共有种不同的安排方法。 【引例2】有4名同学各写了一张贺卡,先全部收集起来,然后每人从中拿出一张贺卡,要求每个人都不拿自己的贺卡,则四张贺卡的不同分配方式共有种。 【引例3】将编号为1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同(即1不放1,2不放2,3不放3,4不放4,也就是说4个全部放错),则共有种不同的放法。 不难发现,以上三个引例都是同一类问题,答案是多少呢下面用枚举法给大家答案:假设原来顺序:A、B、C、D 枚举的时候注意按照一定规律进行,如果看成1、2、3、4号位置,那么第一步A可以放2、3、4号位置中的任意一个,第二步把B的位置确定,第三步确定C和D的位置:第1种错位排列:B、A、D、C(A在2位,B在1位,C、D位置就唯一确定了); 第2种错位排列:D、A、B、C(A在2位,B在3位,C、D位置就唯一确定了); 第3种错位排列:C、A、D、B(A在2位,B在4位,C、D位置就唯一确定了); 第4种错位排列:B、D、A、C(A在3位,B在1位,C、D位置就唯一确定了); 第5种错位排列:C、D、A、B(A在3位,B在4位,C、D位置可以是1、2); 第6种错位排列:D、C、A、B(A在3位,B在4位,C、D位置也可以是2、1); 第7种错位排列:B、C、D、A(A在4位,B在1位,C、D位置就唯一确定了); 第8种错位排列:C、D、B、A(A在4位,B在3位,C、D位置可以是1、2); 第9种错位排列:D、C、B、A(A在4位,B在3位,C、D位置也可以是2、1)。 可见,4个元素的错位排列一共有9种。即以上三道引例的答案都是9种。 二、理论推导 其实,上面引例涉及的三个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把带这种限制条件的排列问题叫做全错位排列问题。 它是一个非常古老的数学问题,贝努利、欧拉等数学家都曾经研究过。这类问题虽然有难度,但我们解题是有快速破解的“窍门”的。且看下面详细解读: 我们将n个元素的全错位排列数记做Dn。 由于1个元素没有错位排列,因此D1=0。 2个元素时可以相互交换一下位置,即有1种错位排列,则D2=1。 当n≥3时,在n个不同元素中任取一个元素ai不排在与其编号相对应的i位,必排在剩下n-1个位置之一,所以ai有n-1种排法。 即第一步排ai,有n-1种。 第二步:排ai所占位置对应的元素。

全错位排列公式

全错位排列 先看下面例子: 例1. 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。 这个问题在高中很多参考书上都有,有几种解法,其中一种解法是用排除法: 先考虑5个全排列,有55A 种不同的排法,然后除去甲排在第一(有44A 种)与乙排第二(也有44A 种),但两种又有 重复部分,因此多减,必须加上多减部分,这样得到共有:543543278A A A -+=种。 现在考虑: 例2.5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。 仿上分析可得:543254323364A A A A -+-=种 这与全错位排列很相似。 全错位排列——即n 个元素全部都不在相应位置的排列。看下面的问题 例3.5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。 解析:上面例1,例2实际上可以看成n 个不同元素中有()m m n ≤不排在相应位置。 公式一:n 个不同元素排成一排,有m 个元素()m n ≤不排在相应位置的排列种数共有: ()1122121m n n n m n m n m n m n m n m A C A C A C A -------+++- 种 这个公式在n m =时亦成立,从而这个问题可能用上面的公式得出: 514233241505545352515044A C A C A C A C A C A -+-+-=种 (注意0000!1n C A ===) (1993年高考)同室四人各写一张贺年卡,先集中起来。然后每人从中拿一张别人送出的贺年卡。则四张贺年卡不同的分配方式有 (A)6种 (B)9种 (C)11种 (D)23种 解析:由上面公式得: 4132231404434241409A C A C A C A C A -+-+=种,∴选择B 答案 因此可得到全错位排列的公式: n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为: ()1122121n n n n n n n n n n n n n n n A C A C A C A -------+++- 这实际上是公式一的特殊情况。这个公式很有用,只要有特殊元素不站特殊位置的问题,都可以用这个公式很快得到解决,另一个计算公式:()111!111!2!3!!n n S n n ? ?=-+-++- ???

关于全错位问题的结论

关于“全错位问题”的一个重要结论 一般地,我们把“1”不放在第一位,“2”不放在第二位,“3”不放在第三位……。“n ”不放在第n 位,称为“全错位问题”。在全错位问题中,如果一共有n 个元素,我们用f(n)表示全错位问题的排法种数。则可得一个重要结论: f(n)=nf(n-1)+(-1)n ,(n ≧2) * 例如:n=1时,显然f(1)=0 n=2时 共1种情况 而f(2)=2f(1)+(-1)2=1 符合*式 n=3时 或 共2种情况 而f(3)=3f(2)+(-1)3 =3×1-1=2 符合*式 n=4时,举例:用1、2、3、4这四个数字组成无重复数字的四位

数,1不在个位,2不在十位,3不在百位,4不在千位,共有多少种排法? 列举如下: 共9种排法 而f(4)=4f(3)+(-1)4=4×2+1=9符合*式 同理可验证: F(5)=5f(4)+(-1)5=44成立…… 下面给予一般性证明f(n)=nf(n-1)+(-1)n ,(n≧2) 1.当n=2时,f(3)=1,f(3)=3f(2)-1=2,等式成立, 当n=3时,f(3)=2,f(4)=4f(3)+1=9,等式成立; 2.假设n≤k (k≧3)等式成立,即k个元素a1、a2、a3……a k全错位排序的方法数的递推关系为f(k)=kf(k-1)+(-1)k, 则当n=k+1时,设全错位排序的元素为a1、a2、a3……a k、a k+1。在k个元素全错位排序的基础上,k+1个元素全错位排序后,它们全错位排序的方法分为两类,(1)a k+1与a i(i=1、2、……k)互调位置,其余元素全错位排列,方法数为kf(k-1);(2)a k+1在a i的位置上,但a i (i=1、2、……k)不在a k+1的位置上,相当于a k+1将的每一个全错位排

相关文档
最新文档