GD-ZLG-DC-106太阳能单晶电池片EL检验标准(B0)

GD-ZLG-DC-106太阳能单晶电池片EL检验标准(B0)
GD-ZLG-DC-106太阳能单晶电池片EL检验标准(B0)

1 / 8页

1.适用范围

适用于PERC电池片EL检验

2.检验仪器

EL测试仪

3. 定义

单个电池片的每种类型的失效面积以单片电池片的累计失效面积为准。

4.检验标准

2 / 8页

3 / 8页

4 / 8页

5 / 8页

6 / 8页

7 / 8页

8 / 8页

5.附件

电池片面积关系对照表

编制: 审核: 批准:

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp 与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%) 功率(W) 单晶125*125 15 单晶156*156 15 多晶125*125 15 多晶156*156 15 注1:测试条件符合太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2: AM是air mass的简称,意思是大气质量。 是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL :rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为小时(h); 最少放宽对电池板需求20%的预留额。 WP÷=(5A× 7h× 120%)÷ WP÷= WP = 162(W) ★:每天光照时间为长江中下游附近地区日照系数。

电池片外观检验标准剖析

1.0 适用范围 1.1 这份标准适用于本公司电池片部门生产的所有太阳能电池片。 1.2 适用于单晶/多晶电池片的生产,标准生产次序包括: 镀SiN 减反射镀膜以及丝网印刷。 1.3 外观检测分为三个等级,Q1,Q2,Q3。Q1是最高品质等级,Q2稍低于Q1,Q3仅适用于切割电池片后做成小组件,供应给有特殊需要的顾客。 2.0 定义: 2.1 减反射膜ARC: 电池片受光面所涂的一层减少阳光反射的膜。 2.2 表面污染:电池表面沉淀物。 2.3 崩边片:边沿缺失厚度方向没有贯穿整片电池片厚度。 2.4 缺角:边沿缺失厚度方向贯穿整片电池片厚度。 3.0 检验基础: 3.1 条件: 3.1.1 检验员应有正常的视力,无色盲。无需放大镜。 3.1.2 色差在室内正常光线下,目视;其他用直尺(游标卡尺)测量。 3.1.3 检查距离:0.3~0.5米 (一个手臂的距离), 角度:30-90°。 3.1.4 检查时间: 每个部分3~5秒。 3.2 工具:直尺、游标卡尺 3.3 规则图形(如圆形、正方形、长方形)的面积按不良实际面积计算。 类别 Q1级 Q2级 Q3级 外形尺寸 125*125(±0.5)mm, 125*125(±0.5)mm, 无分类 156*156(±0.5)mm, 156*156(±0.5)mm, 主栅线、背电极按供应商 图纸 主栅线、背电极按供应商图纸

Q1级Q2级Q3级 减反射膜色差 深蓝色、中蓝色、淡蓝色发白的兰色或浅蓝发白的蓝色/浅蓝 颜色均匀一致,无明显颜色 过渡的区域, 明显色差的单 个面积≤4mm2 ,总面积≤ 10mm2,边缘细栅线之外的 色差面积≤20mm2 1:单一色差最大区域10mm X 10mm+1个多种色差最大区 域5mm X 5mm 单片电池≤有2种色差区域 2:刻蚀过刻引起的色差。 单一色差最大区域10mm X 10mm+2个多种色差最大区 域5mm X 5mm 小白点数量≤3个,且每个 小白点的区域为0.5mm X0.5mm。小白点之间的间 距为30mm. 小白点数量≤6个,且每个小 白点的区域为0.5mm X0.5mm。小白点之间的间距 为20mm. 同一电池片有许多小白点。 水纹片,水纹痕迹比实际封 样轻微的 明显的水纹片,水纹痕迹总共3个色差区域 深蓝色中蓝色淡蓝色

光伏组件原材料检验标准,项目及方法

光伏组件原材料检验标准,原材料检验项目及方法。 北极星太阳能光伏网 一.电池片 1.检验内容及方式: 1)电池片厂家,包装(内包装及外包装),外观,尺寸,电性能,可焊性,珊线印刷,主珊线抗拉力,切割后电性能均匀度。(电池片在未拆封前保质期为一年) 2)抽检(按来料的千分之二),电性能和外观以及可焊性在生产过程全检。 2.检验工具设备:单片测试仪,游标卡尺,电烙铁,橡皮,刀片,拉力计,激光划片机。 3.所需材料:涂锡带,助焊剂。 4.检验方法: 1)包装:良好,目检。 2)外观:符合购买合同要求。 3)尺寸:用游标卡尺测量,结果符合厂家提供的尺寸的±0.5mm 4)电性能:用单体测试仪测试,结果±3%。 5)可焊性:用320-350℃的温度正常焊接,焊接后主珊线留有均匀的焊锡层为合格。(要保证实验用的涂锡带和助焊剂具有可焊性) 6)珊线印刷:用橡皮在同一位置反复来回擦20次,不脱落为合格。 7)主珊线抗拉力:将互链条焊接成△状,然后用拉力计测试,结果大于2.5N。 8)切割后电性能均匀度:用激光划片机将电池片化成若干份,测试每片的电性能保持误差在±0.15w。 5.检验规则:以上内容全检,若有一项不符合检验要求则对该批进行千分之五的检验。如仍不符合4).5).7)8)项内容,则判定该批来料为不合格。 二.涂锡带 1.检验内容及方式: 1)厂家,规格,包装,保质期(六个月),外观,厚度均匀性,可焊性,折断率,蛇形弯度及抗拉强度。 2)每次来料全检(盘装),外观生产过程全检。 2.检验所需工具:钢尺,游标卡尺,烙铁,老虎钳,拉力计。 3.所需材料:电池片,助焊剂。 4.检验方法: 1)外包装目视良好,保质期限,规格型号及厂家。 2)外观:目视涂锡带表面是否存在黑点,锡层不均匀,扭曲等不良现象。 3)厚度及规格:根据供方提供的几何尺寸检查,宽度±0.12mm,厚度±0.02mm视为合格。 4)可焊性:同电池片检验方法 5)折断率:取来料规格长度相同的涂锡带10根,向一个方向弯折180°,折断次数不得低于7次。 6)蛇形弯度:将涂锡带拉出1米的长度紧贴直尺,测量与直尺最大的距离,最大值<3.5mm。 5.检验规则:以上内容全检,若有一项不符合检验要求则重检。如仍不符合2).4).5)项内容则判定该批来料为不合格。 三.EVA胶膜 1.检验内容及方式: 1)厂家,规格型号,包装,保质期(六个月),外观,厚度均匀性,与玻璃和背板的剥离强度,交联度。 2)来料抽检,生产过程对剥离强度和交联度在抽检,外观再生产过程全检。 2.检验所需工具:卷尺,游标卡尺,壁纸刀,拉力计,剪刀,120目丝网,交联度测试仪,烘箱,电子秤。 3.所需材料:TPT背板,小玻璃,二甲苯,抗氧化剂。 4.检验方法: 1)包装目视良好,确认厂家,规格型号以及保质期。 2)目视外观,确认EVA表面无黑点、污点,无褶皱、空洞等现象。 3)根据供方提供的几何尺寸测量宽度±2mm,厚度±0.02mm。 4)厚度均匀性:取相同尺寸的10张胶膜称重,然后对比每张胶膜的重量,最大至于最小值之间不得超过1.5%。 5)剥离强度:按厂家提供的层压参数层压后,测试EVA与玻璃,EVA与背板的剥离强度。(冷却后) a.EVA与TPT的剥离强度:用壁纸刀在背板中间划开宽度为1cm,然后用拉力计拉开TPT与EVAl,拉力大于35N 为合格。 b.EVA与玻璃的剥离强度:方法同上,用拉力计一端夹住EVA,另一端固定住玻璃,拉力大于20N为合格。 6)交联度测试:见交联度测试方法,试验结果在70%-85%之间为合格。 5.检验规则:以上内容全检,若有一项不符合检验要求则重检。如仍不符合2).5).6)项内容则判定该批来料为不合格。 四.背板:

GFM太阳能电池组件检验规范汇编

无锡国飞绿色能源有限公司《组件操作规程汇编》文件编号:JS-09 原材料检验规程 一.目的: 确保合格的原材料投入生产,防止不合格的原材料被误用。 二.适用范围: 太阳能组件生产原材料电池片、钢化玻璃、涂锡带、EV A、TPT、接线盒、铝型材等主要原材料。 三.职责: 3.1质量检验人员负责对原材料进行检验。 3.2生产部负责对需要验证的原材料,如涂锡带、EV A、TPT进行验证,出 具验证报告。 四.程序: 4.1对来料的外包装及各种标识进行确认,确认内容有:供应厂商、规格型号及对方的 合格证明。 4.2检验完以上内容,如没发现异常情况,可进行抽样。 4.3抽样方法参见各种原材料技术要求。 4.4对抽取的样品按技术要求进行检验,需要进行工艺验证的原材料在检验后开工艺验 证报告单通知生产部主管进行试样。 4.5试样结束后,由生产部主管出具工艺验证报告单。 4.6检验人员将工艺验证结果如实的记录在进货检验报告单上,并通知仓管员入库。 4.7检验合格的原材料由仓管员放入合格材料标识区,检验不合格的原材料放入不合格 材料标识区,进行隔离,并通知部门主管。 五.原材料来料检验技术要求:

附:JS-09————原材料检验报告JS-09————工艺验证报告单 无锡国飞绿色能源有限公司 进货检验报告单 无锡国飞绿色能源有限公司 工艺验证报告单

单焊、串、拼接检验规程 一.目的: 规范工序生产质量要求,确保合格的半成品流入下道工序。 二.适用范围 适用于单片焊接,串接、拼接岗位的半成品的检验。 三.职责 质量检验人员负责对单片焊接,串、拼接岗位产出的半成品进行检验。四.程序 4.1采用自制光箱,公制直尺、目测相接和的方法进行检验。 4.2对焊好的单片,串、拼好的组件进行100%的检验。 4.3外观检验 4.3.1焊接好的单片无虚焊,漏焊、裂纹、焊接条平直无扭曲现象。 4.3.2拼接好的组件内芯片定位准确,芯片之间及串接条之间间隙均匀且在 2mm±0.5mm范围之间。 4.3.3组件内芯片焊接以主栅线中心为基准,整列芯片焊带条的左右偏差总和 不得超过10%,且目测整列芯片在一条直线上。 4.3.4芯片焊接牢固,无虚焊、漏焊、假焊,焊接条平直,无折痕,毛刺垃圾 等。 4.3.5组件内芯片无碎裂,无灰尘、纸屑、焊料等杂物。 4.3.6同一块组件内芯片栅线图案应一致,颜色应相近。 4.3.7按工艺要求放置EV A,TPT。 4.3.8按工艺要求对组件的正负极引出线的位置,距离进行检查。 4.4性能检测: 4.4.1将外观检验合格的半成品组件放在光箱进行电流,电压测试。 4.4.2电流、电压测试值应符合工艺规定的该种组件的典型数据。 4.5符合检验要求的合格半成品组件可流入下道工序继续进行加工。 4.6不合格半成品组件进行返工或返修。返工及返修的组件继续按第4.3、4.4 条进行检验直至检验合格后方可流入下道工序。

太阳能电池测试原理

太阳能电池测试原理 太阳电池的测量与太阳辐照度测量密切相关。地面上的太阳辐照每时每刻都在变化,这一变化不仅体现在总辐照度上,而且其内在的光谱辐照度细节也在不断的变化,这给最初的太阳电池测量带来了极大的困难。由于太阳电池是光谱选择性元件,其光电灵敏度随太阳光谱分布变化而变化,在总辐照度相同而光谱辐照度不同的光源下,太阳电池的电性能输出会有很大的不同。为了实现太阳电池测量量值的统一,国际电工委员会首先对标准太阳光谱辐照度进行了规定。所有地面用太阳电池的计量标准条件是采用AM1.5标准太阳光谱分布。 太阳电池的主要技术参数是太阳电池的光谱响应,短路电流和开路电压以及太阳电池的光电转换效率。作为太阳电池计量项目,通常进行如下两方面内容的测试工作:标准太阳电池在标准太阳光谱条件下的短路电流标定和在太阳模拟器下测量太阳电池的伏-安特性测量,进而计算出标准太阳光谱条件下太阳电池的光电转换效率。由于无法得到与标准AM1.5太阳光谱分布相一致的人工模拟光源,因此无法直接测量出太阳电池在标准太阳辐照条件下的短路电流。 太阳电池的I-V特性测量方法是,首先采用与被测太阳电池光谱响应相似的标准太阳电池来设定太阳模拟器的标准测试条件下的辐 照度,然后在太阳模拟器下测量被测太阳电池的I-V特性曲线。由于被测太阳电池与标准太阳电池的光谱响应相似,因此这种替代测量方

法可以克服掉由于太阳模拟器的光谱分布与标准AM1.5太阳光谱分布不匹配造成的光谱失配误差。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know that I love you.

太阳能电池组件检验标准

太阳能电池组件检验标准 1. 目的 : 为保证出厂太阳能电池组件合格率达到100%,满足用户的使用 要求,特制定本标准。 2. 引用标准 : GB/T9535-1998 国家标准(等同于 IEC61215)。 3. 范围: 适用于公司所有组件的出厂检验。 4. 职责: 品控部是本标准的制定和负责执行的部门,生产部负责配合品控部组件的检验。 5. 检验标准 : 5.1 组件外观检验标准 : 5.1.1 外表面清洁干净。 5.1.2 无破碎、裂纹、针孔的单体电池。 5.1.3 电池片崩边 : 崩边沿电池片厚度方向 , 深度不大于电池片厚度的二分之一,面积不大于2 mm 2的崩边,每片电池片不多于两处。 5.1.4电池片缺角:每片电池片,深度小于1.5 mm,长度小于5 mm的缺角不得超过1处;深度小于1 m,长度小于3 m的缺角不得超过2处。 5.1.5 每块组件 5.1.3 、5.1.4 两项缺陷的总和不超过两片。 5.1.6组件电池片主栅与细栅线连处允许w 1mm的断点,细栅线允许 <2mm的脱落。断点与栅线脱落的总数不大于栅线总条数的1/5。

5.1.7 汇流条与焊带连接处,焊带超出汇流条、汇流条超出焊带 1mm 以下。 5.1.8 电池片或焊带的间距离、电池片之间、电池片与汇流条之间、 汇流条之间的距离要在0.3m m以上。 5.1.9电池片横排错位w 2mm纵列间隙两端相差w 2mm组件整体位移 时两边电池片与玻璃边缘距离之差w 3mm 5.1.10 焊带与栅线之间不能有脱焊。 5.1.11 组件内杂物 : 无毛发、虫子等杂物。 5.1.12 组件内气泡 : 电池片与电池片之间有气泡时,汽泡边缘与电池片之间的间距应大于 0.3mm;距离玻璃边缘2mm内不允许有气泡, 且每个组件上不能超过 5 个,所有气泡的总面积小于 9mm2。 5.1.13 TPT或TPE背板剥离和EVA缺损应在距离玻璃边缘 2mm以内。5.1.14 背板折皱时受光面不能有折痕,不能有重叠,不能乱写,没有刮痕。 5.1.15背面污垢,直径小于5mm,宽度小于1mm及长度小于50mm, 每平方米允许有两处。 5.1.16 接线盒、商标的位置无歪斜,接线盒周边无缝隙并涂布硅胶, 硅胶一定要溢出接线盒周边,并且范围在5mm以内。 5.1.17 接线盒内汇流带须平滑,无虚焊; 汇流带要求牢固地卡于接线端子的汇流带连接端。 5.1.18 商标检查:印刷、电性能参数值是否符合要求。 5.1.19 组件表面钢化玻璃检验按《钢化玻璃检验标准》执行 5.1.20 组件边框铝型材接口处无明显台阶和缝隙,缝隙由硅胶填满,螺丝拧紧无毛刺;铝型材与玻璃间缝隙用硅胶密封,硅胶需涂均匀,光滑无毛

太阳能电池板功率计算

太阳能电池板功率计算 1.0绪论 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。本文将简要介绍光伏系统结构,并重点介绍其功率计算方法。 2.0光伏系统组成 图1是一个典型的供应直流负载的光伏系统示意图。 图1 直流负载光伏系统 图2 光伏发电系统原理方框图 光伏系统中的几个主要部件: 1.光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。

2.蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 3.控制器:它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 4.逆变器:在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。 3.0太阳能电池组件功率计算方法 硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所能消耗的电力H(WH),由负载额定电源与负载24h所消耗的电力,决定了负载24h 消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天造成的影响,计算出太阳能电池阵列工作电流IP(A)。 由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数及蓄电池浮充电压VF(V),再考虑到太阳能电池因温度升高而引起的温升电压VT(v)及反充二极管P-N结的压降VD(V)所造成的影响,则可计算出太阳能电池阵列的工作电压VP(V),由太阳电池阵列工作电源IP(A)与工作电压VP(V),便可决定平板式太阳能板发电功率WPW,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数。 太阳能电池阵列的具体设计步骤如下: 1.计算负载24h消耗容量P。 P=H/V H——负载24小时消耗的电力(WH,瓦˙时)

太阳能组件板成品检验标准

宁波市鑫友光伏有限公司 太阳能组件板成品检验标准 此检验标准作为太阳能组件板成品验收规范 1.工能 1.1 再规定光源的光谱、标准光强及一定的环境温度(25℃)条件下,太阳能电池板输出的开路电压Voc、短路电流Isc、Vm、Im等都符合相应规格型号的技术文件的要求,电压误差在±5%、电流误差在±3%的范围内。 1.2 太阳能电池板的实际输出功率在额定工率的±5%以内,运行一段时间后,(48小时)无短路、断路等异常现象。 1.3 太阳能电池片无裂痕、破损、缺角、断裂等情况;汇流条焊接牢固,焊点均匀、无氧化斑:组件的每块电池片于互连条排列整齐,电池片整体色泽一致,无花斑。 1.4 太阳能电池组件的面积/功率比大于65w/ m2 ,重量/功率比大于4.5w/㎏。 2.金属框 2.1金属框的规格、尺寸、型号等应符合技术文件要求,开孔大小、位置、孔位与孔位距离、孔位尺寸等都应符合技术文件的要求。 2.2 金属边框与边框之间焊接、按装的牢固、紧奏,缝隙小于0.2㎜;金属框表面无毛刺、无飞边、无杂物、无划痕、无锈点,表面平整无变形,色泽一致。 2.3 金属边框的短边角码压铸紧凑,无松动现象;长边冲压实中到位,长短边组装后要能承受一定的抗拉强度;长短边45℃切角符合要求的规定,组装后无缝隙。 2.4 金属边框安装后要能承受89N的力拉1分钟无移位、无松动、无松脱等现象。 3.玻璃类 3.1 电池板上的钢化玻璃表面整洁,无破损、裂纹、划痕、气泡、结石等;颜色透明一致,玻璃下面无杂物。 3.2 组框完毕的电池板与金属框之间密封胶要分布均匀,密封良好,金属框—玻璃—背膜之间的密封胶无缺口、无空隙、无沙眼等现象,达到I P65的防水等级。 3.3 层压后的太阳能板中不得有气泡、碎片、异物或脱层等情况,EVA胶膜与玻璃的剥离强度大于30N/cm;EVA胶膜与TPT的剥离强度大于40N/cm。 4.塑件类 4.1 太阳能组件背面的接线盒型号应与技术文件要求一致,无破损、裂痕、划伤、毛刺

太阳能功耗计算方式

太阳能建议方案 目前太阳能供电设备蓄电池为2块12V100AH,太阳能板为17.2V 120W。以现在的设备功率,球机为实际功率为35W。路由器为5W即35+5=40W。增加逆变器,功率系数上浮12%,实际功率为40W*12%+40W=45W。 方案1:连续7天 蓄电池用量: 45W,每天工作24小时,每天耗电为45*24=1080WH 每天用的电池的安时数:1080WH/0.9/12V=100AH 连续7天,共用1080*7=7560WH 如果用12V电池,需要7560WH/12V=630AH 电池留余量,放电深度0.9,=630/0.9=700AH 所以选择12V,700AH的电池比较好,如用100AH,至少需要7块。 太阳能板: 假设平均日光照时间为5小时,阴雨天间隔时间20天。电池板选用工作电压17.2V的, 则电池板功率:=[(700AH-100AH)/20天+100AH]/5H*17.2V =447W 建议结论:每块蓄电池可定制12V250AH,大约3块。每块太阳能板可采用18V150W.大约3块。

方案2:连续5天 蓄电池用量: 45W,每天工作24小时,每天耗电为45*24=1080WH 每天用的电池的安时数:1080WH/0.9/12V=100AH 连续5天,共用1080*5=5400WH 如果用12V电池,需要5400WH/12V=630AH 电池留余量,放电深度0.9,=450/0.9=500AH 所以选择12V,500AH的电池比较好,如用100AH,至少需要5块。 太阳能板: 假设平均日光照时间为5小时,阴雨天间隔时间20天。电池板选用工作电压18V的, 则电池板功率:=[(500AH-100AH)/20天+100AH]/5H*17.2V =412W 建议结论:每块蓄电池可定制12V250AH,大约2块。每块太阳能板可采用18V150W.大约3块。 方案3:连续3天 蓄电池用量: 45W,每天工作24小时,每天耗电为45*24=1080WH

太阳能光伏组件过程检验标准

由品管员每个工作日均衡时间抽检,各工岗负责自检。 分选 1)具体分档标准按作业指导书要求; 2)确认电池片清洁无指纹、无损伤; 3)所分组件的电池片无严重色差。 单焊 1)互联条选用根据技术图纸; 2)保持烙铁温度在330-350℃之间(特殊工艺须另调整),每隔两小时对烙铁温度进行抽检; 3)当把已焊上的互联条焊接取下时,主栅线上应留下均匀的银锡合金; 4)互联条焊接光滑、无毛刺、无虚焊、脱焊、无锡珠堆锡; 5)焊接平直,牢固,用手沿45°左右轻提焊带不脱落; 6)焊带均匀的焊在主栅线内,焊带与电池片的主栅线的错位不能大于0.5㎜,最好在0.2㎜以内; 7)电池片表面保持清洁,完整,无损伤。 串焊 1)焊带均匀的焊在主栅线内,焊带与电池片的背电极错位不能大于0.5㎜; 2)保持烙铁温度在350-380℃之间(特殊工艺须另调整),每隔两小时对烙铁温度进行抽检; 3)每一单串各电池片的主栅线应在一条直线上,错位不能大于1㎜; 4)互联条焊接光滑、无毛刺、无虚焊、脱焊、无锡珠; 5)串焊后电池片正面无焊花,焊带脱落现象; 6)电池片表面保持清洁;

7)单片完整,无损伤。 叠层 1)叠层好的组件定位准确,串与串之间间隙一致,误差±0.5㎜; 2)串接条正、负极摆放正确; 3)汇流条选择符合图纸要求,汇流条平直、无折痕及其他缺陷; 4)EV A、背板要盖满玻璃(背板、玻璃无划伤现象); 5)拼接过程中,保持组件中无杂质、污物、手印、焊带条等残余部分; 6)玻璃、背板、EV A的“毛面”向着电池片; 7)序列号号码贴放正确,与隔离背板上边缘平行,隔离TPT上边缘与玻璃平行; 8)组件内部单片无破裂; 9)涂锡带多余部分要全部剪掉; 10)电流电压要达到设计要求; 11)所有焊点不能存在虚焊; 12)不同厂家的EV A不能混用。 层压 1)组件内单片无破裂、无裂纹、无明显位移、串与串之间距离不能小于1.0㎜; 2)焊带及电池片上面不允许有气泡,其余部位0.5-1m㎡的气泡不能超过3个,1-1.5m㎡的气泡不能超过1个; 3)组件内部无杂质和污物; 4)EV A的交联度控制在75%~90%,每批次EV A测量两次; 5)层压工艺参数严格按照技术部提供设定参数;

电池片外观检验标准

太阳能电池板检验标准 目的对太阳能电池板进行质量监控,确保电池板外观满足客户的要求。范围适用于太阳能电池板检验 定义 内容: 4.1检验方法及标准 按表1所有项目进行检验。 室内整机目检工位800?1200LUX .必需配帶良好静电防护措施(配帶干净手 套或者静电指套与防静电手环接上静电接地线).大概离眼睛30-40cm的距 离.先保持机台检查面与视线垂直,上下翻转大于45度;左右翻转大于45 度.每个面检查大概5秒,视力要求:检验人员裸视或矫正视力 1.0以上. 4.2检验工具卡尺,菲林片 检验标准 表1多晶电池片外观检验标准 检查项目 总 体外观裂纹、隐 裂、穿孔 在日光灯下用肉眼观测,不允许有可见的此类 缺陷 定义

缺口正面崩边在日光灯下用 肉眼观测,明 显可见的缺损 不允许 在日光灯下用肉 眼观测,明显可见 的破损不允许 缺口不伤 及栅线 背面崩边尺寸偏差弯曲度备注:跟边框平行方向为长, 垂直方向为宽 备注:跟边框平行方向为长, 垂直方向为宽 单个V 1mm宽X 2mm长,个数w 2 个,但是间 距大于30mm 电池片边长的测量值与标 称值的最大允许差值。 单个w 1mm宽X 1 mm长,个数w 2个;深度不超 过电池片厚度的 2/3 ;间 距大于30mm 深度不超过电池 片厚度的2/3,, 单个w 1mm宽X 2mm长 且个数w 1个; 单个w 1mmx 1mm个数w 2, 主栅线端点边缘 没有崩边 单个v 1mm宽X 3mm长,个数w 3 个 <± 0.5mm <± 1mm 超过B级 标准的完 整电池片 超过B级 标准的完 整电池片 超过B级 标准的完 整电池片 156电池的弯 曲度w 2mm (200im)或 w 2.5mm (180im); 125电池的弯 曲度w 1.5mm (200im)或 w 2 mm (180im) 156电池的弯 曲度W 2.5mm (200 am)或w 3mm( 180 jim); 125电池的弯 曲度w 2mm (200 im)或w 2. 5 mm(180a m) 超过B级 标准的完 整电池片

相关文档
最新文档