哈密顿图pdf

(完整word版)第三章 欧拉图和哈密顿图

第三章欧拉图与哈密顿图 (七桥问题与一笔画,欧拉图与哈密顿图) 教学安排的说明 章节题目:§3.1环路;§3.2 欧拉图;§3.3 哈密顿图 学时分配:共2课时 本章教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别. 其它:由于欧拉图与一笔画问题密切相关,因此本章首先从一笔画问题讲起,章节内容与教材有所不同。

课堂教学方案 课程名称:§3.1环路;§3.2欧拉图;§3.3哈密顿图 授课时数:2学时 授课类型:理论课 教学方法与手段:讲授法 教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别. 教学重点、难点: (1)理解环路的概念; (2)掌握欧拉图存在的充分必要条件; (3)理解哈密顿图的一些充分和必要条件; 教学内容: 看图1,有点像“回”字,能不能从某一点出发,不重复地一笔把它画出来?这就是中国民间古老的一笔画游戏,而这个图形实际上也是来源于生活。中国古代量米用的“斗”?上下都是四方的,底小口大,从上往下看就是这样的图形。 这类“一笔画”问题中最著名的当属“哥尼斯堡七桥问题”了。 一、问题的提出图1 哥尼斯堡七桥问题。18世纪,哥尼斯堡为东普鲁士的首府,有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥联结起来,见图2(1),当时那里的居民热衷于一个难题:游人怎样不重复地走遍七桥,最后回到出发点。1735年,一群执着好奇的大学生写信请教当时正在圣彼得堡科学院担任教授的著名数学家欧拉。欧拉通过数学抽象成功地解决了这一问题。欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小”,也不能用“量化计算”来解决。相反地,这问题属于提出的“位置几何”。欧拉想到,岛与河岸陆地仅是桥梁的连接地点和通往地点,桥仅是从一地通往另一地的路径,一次能否不重复走遍七桥与河岸陆地大小是没有

离散数学结构 第15章 欧拉图与哈密顿图

第十五章欧拉图与哈密顿图 15.1 欧拉图 (2) 一、欧拉通路、欧拉回路、欧拉图、半欧拉图的定义 (3) 二、判别定理 (4) 三、求欧拉图中欧拉回路的算法 (6) 1.Fleury算法,能不走桥就不走桥: (6) 2.逐步插入回路法 (7) 四、中国邮路问题 (8) 练习题: (9) 15.2哈密顿图 (11) 一、哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图的定义 (12) 二、哈密顿图与半哈密顿图的一些必要与充分条件 (12) 练习题 (18) 15.3 带权图与货郎担问题 (24) 一、带权图 (24) 二、货郎担问题 (24)

15.1 欧拉图 主要内容: 1. 欧拉通路、欧拉回路、欧拉图、半欧拉图的定义。 2. 判别定理。 3. 求欧拉图中欧拉回路的算法。 学习要求: 1. 深刻理解欧拉通路与欧拉回路的定义以及它们的区别与联系。 2. 以无向欧拉图为例,进一步理解欧拉图的结构,即,欧拉图是若干个边不重的圈之并。 让我们先从两个例子出发,获得有关图的一些直观认识。 图论的研究起源于哥尼斯堡七桥问题。哥尼斯堡城位于Pnsel河畔,河中有两个岛,有7座桥与4块陆地彼此相连,如上图所示。 居住于该城的居民想做这样的游戏:从4块陆地的任一块出发,经过每座桥一次且仅一次,最后返回原出发地。当地的人们进行了许多次尝试,都没有成功。后来,欧拉给出了问题的解。首先欧拉将4块陆地表示成4个结点,凡陆地间有桥相连的,便在两点间连一条边,从而可将左图改画为右图如下:这样,哥尼斯堡七桥问题可描述为:能否有从A、B、C、D任一点出发,经过每条边一次且仅一次而返回出发点的回路? 欧拉证明了这样的回路是不存在的。他的理由是,从图任一点出发,要回到原出发点,要求与每个点关联的边的数目为偶数,才能保证从一条边进入某点再从另一条边出去,一进一出才能回到原出发点。而图中的顶点A、B、C和D均有奇数条边与其相关联,显然这样的回路是不存在的。 另一个例子是20世纪40年代的一个数学游戏。

欧拉图与哈密顿图

欧拉图与哈密顿图
Euler and Hamilton Graph
高晓沨 (Xiaofeng Gao)
Department of Computer Science Shanghai Jiao Tong Univ.
2016/12/6
欧拉道路与欧拉回路
Euler Path and Euler Circuit
IntroductionToCS--Xiaofeng Gao
3
目录
1 欧拉道路与欧拉回路 2 哈密顿道路与哈密顿回路
2016/12/6
IntroductionToCS--Xiaofeng Gao
2
欧拉回路
【定义】给定无向连通图G=(V, E),包含 图G的所有边的简单道路称为欧拉道路(或 欧拉通道、欧拉迹) , 包含图G的所有边的简单回路称为欧拉回路 (或欧拉闭迹) 。 假设G没有孤立点,若G含有欧拉回路,则 称G是欧拉图。
2016/12/6
IntroductionToCS--Xiaofeng Gao
4

欧拉图定理
【定理】图G是欧拉图的充要条件是G连通 且没有奇点。
【证】必要性 : 若G中有欧拉回路C,则C过每一条边有且仅 有一次。对任一节点v,如果C由ei进入v, 则 一定通过另一条边ej从v离开。因此v的度是 偶数。
2016/12/6
IntroductionToCS--Xiaofeng Gao
5
证明(3)
G1可能是非连通图,每个顶点的度保持为 偶数。这时,G1中一定存在某个度非零的 节点vi,同时也是C中顶点。否则C的顶点 与G1的顶点之间无边相连,与G是连通图矛 盾。同理,从vi出发,G1中所在的连通分量 内存在一条简单回路C1。C ∪ C1仍然是G 的一条简单回路,但它包括的边数比C多。 继续构造,最终有C’=C ∪ C1 ∪… ∪ Ck是 一条欧拉回路。
2016/12/6
IntroductionToCS--Xiaofeng Gao
7
证明(2)
充分性 :由于G是有穷图,因此可断定从 G的任一节点v0出发一定存在G的一条简单 回路C。这是因为各节点的度都是偶数,所 以这条简单回路不可能停留在v0以外的某个 节点,而不能再向前伸延以构成闭通道C。
如果E=C, 则C就是欧拉回路,充分性得证。 否则在G中删去C的各边,得到G1=G―C。
2016/12/6
IntroductionToCS--Xiaofeng Gao
6
范例
【例】 判断下图是否欧拉图:
a
b
e
d
c
G
a
b
d
c
H
2016/12/6
IntroductionToCS--Xiaofeng Gao
8

哈密顿图的判定与应用【文献综述】

文献综述 信息与计算科学 哈密顿图的判定与应用 图论(graphic theory)是一门既古老又年轻的学科. 它诞生于18世纪上半叶. 到19世纪下半叶这个领域才发展成为数学的一个系统的分支, 直到20世纪上半叶, 这门学科才有自己的著作出现. 自20世纪下半叶开始, 随着计算机科学与技术的发展, 图的理论研究和应用研究才得到迅速广泛的重视, 图论作为一个数学的分支, 才真正确立了自己的地位. 哈密顿(爱尔兰科学家)在1859年提出一个名叫“周游世界”游戏问题是: 能否遍历正12面体的每个顶点一次且一次后回到原地. 由此引申出哈密顿图的定义: 如果图G 上有一条经过图G 所用顶点一次且仅一次的回路, 则称此回路为哈密顿回路, 具有哈密顿回路的图称为哈密顿图. 哈密顿图具有六个领域: 哈密顿圈, H 连通, 泛圈, 点泛圈, 边泛圈, 泛连通. 哈密顿图是有哈密顿圈的图. 至今没有一个像欧拉图的充要条件那样的“非平凡的” (不是定义的同义反复)关于哈密顿图、哈密顿通路的充分必要条件, 但关于他们的充分性和必要性分别有一些研究成果. 而哈密顿图不光在金字塔图、扇面蜂巢图及马图上有体现它性质的研究, 且在四正则连环图和彼得森中有它独特的应用. 而且哈密顿图在哈密顿通路、哈密顿轨、多哈密顿轨问题上也有很多细致的研究和应用. 1984年时在连续10年排名加拿大第一大学的范更华教授得到名垂青史的“范定理”: 2连通n 阶图G 的距离是2的任意两点,x y 均有max{(),()}/2d x d y c ≥, 则G 是有c 圈, 当c n =时是哈密顿图. 当然, 关于如此著名的范定理, 各国不少专家也对范定理企求做出改进发展. 1987年Wojda 院士和欧洲最古老的著名大学之一的法国奥大的运筹学科创建奠基人Benhocine 教授2人合作仅局部推广上面范定理. 又如法国 Benhocine 教授1977年发表在法国科学院学报的哈密顿图论文就一直有国际影响, 但他至今仅有25篇数学论文且18篇是哈密顿图的, 他是排名哈密顿图研究前30名大师之一. 哈密顿图已经历了一个多世纪的跋涉, 容易攀登的时代已经过去了, 其进展已非常不容易, 如此即使是世界级的大师泰斗, 不论你多么聪明利害都好, 面对的下一个问题猜想都永远是相关学科的全世界的专家经过多年仍不能解决的, 就是想做点进展都非常不容易, 每

哈密顿图

定义4.3.1 经过图G 的每个顶点恰一次的路称为G 的Hamilton 路,简称为H 路。经过图G 的每个顶点恰一次的圈称为G 的Hamilton 圈,简称为H 圈。具有Hamilton 圈的图称为Hamilton 图,简称为H 图。 Hamilton 图的研究起源于一种十二面体上的游戏。1857 年,爱尔兰著名数学家William Rowan Hamilton 爵士(他也是第一个给出复数的代数描述的人)制作了一种玩具,它是一个木制的正十二面体,在正十二面体的每个顶点上有一个木栓,并标有世界著名城市的名字。游戏者用一条细线从一个顶点出发,设法沿着十二面体的棱找出一条路,通过每个城市恰好一次,最后回到出发点。这个游戏当时称为Icosian 游戏,也称为周游世界游戏。 将正十二面体从一个面剖开并铺展到平面上得到的图形如下图所示,称为十二面体图。 周游世界游戏用图论术语来说就是判断十二面体图是否Hamilton 图,并设法找出其Hamilton 圈。其中一条Hamilton 圈如图中粗边所示。 十二面体图是H 图 判断一个图是否Hamilton 图与判断一个图是否Euler 图似乎很相似,然而二者却有本质 的不同。目前为止尚没有找到判别一个图是否是Hamilton 图的有效充要条件。这是图论和计算机科学中未解决的重要难题之一。 本节给出一些经典的充分条件和必要条件。 一、必要条件 定理4.3.1 设G 是二部图,若G 是H 图,则G 必有偶数个顶点。 证明:设G = (X, Y ) ,由于G 的边全在X 和Y 之间,因此如果G 有Hamilton 圈C,则G 的所有顶点全在C 上,且必定是X 的点和Y 的点交替在C 上出现,因此G 必有偶数个顶点。证毕。 这个定理给出了一个二部图不是Hamilton 图的简单判断条件:如果一个二部图有奇数 个顶点,则它必定不是Hamilton 图。例如,下列Herschel 图是二部图,但有奇数个顶点,故不是H 图。 Herschel 图不是H 图 定理4.3.2 若G 是H 图,则对V(G)的每个非空真子集S,均有: 连通分支数W(G-S) ≤| S |。 证明:设C 是G 的H 圈,则对V(G)的每个非空真子集S,均有 W(C-S) ≤| S |. 由于C-S 是G-S 的生成子图,故W(G-S)≤W(C-S)≤| S |. 证毕。 利用定理4.3.2 可判断下面(1)中的图不是H 图。事实上,令S={u, v, w},则 W(G-S) = 4 > | S |。 但无法用该定理给出的必要条件来判断(2)中的Petersen 图不是H 图。

哈密顿图

13.2 哈密顿图

13.2.1哈密顿图的定义 与欧拉回路类似的是哈密顿回路问题。它是1859年哈密顿首先提出的一个关于12面体的数学游戏:能否在下图中找到一个回路,使它含有图中所有结点一次且仅一次?若把每个结点看成一座城市,连接两个结点的边看成交通线,那么这个问题就变成能否找到一条旅行路线,使得沿着该旅行路线经过每座城市恰好一次,再回到原来的出发地呢?为此,这个问题也被称为周游世界问题。

定义13.3 给定图G,若存在一条路经过图中的每一个结点恰好一次,这条路称作哈密顿(Hamilton)路。若存在一条回路,经过图中的每一个结点恰好一次,这个回路称作哈密顿回路。具有哈密顿回路的图称为哈密顿图。具有哈密顿路但不具有哈密顿回路的图称为半哈密顿图。 (a)(b)(c) (a)中存在哈密顿路,不存在哈密顿回路,所以(a)是半哈密顿图, (b)中存在哈密顿回路,(b)是哈密顿图,(c)不是哈密顿图。

13.2.2哈密顿图的判定 定理13.3 (哈密顿回路的必要条件)若图G=具有哈密顿回路,则对于结点集V的每一个非空子集S均有W(G?S)≤|S|成立。其中W(G?S)是G?S中连通分支数。 定理13.4 (奥尔定理,哈密顿路的充分条件)设G是具有n个结点的简单无向图,如果G中每一对不相邻顶点的度数之和大于等于n?1,则在G中存在一条哈密顿路。

例13.2 某地有5个风景点。若每个景点均有两条道路与其他景点相通,问是否可经过每个景点恰好一次而游完这5处? 解 将景点作为结点,道路作为边,则得到一个有5个结点的无向图。由题意,对每个结点vi,有。则对任意两点均有可知此图一定有一条哈密顿路,本题有解。

相关文档
最新文档