数形结合的数学思想 论文

数形结合的数学思想 论文
数形结合的数学思想 论文

编号:

本科毕业论文(设计)

题目:数形结合的数学思想

学院阜阳师范学院

专业数学与应用数学

学号201004010155

姓名叶丽雯

指导教师程向阳职称:教授

完成日期

诚信承诺

我谨在此承诺:本人所写的毕业论文《数形结合的数学思想》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):

年月日

提纲:

一、摘要

二、研究数形结合的意义

三、正文

1、数学发展史上数形结合思想的体现

2、数形结合在教学中的体现

四、参考文献

数形结合的数学思想

姓名:叶丽雯学号:201004010155指导老师:程向阳

摘要:数学是研究空间形式和数量关系的科学,从定义中可以看出它是由数量关系和空间形式两部分组成,其对象都比较抽象。但如果把两者结合起来讨论,问题则会由抽象变得直观、具体,让学生一目了然。这种思想方法就是我接下来要介绍的数形结合思想。其本质使用两种抽象的思维有机的结合起来,使抽象问题具体化。数形结合是数学解题中常用的思想方法,有助于把握数学问题的本质,从而使“数”与“形”各展其长,优势互补,相辅相成,使逻辑思维与形象思维完美的统一起来;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。我认为,数形结合主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言。数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。数形结合在数学应用中的重要作用。

关键词:数学问题数形结合数学思想具体化抽象思维

The Mathematical Thinking of Combination of Number and

Shape

Name: YE Li—wen Student Number: 201004010155

Advisor: CHENG Xiang—yang

Abstract: the combination of number and shape is the thought method commonly used in solving mathematical problems, is the number of relations and spatial forms of mathematical problems of thinking, can make some abstract mathematics problems intuitive, vivid, can change the abstract thinking is the thinking in images, is helpful to grasp

the essence of mathematics problems, so that the number of "" and "shape" the exhibition of its long, complement each other, complement each other, make the logic thinking and image thinking unified perfect; in addition, the method of using number shape union, many problems will be smoothly done or easily solved, and the solution is simple and direct. Our famous mathematician Hua Lugging once said: "the combination of a variety of

good, split up all non. "Number" and "form" reflects the attributes of the two aspects. I think, the number shape

union mainly refers to the number and shape of the one relationships. The combination of number and shape is the abstract mathematical language. Quantitative relation with intuitive geometry, position relationship together, through

the "help to form the number" or "the number of solutions to form" through the combination of abstract thinking and thinking in images, can simplify the complex problem, the abstract problem, so as to optimize the objective way of solving problem. In this paper, through by thee example, the combination of an important role in mathematics application.

Keywords: mathematical problems the combination of number and shape mathematical thinking concrete

正文

一,研究数形结合的意义

我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。“数”与“形”反映了事物两个方面的属性。再者,处于小学阶段的学生,思维开始学会逆转,教师在摘一阶段适当给学生灌输数形结合的思想,有助于培养其逻辑思维能力;处于中学以及高中阶段的学生逻辑思维趋于成熟,能够在没有外界的帮助下,解决抽象问题,这有利于教师传授数形结合的思想,这里的数学方法不仅有处理数学自身对象的方法,如分析,证明及数学成果的扩展等,而且还有为解决实际问题而构造数学模型的方法及数学的变换方法、公理方法、对称方法、结构方法等.避免学生在此阶段中,死记硬背、机械训练的状况。新课程标准下,要注重提高学生的数学思维能力,发展学生的应用意识,与时俱进的认识“双基”。由此可见,数形结合作为最主要的数学思想方法在新课程标准中有着重要意义,同时也发挥着重要作用。可见,数形结合在教学阶段尤为值得研究。

二、数形结合的历史

数的产生来源于计数。产生数的的概念之后,用来表示“数”的工具首先是一系列“形”在古代的各种各样的计数法中,都是以具体的图形来表示抽象的数。随着时间流逝,人类文明进程的不断推进,数学内容不断扩大,尤其在17-18世纪直至19世纪,被包括在数学领域内的许多学科和分支已经独立出去,而在各学科的边界又不断创造和衍生出一系列新的科学技术群,这些新学科现在以融合成面向21世纪的庞大的数学科学领域,它是一个具有内在统一性的科学技术群。

数与形是数学中的俩大基本概念,一部数学史数与形的概念产生、发展、变迁的历史‘现代数学也是围绕着这两个概念不断对其不断抽象、概括、提炼而发展起来的。正因为数学内涵的不断扩充,数学中最原始的对象是数与形这两概念自身也处于不断变化中。从最初计数而产生的自然数,从最初土地测量而产

生的几何,发展成为研究代数系统内在规律的现代代数学,

以及与群论,拓扑学,计算机科学等数学分支相融合的种类

纷呈的现代几何学。数与形亦作为数学的两大基本研究对象

经历了一个“合久必分,分久必合”的过程,从融合走向分

离继而又走向融合。

㈠古埃及的象形数字(公元前3400年左右)

很早以前,人们就用不同的形状来代表数字,数形结合的思想已开始萌芽,(这里以埃及为例)埃及人很早就发明了象形文字记号,这是一种以十进制为基础的系统,但却没有位值的概念。(如图所示)

㈡笛卡尔“数形结合”

笛卡尔潜心研究自己的新领域——直角坐标系。死前给心爱的公主的最后一封情书中写道:r=a(1-Sin θ),公主看到后,立即明了恋人的意图,立马把方程的图形画出来,看到图形他开心极了,原来方程的图像是一颗心的形状。这就是著名的心形线。

在笛卡儿之前,几何与代数是数学中两个不同的研

究领域。笛卡儿站在方法论的自然哲学的高度,认为

希腊人的几何学过于依赖于图形,束缚了人的想象力。

对于当时流行的代数学,他觉得它完全从属于法则和

公式,不能成为一门改进智力的科学。因此他提出必

须把几何与代数的优点结合起来,建立一种“真正的

数学”。笛卡儿的思想核心是:把几何学的问题归结

成代数形式的问题,用代数学的方法进行计算、证明,

从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。1637年,笛卡儿发表了《几何学》,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡儿的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。

《几何学》一书提出了解析几何学的主要思想和方法,标志着解析几何学的诞生。此后,人类进入变量数学阶段。

在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了韦达创造的符号系统,用a, b, c,…表示已知量,用x, y, z,…表示未知量。

解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。

正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要了。”

㈢华罗庚的“数形结合”

求:画出图形,并利用图形做必要的推理说明)

(2)(9分)因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n )

个,即n2个.

∴1+3+5+7+…+(2n-1)=n× n =n2.(10分)

点评:考查了数形结合思想数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

三、数形结合在教学中的应用(主高中)

数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:

㈠解决集合问题

在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。

【例】从集合中元素所表示的集合意义来看,集合M表示的是以原点为圆心,3为半径的圆位于x轴及其上方的那部分,集合N是一条直线。因为P为单元素集合,这就意味着直线y=x+b与半圆22

x+y=9(y 0)只有一

个公共点,其题意如图所示:

㈨处理方程的问题

处理方程问题时,把方程的根的问题看作两个函数图像的交点问题;

㈩解决向量问题

向量是中学数学中非常重要的基本概念之一,由于它具有几何形式与代数形式的“双重特征”,所以它是数形结合的载体。向量的坐标表示可使向量的运算完全代数化,将数学中的“数”与“形”完美的结合在一起,这样可使许多几何问题转化为代数问题,把抽象问题具体化。

(十一)解决概率问题

概率与统一是一门专门研究偶然想象统计规律的科学,它有着广泛的应用背景。由于随机变量是中学数学中各种变量的一种形式,与函数、不等式、数列中的变量是一致的。

文献参考

[1]H 伊夫斯著.数学史概论[M].欧阳绛译.太原:山西经济出版社,1993:31-59.

[2]数学纵横谈[M].北京:科学出版社,1985:13-4.

[3]梁宗巨.世界数学史简编[M].沈阳:辽宁人民出版社,1981:199.

[4]南开大学数学系.空间解析几何引论[M][.北京:人民教育出版社,1978:1.

[5]任坦辉著.数学思维理论[M].南宁:广西教育出版社,2001:148.

[6]亚历山大洛夫等.数学——它的内容、方法和意义(第一卷)[M].北京:科学出版社,1658:61.

[7]裘光明主编.数学辞海(第一卷)[M].陕西教育出版社,1-5.

[8]新课程标准(2011版)

2020年高考数学二轮复习(上海专版) 专题15 数形结合思想(原卷版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用

数形结合思想在小学数学中的应用完整版

数形结合思想在小学数 学中的应用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 班级:2013级初等教育理科1班 目录

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显着提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。 数形结合思想的涵义 数、形是一个数学事物两个方面的基本属性。数形结合思想的实质是数字与

数形结合思想论文(精编文档).doc

【最新整理,下载后即可编辑】 渗透数形结合思想,提高学生的数形结合能力 初教数学1112班范杰凯0407311081 内容提要:数形结合思想是一种重要的数学思想之一,可以通过“以形助数”、“以数赋形”使某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,体现了转化的思想,化归的思想,有助于把握数学问题的本质。因此,在高中数学教学中应注重运用数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。 关键词:数形结合思想转化化归 正文: 新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。 在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合

起来,并充分利用这种结合,寻找解题思路,使问题得到解决。一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想 在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。 在讲完函数的概念以后,出了一道这样的练习题:下列图象中不能作为函数的图象的是() 让学生从形的角度进一步理解函数的概念。 在研究一次函数和二次函数的性质与图象时,由于学生在初中已用描点法作过一次函数和二次函数的图象,因此我先从学生已有知识出发,让学生列表、描点、连线,作出一次函数和二次函数的图象,引导他们先从数的角度认识单调性、奇偶性,对称性,然后再通过图象直观感觉单调性、奇偶性,对称性,让学生深刻体会“数缺形时少直观,形离数时难入微”。 二、借助实验活动,探究直线与平面垂直的判定定理,形象感受数形结合思想

高三数学教案 数形结合思想

第十三专题 数形结合思想 考情动态分析: 数形结合就是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维结合,通过“以形助数”或“以数解形”,可使复复杂问题简单化、抽象总是具体化,从而起到优化解题途径的目的. 一般地说,“形”具有形象、直观的特点,易于整体上定性地分析问题.“数形对照”便于寻求思路,化难为易;“数”则具有严谨、准确的特点,能够严格论证和定量求解.“由数想形”可以弥补“形”难以精确的弊端.恰当地应用数形结合是提高解题速度、优化解题过程的一种重要方法. 纵观多年来的高考试题,巧妙运用数形结合的数学思想方法来解决一些抽象数学问题,可起到事半功倍的效果. 数形结合的重点是研究“以形助数”,但以数解形在近两年高考试题中也得到了加强,其发展趋势不容忽视. 数形结合在解题过程中应用十分广泛,如在解方程和解不等式问题中,在求函数的值域和最值问题中,在三角函数问题中都有充分体现.运用数形结合思想解题,不仅直观易于寻找解题途径,而且能避免繁杂的计算和推理,简化解题过程,这在选择题、填空题解答中更显优越. 第一课时 方程、函数中数形结合问题 一、考点核心整合 利用“形”的直观来研究方程的根的情况,讨论函数的值域(或最值),求解变量的取值范围,运用数形结合思想考查化归转化能力、逻辑思维能力,能使烦琐的数量运算变得简捷. 二、典例精讲: 例1 方程的实根的个数有( ) A 、1个 B 、2个 C 、3个 D 、无穷多个 例 2 已知函数x x x g x x f 2)(|,|23)(2 -=-=,构造函数)(x F ,定义如下:当)()(x g x f ≥时,)()(x g x F =;当)()(x g x f <时,)()(x f x F =.那么)(x F ( ) A 、有最大值3,最小值1- B 、有最大值727-,无最小值 C 、有最大值,无最小值 D 、无最大值,也无最小值 例3 已知0>x ,设:P 函数x c y =在R 上单调递减;:Q 不等式1|2|||>-+c x x 的解集为R .如果P 和Q 有且仅有一个正确,试求c 的取值范围. 例 4 已知0>a ,且方程022 =++b ax x 与方程022 =++a bx x 都有实数根,求b a +的最小值. 三、提高训练: (一)选择题: 1.函数||x a y =和a x y +=的图象恰有两个公共点,则实数a 的取值范围是( ) A 、),1(+∞ B 、)1,1(- C 、),1[]1,(+∞--∞ D 、),1()1,(+∞--∞ 2.已知],0(π∈x ,关于x 的方程a x =+)3 sin(2π 有两个不同的实数解,则实数a 的 取值范围为( )

初中数学中的数形结合思想

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小

2016高考数学二轮复习微专题强化练习题:27转化与化归思想、数形结合思想

第一部分 二 27 一、选择题 1.已知f (x )=2x ,则函数y =f (|x -1|)的图象为( ) [答案] D [解析] 法一:f (|x -1|)=2|x - 1|. 当x =0时,y =2.可排除A 、C . 当x =-1时,y =4.可排除B . 法二:y =2x →y =2|x |→y =2|x - 1|,经过图象的对称、平移可得到所求. [方法点拨] 1.函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求: ①会画各种简单函数的图象; ②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. 2.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. 3.利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ),

y =f (x ) ――→01,纵坐标伸长到原来的A 倍 y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称 y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x ) ――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). 2.(文)(2014·哈三中二模)对实数a 和b ,定义运算“*”:a *b =????? a ,a - b ≤1 b ,a -b >1 ,设函数f (x ) =(x 2+1)*(x +2),若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(2,4]∪(5,+∞) B .(1,2]∪(4,5] C .(-∞,1)∪(4,5] D .[1,2] [答案] B [解析] 由a *b 的定义知,当x 2+1-(x +2)=x 2-x -1≤1时,即-1≤x ≤2时,f (x )=x 2+1;当x <-1或x >2时,f (x )=x +2,∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴方 程f (x )-c =0恰有两不同实根,即y =c 与y =? ???? x 2 +1 (-1≤x ≤2), x +2 (x <-1或x >2),的图象恰有两个交点, 数形结合易得1

数形结合毕业论文

数形结合思想在解题中的应用 摘要:数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。 关键词:数形结合解题应用 数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。应用数形结合法,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。下面,我将从3个方面来说明数形结合思想在解题中的应用 (一)、解决集合问题 在集合运算中常常借助于数轴、韦恩图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例 1: 已知集合 A=[0,4],B=[-2,3], 求 A∩B。 分析: 对于这两个有限集合, 我们可以将它们在数轴上表示出来, 就可以很清楚的知道结果。如图 1, 由图我们不难得出A∩B=[0,3]。 图1 例2:某校高二年级参加市级数学竞赛, 已知共有40个学生参加第二试(第二试共3道题), 参赛情况如下: ① 40个学生每人都至少解出一道题 ②在没有解出第一道题的学生中, 解出第二道题的人数是解出第三道题人数的2倍 ③仅解出第一道题的人数比余下的

学生中解出第一道题的人数多1个 ④ 仅解出一道题的学生中有一半没有解出第一道题 试问:(1)仅解出第二道题的学生有几个? (2)解出第一道题的学生有几个? 分析 本题数量关系错综复杂,似乎与集合无关,但若把“解出第一道题”、 “解出第二道题”和“解出第三道题”的学生分别看作一个集合,则可利用韦恩 图直观求解. 解答 设集合A ={解出第一道题的学生数},集合B ={解出第二道题的学生 数},集合C ={解出第三道题的学生数},如图2,可得 ???????+=+++=+=+=++++++c b a g e d a f c f b g f e d c b a 1)(240 解之得a =11,b =10,c =1,d+e+g =10 所以仅解出第二道题的学生有10个,解出第一道题学生有21个. (二)、解决函数问题 利用图形的直观性来讨论函数的值域(或最值),求解变量的取值范围,运用 数形结合思想考查化归转化能力、逻辑思维能力,是函数教学中的一项重要内容。 例 3: 对于 x ∈R, y 取 4 - x, x + 1,2 1(5 - x)三个值的最小值。求y 与x 的函数关系及最大值。 分析:在分析此题时, 要引导学生利用数形结合思想, 在同一坐标系中, 先 分别画出 y = 4 - x, y = x + 1, y = 2 1(5 - x)的图像,如图3。易得:A (1, 2) ,B (3, 1) , 分段观察函数的最低点,故y 与x 的函数关系式是: y=??? ????--+x x x 4)5(211 3) >(x 3)1<(1)1(≤≤x

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

数形结合论文完整版

数形结合论文 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数形结合思想在中学数学解题中应用摘要:数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。数形结合思想在数学中得到了充分的重视。本文就数形结合思想在数学问题解析中的应用加以整理、总结,并给出部分例题,以便得到更好的推广。 关键词:数形结合代数问题几何问题相互转化For combining the application in mathematics (YANG zhongxiang) Abstract : Several combining in mathematics teaching is widely used in combination, a new mathematical thought to write with. Several combining ideas in mathematics got full attention. Based on several combining analytical mathematical thoughts in the application are summarized, and gives some examples, in order to get better. Key words:Combining the number Algebra problem Geometry problems Mutual transformation 前言 数形结合思想在实际的应用中显得十分重要和广泛,数形结合思想几乎贯穿了整个解析几何,可以说数形结合思想是解析几何的精髓所在。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统

初中数学中的数形结合思想

初中数学中的数形结合思想 “数缺形欠直观,形缺数难入微”,数形结合是解决数学问题最重要的数学思想方法之一.数形结合思想通过“以数助形,以形解数”,使复杂问题简单化,抽象问题具体化,它是数学的规律性和灵活性的有机结合. 一、以数助形 例1如图1,在平面直角坐标系中,A(1,1),B(5,1),C(1,4)是三角形ABC的三个顶点,求BC的长. 这一题经过转化后实质上就是求平面上两点之间的距离.而在本题中△ABC是直角三角形,所以利用勾股定理可BC=AB2+AC2=5. 这个问题实质上是利用数形结合的思想来推导在具体点的坐标下的两点之间的距离公式.利用同样的思想可以推导出平面上两点之间的距离公式:平面上点P1(x1,y1),P2(x2,y2),则P1P2=(x1-x2)2+(y1-y2)2. 例2在直角坐标系中,已知直线l经过点(4,0),与两坐标轴围成的直角三角形的面积等于8,若一个二次函数的图象经过直线l与两坐标轴的交点,以x=3为对称轴,且开口向下,求这个二次函数的解析式,并求最大值. 分析如果不画出图象,本题很难理解.由三角形的面积来

确定点B的坐标时,就需要把几何问题化为代数问题,确定OB的长度后,由绝对值的双值性来决定点B的纵坐标. 设直线l与x轴交点A(4,0),与y轴交点坐标B(0,m), 则OA=4,OB=|m|. 如由图,S△AOB=12OA?OB=12×4|m|=8, 所以|m|=4.因此,B(0,4)或B′(0,-4). 由二次函数图象的对称轴为x=3,可知点A的对称点A′(2,0),则图象经过A、A′、B,或A、A′、B′. 设抛物线的解析式为y=a(x-2)(x-4). 把点B或B′坐标代入,得a=12或a=-12. 因为开口向下,所以,a=12不符合题意. 故y=-12(x-2)(x-4),即y=-12(x-3)2+12, 所以当x=3时,y最大=12. 二、以形助数 例3已知a、b均为正数,且a+b=2,求W=a2+4+b2+1的最小值. 在本题中由求解式子的特点可以联想到构造直角三角 形利用勾股定理进行处理.如图作线段ED,在ED上截取EP,DP,过点E作AC⊥ED,且使得AE=2,过点D作DB⊥ED,且使得DB=1.这种构图后可以得到两个直角三角形,所以可以使用勾股定理得到AP=a2+4,BP=(2-a)2+1,所以本题中

高三数学复习专题数形结合

专题讲座: 数形结合 一、填空题 例1曲线241x y -+=(22≤≤-x )与直线()24-=-x k y 有两个交点时,实数k 的取值范围是 【答案】:53,124?? ?? ? 【提示】曲线为圆的一部分,直线恒过定点M (2,4),由图可得有两 个交点时k 的范围。 例2已知平面向量,(0,)αβααβ≠≠满足1,β=且αβα-与的夹角为120? ,则α的 取值范围是 【答案】:23 03 α<≤ 【提示】作出草图,由1 sin sin 60 B α ? = ,故α=23sin 3B 又0120B ? ? << 0sin 1B ∴<≤,23 03 α∴<≤ 例3已知向量(2, 0)OB =,(2, 2)OC =, (2cos , 2sin ),CA αα=则OA 与OB 夹角的范围为 【答案】:]12 5,12[ π π 【提示】因2(cos ,sin ),CA αα=说明点A 的轨迹是以(2, 2)C 为圆心,2为半径的圆,如图,则OA 与OB 夹角最大是 5,4612πππ+=最小是4612 πππ -= 例4若对一切R θ∈,复数(cos )(2sin )z a a i θθ=++-的模不超过2,则实数a 的取值范围为 【答案】:55,55?? -???? 【提示】复数的模2 2 (cos )(2sin )2z a a θθ=++-≤,可以借助单位圆上一点(cos ,sin )θθ-和直线2y x =的一点(,2)a a 的距离来理解。 x x y M

例5若11 ||2 x a x -+≥对一切0x >恒成立,则a 的取值范围是 【答案】:(,2]-∞ 【提示】分别考虑函数1y x a =-和211 2 y x =- +的图像 例6 已知抛物线()y g x =经过点(0,0)O 、(,0)A m 与点(1,1)P m m ++, 其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 【答案】b n a m <<< 【提示】由题可设()(),(0)g x kx x m k =->, 则()()()f x kx x m x n =--,作出三次函数图象即可。 例7若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 【答案】:0k <或4k = 【提示】:研究函数1y kx =(10y >)和函数2 2(1),(1)y x x =+>-的图像 例8已知函数2 1 ()(2) 1ax bx c x f x f x x ?++≥-=?--<-? ,其图象在点(1,(1)f )处的切线方程为 21y x =+,则它在点(3,(3))f --处的切线方程为 【答案】:230x y ++= 【提示】:由()(2)f x f x =--可得()f x 关于直线1x =-对称,画出示意图(略),(1,(1)f )和(3,(3))f --为关于直线1x =-的对称点,斜率互为相反数,可以快速求解。 例9直线1y =与曲线2 y x x a =-+有四个交点,则a 的取值范围是__________ 【答案】:514a << 【提示】研究22,0 ,0 x x a x y x x a x ?-+≥?=?++

数形结合思想论文

渗透数形结合思想,提高学生的数形结合能力 初教数学 1112班范杰凯 0407311081 内容提要:数形结合思想是一种重要的数学思想之一,可以通过“以形助数”、“以数赋形”使某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,体现了转化的思想,化归的思想,有助于把握数学问题的本质。因此,在高中数学教学中应注重运用数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。 关键词:数形结合思想转化化归 正文: 新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。 在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。 一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想 在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

数形结合在小学数学中的应用

数形结合在小学数学中的应用

数形结合在小学数学中的应用 【内容提要】数形结合思想是一个重要的思想方法,在小学和中学,无论是在教师的课堂教学,对数学概念的理解,还是学生思维和解题能力的培养等方面,数形结合都为其奠定了坚实的基础。本课题主要通过分析自己亲身体会的中小学数学问题,发现数形结合思想在初等数学中的应用,加深对数形结合的理解。 【关键词】数形结合思想,数学应用 【正文】数与形一直以来都是数学的主题,即使如今的数学有着庞大的分支,仍不可磨灭它的影响力。华罗庚先生的打油诗:“数无形,少直观;形无数,少入微”向我们展现了数与形密不可分的关系。简单的说,数与形就是抽象与形象的表现,数形结合更加有利于学生对知识的理解,单纯的数使知识缺乏直观性,同样的如果只有形就少了几分严密性。然而,数形结合思想就是将本是相互独立的两方面结合起来,做到我中有你,你中有我。数形结合思想在小学和中学数学中有着许多巧妙的应用,比如在最初学习计数时,为了加深小朋友们对数字的记忆,教师常常会用形象的图形或者实物与数字对应;计数是学习数学的基础,教师往往会利用生活中的物品,例如铅笔、糖果、苹果等辅助数数、运算;每个班级都会对学生进行标号,也就是学号,久而久之,当某人说一个数时,你会联想到这个人;复杂的数学题考验你强大的逻辑思维,代数和几何是中学的两大基础,代数中加入具体形象的图像,帮助理清题意,拓展思路,几何中渗透代数,发散思维,解决问题等等。 数形结合思想在小学数学的应用,我们学习数形结合并不单单为了解题,更应该将它上升为一种思想,学习数学的转向灯。数形结合思想已经贯穿数学学习的全部,小学是数学萌芽的阶段,在这个阶段,小学生的大脑并没有完全发育,他们对数的理解往往要依靠生活中他自己比较熟悉的事物,也就是“形”。如今“怎样开发小学生的数学思维能力”已经是近几年小学数学教育者一直思考的问题。我们可以发现近几年在小学数学课本中的每一个概念教学,教师都通过各种实物、事例或者图形逐步引导学生观察、分析、比较从中揭示其本质,

初中数学中的数形结合思想修订稿

初中数学中的数形结合 思想 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

浅谈初中数学中的数形结合思想在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。

如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小和线段的大小。 2.用有序实数对描述点在平面直角坐标系内的位置。 3.用方程、不等式或者函数解决几何量的问题。 4.用数来描述点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,直线与直线的位置关系。 其实在解有关的数形结合问题并不是单纯的由数思形或者有形思数的问题,一般都是综合运用题。利用数形结合解有关的问题时要注意一下几个问题: 1. 注意数与形转化前后的一致性;

相关文档
最新文档