微生物遗传育种的研究进展

微生物遗传育种的研究进展
微生物遗传育种的研究进展

微生物遗传育种的研究进展

摘要:微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造去除不良性状,增加有益新性状,以提高产品的产量和质量的一种育种方法。本文对微生物遗传育种技术,包括自然育种、诱变育种、代谢控制育种、基因工程育种等进行了介绍,并对育种技术的发展做了展望。

关键词:微生物;自然育种;诱变育种;代谢控制育种;基因工程育种微生物育种的目的就是要人为地使某些代谢产物朝人们所希望的方向加以引导或者促使细胞内发生基因的重新组合优化遗传性状,获得所需要的高产优质和低能的菌种。为达到这一目的必须改变微生物的遗传性能[1]。现代生物技术特别是发酵工程技术的最终产品,一般都是经过工业微生物这一“工厂”生产得到的,已经取得了举世瞩目的经济效益和社会效益。据统计,1979 年世界工业酶产量为53000 吨,1985 年酶制剂的总产量为10万吨,作为商品出售的酶制剂有200余种,到1990 年总产值约为10 亿美。就生物技术而言,1991年美国、德国、法国和英国的总销售额依次为400,200,150,6.4 亿美元。对工业微生物菌种的优化选育是提高产量和质量的一条有效途径。以突变和筛选为中心的传统育种技术在工业微生物发展到现在规模的过程中始终起着重要作用。70 年代以来,重组DNA技术和原生质体融合技术开始用于菌种选育。各种外源基因在原核生物、真核细胞的克隆和表达研究取得了重大成果,使工业微生物育种技术进入了真正意义的分子水平育种时代[2]。

1 菌种选育的具体目标

(1) 提高产量。生产效率和生产效益总是排在一切商业发酵过程首位的目标。

( 2) 提高产物的纯度。减少副产物; 提高有效组分;减少色素等杂质。

( 3) 改变菌种性状。改善发酵过程, 包括: 改变和扩大菌种所利用的原料结构; 改善菌种生长速度; 提高斜面孢子化程度; 改善菌丝体形状, 采用菌球菌丝

体发酵;少用消泡剂或使菌种耐合成消泡剂; 改善对氧的摄取条件, 降低需氧量及能耗; 耐不良环境: 抗噬菌体的侵染,耐高温、耐酸碱、耐自身所积累的代谢产物; 改善细胞透性, 提高产物的分泌能力等。

( 4) 菌种的遗传性状。特别是生产性状稳定。

( 5) 改变生物合成途径。以获得新产品。

2 获取优良菌种的有效途径

广义上说, 菌种改良可描述为采用任何科学技术手段( 物理、化学、生物学、工程学方法以及它们的各种组合)处理微生物菌种, 从中分离得到能显示所要求表型的变异菌种。菌种改良的基本途径: 突变和选择; 基因重组( 遗传重组) 和基因工程( 遗传工程) 。

2.1 自然选育

不经人工处理,利用微生物在一定条件下可产生自发突变的原理, 通过分离筛选排除衰退菌落, 从中选择维持原有生产水平的菌株的方法, 称为自然随机选育。自然突变由 2 种原因引起: 多因素低剂量效应和互变异构效应。自然突变可能会产生 2 种不同的结果, 一种是菌种退化而导致目标产量或质量下降另一种是对生产有益的突变。利用自发突变可以分离高生产能力的菌种再用于生产,同时也可以利用自发突变而出现的菌种性状的变化,去选育优良的菌株。随着富集筛选技术的不断完善和改进,自然育种技术的效率有所提高,如含有突变基因naE、mutD、mutT、mutM、mutH、mutI 等的大肠杆菌突变率相对较高。酒精发酵是最早把微生物遗传学原理应用于微生物育种实践而提高发酵产物水平的一个成功实例[3]。自然选育是一种简单易行的选育方法,可以达到纯化菌种,防止菌种退化,提高产量的目的,但发生自然突变的几率特别低,一般为10-6~10-10/BP。这样低的突变率导致自然选育耗时长,工作量大,影响了育种工作效率,在这种情况下,出现了诱变育种技术,因此, 在生产实践中,自然选育的主要目的是用来纯化、复壮和稳定菌种[3]。

2.2 诱变育种

凡能诱发生物基因突变, 并且突变频率远远超过自发突变率的物理因子或

化学物质, 称为诱变剂。主要包括物理诱变剂和化学诱变剂, 现在还有生物诱变剂。诱变剂是自1927 年用X 射线诱发果蝇遗传性状变异而引起科学工作者注意的, 此后陆续发现了许多物理因子与化学物质都具有诱发基因突变的作用。近年来, 随着基因工程技术的不断发展, 蛋白质工程中点突变的重要技术,基因诱变在菌种选育中得以应用,使生物诱变剂也受到很大重视, 并取得了可喜发展。现根据诱变剂的不同,介绍诱变育种方法的研究进展。

2.2.1物理诱变

物理诱变通常使用物理辐射中的各种射线, 包括紫外线、X 射线、γ射线、α射线、β射线、快中子、微波、超声波、电磁波、激光射线和宇宙射线等。近年来, 随着重离子束的获得, 离子辐照诱变育种也成为诱变育种的 1 种新方法[4]。

2.2.2化学诱变

使用化学物质处理微生物使其性状发生改变的方法称为化学诱变方法。化学诱变的作用机制与物理诱变剂有很大区别, 其作用机制都是与DNA起化学作用。化学诱变剂往往具有专一性, 它们对基因的某部位发生作用,对其余部位则无影响,突变主要为基因突变,并且主要是碱基的改变,其中尤以转换为多数。各种具有诱变作用的化学物质和碱基接触起化学反应,通过DNA 的复制使碱基发生改变而起到诱变作用。通常使用的化学诱变剂包括4大类:烷化剂、碱基类似物、移码突变剂以及其他种类等[5]。

2.2.3其它诱变方法

2.2.

3.1离子注入生物体诱变

离子注入生物体诱变育种是人工诱变方法的一种新发明。已经证实离子注入诱变, 可以获得高突变率, 扩大突变谱,为筛选优良的突变型菌株提供广阔的空间,同时, 离子束也可以作为介质进行外源目的基因转移和转导。目前, 利用离子注入已经获得转基因植物; 转含有耐辐射异常球菌基因组 D N A 的E1 co l i 菌株。我国离子应用研究已有17项成果, 其中7 种高产、优质、抗病虫农作物新品种和6个微生物新菌株已经推广应用于农业和工业生产中, 累计创效益17

亿元以上。因此离子注入法在作物和微生物诱变育种方面受到广泛关注[6]。

2.2.

3.2航天诱变

航天诱变是近些年发展迅速的一种新型的微生物诱变育种技术,太空环境的特有条件有可能引起生物体发生遗传性变异,这些特有条件包括超高真空、超洁净、微重力、强辐射,并且与地面条件有很大差异,另外,还有强烈的紫外线照射等。太空环境是太空科学研究的一个特殊的重要领域。突变频率高、突变谱广、变异幅度大是空间变异最大的特点,并且突变后的变异性状稳定,从而使育种周期缩短、生物安全性提高。1957 -1988年已经进行空间生命科学研究的卫星有109个,几乎每次都搭载微生物材料。近些年微生物航天诱变的研究进展迅速,已涉及微生物形态学、细胞学、生理生化和分子生物学等诸多领域[7]。

2.2.

3.3激光的概念及诱变机理

激光诱变育种是20世纪70年代兴起的一种诱变技术, 国内外利用激光诱变微生物已做了不少研究工作。激光是一种量子流, 光微粒。依据其波长不同可分为:260~380nm的紫外激光, 如N2激光;440~700nm的可见光激光, 如He-Ne 激光;900~447.2×103nm的红外激光, 如CO2激光。激光辐射通过产生热效应、压力效应、光效应和电磁场效应及其综合作用对生物体进行作用, 直接或间接影响生物有机体, 引起DNA或RNA改变, 导致酶激活或钝化,引起细胞分裂和细胞代谢活动改变。其中, 人们普遍认为起主要作用的是光效应和电磁场效应[8]。2.3代谢控制育种

代谢控制育种兴起于20世纪50年代末,以1957年谷氨酸代谢控制发酵成功为标志,并促使发酵工业进入代谢控制发酵时期。近年来代谢工程取得了迅猛发展,尤其是基因组学、应用分子生物学和分析技术的发展,使得导入定向改造的基因及随后的在细胞水平上分析导入外源基因后的结果成为可能。快速代谢控制育种的活力在于以诱变育种为基础,获得各种解除或绕过微生物正常代谢途径的突变株,从而人为地使有用产物选择性地大量生成积累,打破了微生物调节这一障碍。从微生物育种史中可以看出,经典的诱变育种是最主要的育种手段,也是最基础的手段,但它具有一定盲目性,代谢控制育种的崛起标志着育种

发展到理性阶段,作为微生物育种最为活跃的领域而得到广泛的应用,它与杂交育种结合在一起,反映了当代微生物育种的主要趋势。代谢育种在工业上应用非常广泛。代谢控制育种提供了大量工业发酵生产菌种,使得了氨基酸、核苷酸、抗生素等次级代谢产物产量成倍地提高,大大促进了相关产业的发展[9]。

2.4基因工程育种

基因工程育种是以分子遗传学的理论为基础,综合分子生物学和微生物遗传学的重要技术而发展起来的一门新兴应用科学。基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。近年来出现的运用基因工程进行定向育种的新技术主要有如下几种。

2.4.1 基因的定点突变

定点突变(site-specific mutagenesis或site-directedmutagenesis)是指在目的DNA片断(例如:一个基因)的指定位点引入特定的碱基对的技术,其包括寡核苷酸介导的定点突变、盒式诱变以及以PCR为基础的定点突变。基于PCR的定点突变技术由于其突变效率高、操作简单、耗时短、成本低廉等优点而倍受关注。因此,近十年来,定点突变技术获得了长足的发展,并且在此基础上又发展了很多新技术。例如:重叠延伸PCR法(Overlap Extension PCR 简称EO-PCR)、大引物PCR法(Megaprimer PCR)、一步重叠延伸PCR(One-stepOverlap Extension PCR,简称OOE-PCR)、单管大引物PCR(Single-tube Megaprimer PCR)、快速定点诱变法、多位点环状诱变法和TAMS(Targeted Amplification ofMutant Strand)定点诱变技术。在这些技术中,单管大引物PCR和TAMS定点诱变技术最为简单和适用,并得到广泛的应用[10]。

2.4.2 易错PCR

DNA聚合酶在进行扩增目的DNA时会以一定的频率发生碱基错配,这一现象恰好提供了一种对特定基因进行随机诱变的可能方法。利用PCR过程中出现的碱基错配进行特定基因随机诱变的技术就称为易错PCR(Error-prone PCR,简称EP-PCR)。此方法其操作过程是在Taq DNA聚合酶催化的PCR反应体系中,

利用Mn2+替代天然的辅助因子Mg2+,使Taq DNA聚合酶缺乏校对活性,同时使反应体系中各种dNTP的比例失衡,因此导致碱基的错配率大大增加,通常约为0.1%。另外,还可以在该反应体系中加入dITP等三磷酸脱氧核苷类似物来控制错配水平。这种方法可以将错配率最大提高至20%。从易错PCR的操作过程可以看到,此法与传统诱变育种技术之间的最大差别就在于,前者是基因水平上的随机突变操作,而后者则是细胞水平上的随机诱变技术[11]。

2.4.3 DAN重排

DNA重排(DNA shuffling)技术是一种利用重组文库的体外定向进化技术,由Stemmer于1993年首先提出。DNA重排的基本原理是首先将同源基因(单一基因的突变体或基因家族)切成随机大小的DAN片段,然后进行PCR重聚。那些带有同源性和核苷酸序列差异的随机DAN片段在每一轮循环中互为引物和模板,经过多次PCR循环后能迅速产生大量的重组DNA,从而创造出新基因[12]。2.4.4 基因组重排

基因组重排(genome shuffling)技术是受DNA重排的启发,于21世纪出现的全基因组改组技术。这种技术将分子定向进化的对象从单个基因扩展到整个基因组,可以在更为广泛的范围内对菌种的目的性状进行优化组合。首先,利用经典的诱变育种技术获得含有目标性状的基因组库,然后利用原生质体融合技术将这些发生正向突变的菌株的全基因组进行多轮随机重组,从而快速筛选表型得到较大改进的杂交菌种。该技术巧妙地采用了多轮循环原生质体融合技术(即将各种亲本制成原生质体-融合-再生-再制成原生质体-融合-再生),即递归原生质体融合(recursive protoplast fusion)的方法。与DNA重排技术相比,该法的最大特点是不必了解菌株的遗传背景,在细胞水平上即可进行定向进化[13]。

3展望

随着分子生物学等各项新技术的快速发展,微生物分子育种领域已经得到了快速进展,人类已经可以按照自己意愿对微生物进行改造,使其能更好地为人类造福。工业微生物遗传育种在基因工程、细胞工程、蛋白质工程和酶工程等现代生物技术的基础上,创造出了许多设计巧妙、科技含量高、目的性强、劳动强度

低、效果显著的育种方法,为人类获得稳定性好、高产、新种类的工程菌株,开发新药和工业产品,提高产品的产量和质量都提供了有力的保障。相信微生物遗传育种学将得到更加全面发展,将为生产实践提供更多的优良菌株,在各领域发挥更加重要的作用[14]。

参考文献

[1] 施巧琴, 吴松刚.工业微生物育种学[ M ] . 第 2 版. 北京: 科学出版社, 2003.

[2] 戴四法,黎观红,吴石金. 现代工业微生物育种技术研究进展[J]. 微生物学杂志2000,20(2) :48~50.

[3] 张彭湃.微生物菌种选育技术的发展与研究进展[J].生物学教学,2005,30(9) :3~5.

[4] 申玉香, 汪志君, 方维明 1 紫外诱变及苯黄隆抗性处理选育低双乙酰啤酒酵母[J] . 酿酒科技, 2007, ( 5 ) :39 - 41。

[5] 程明,崔承彬,李长伟,田从魁,杜智敏.化学诱变技术在微生物育种研究中的应用[J].Journal of International Pharmaceutical Research .2009,36(6),412-417.

[6] 宫春波,离子注入微生物诱变育种研究进展[J],生物技术,2003,13(2):47-49.

[7] 张玲华,田兴山. 微生物空间诱变育种的研究进展[J]. 核农学报,2004,18(4):294-296.

[8] 汪杏莉等,工业微生物物理诱变育种技术的新进展,生物技术通报[J],2007,2:114-117.

[9] 孟甜,现代工业微生物遗传育种技术研究进展[J],生命科学仪器,2009,7(12):3-5.

[10] Yong L, Dong Q. TAMS technology for simple and efficient in vitro site-directed mutagenesis and mutant screening [J]. Nucleic Acids Res, 2003, 31(3): 11.

[11] 黄瑛,蔡勇,杨江科,等. 基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化[J]. 生物工程学报,2008, 24(3): 445.

[12] 徐波,王明蓉,夏勇等. 应用基因组重排育种新方法筛选替考拉宁高产菌[J].

中国抗生素杂志, 2006, 31(4): 237.

[13] 代云见,王明蓉,杜天飞,微生物基因工程育种技术的研究进展[J],国外医药抗生素分册,2008,29(5):193-200.

[14] 金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用[M].化学工业出版社,2006年第一版.

大连工业大学研究生学院

题目:微生物遗传育种的研究进展姓名:赵德鹏

年级: 2013级

专业:生物学

学号:13107100002046

第7章微生物遗传变异和育种答案

第7章微生物遗传变异和育种 填空题 1.证明DNA是遗传物质的三个经典实验是、、 和。而证明基因突变自发性和不对应性的三个经典实验 是、、和 细菌转化噬菌体感染植物病毒重建变量试验涂布试验影印平板培养法 2.______是第一个发现转化现象的。并将引起转化的遗传物质称为_______。Griffith转化因子 3.Avery和他的合作者分别用降解DNA、RNA和蛋白质的酶作用于有毒的S型细胞抽提物,然后分别与______混合,结果发现,只有DNA被酶解而遭到破坏的抽提物无转化活性,说明DNA是转化所必须的转化因子。 无毒的R型细胞(活R菌) 32 4.AlfredD.Hershey和MarthaChase用P 35 标记T2噬菌体的DNA,用S 标记的蛋白质外壳所进行的感染实验证实:DNA携带有T2的______。 全部遗传信息 5.H.FraenkelConrat用含RNA的烟草花叶病毒进行的拆分与重建,实验证明 ______也是遗传物质。RNA 6.细菌在一般情况下是一套基因,即______;真核微生物通常是有两套基因又 称______。 单倍体二倍体 7.DNA分子中一种嘧啶被另一种嘌呤取代称为______。 颠换 8.______质粒首先发现于大肠杆菌中而得名,该质粒含有编码大肠菌素的基因Col 9.原核生物中的基因重组形式有4种类型:_______、_______、_______和 _______。 转化转导接合原生质体融合 10.当DNA的某一位置的结构发生改变时,并不意味着一定会产生突变,因为细胞内存在一系列的_______,能清除或纠正不正常的DNA分子结构和损 伤,从而阻止突变的发生。 修复系统 11.营养缺陷型是微生物遗传学研究中重要的选择标记和育种的重要手段,由于这类突变型在_______上不生长,所以是一种负选择标记。 基本培养基 12.两株多重营养缺陷型菌株只有在混合培养后才能在基本培养墓上长出原养型菌落,而未混合的两亲菌均不能在基本培养基上生长,说明长出的原养型菌 落是两菌株之间发生了遗传_______和_______所致。 交换重组 13.在_______转导中,噬菌体可以转导供体染色体的任何部分到受体细胞中; 而在_______转导中,噬菌体总是携带同样的片段到受体细胞中。 普遍性局限性 14.基因突变具有7个共同特点:_______、_______、______________、_______、_______和_______。

微生物遗传育种试汇总题库

微生物遗传育种试题库 三.填空题: 47.DNA 分子中一种嘌呤被另一种嘌呤取代称为_____转换_________。 48.DNA 分子中一种嘧啶被另一种嘌呤取代称为_______颠换______。 49.一个核苷酸被另一核苷酸替代引起的突变称为_____碱基置换_______。 50.通过两细菌细胞接触直接转移遗传信息的过程称为_____接合______。 51.受体细胞从外界吸收供体菌的DNA 片段( 或质粒),引起基因型改变的过程称为_____转化____。 52.细菌细胞间靠噬菌体进行DNA 的转移过程称为__转导_。 53.对微生物进行诱变时,常用的物理诱变剂有_______紫外线________。 54.采用紫外线杀菌时,以波长为______260 nm 左右_______ 的紫外线照射最好。 55.F+和F-杂交中,结果是供体菌成为______ F+______,受体菌成为___ F+_____。 56.在性转导中,受体细胞F- 成为______ F'_________ 细胞。 59.转化、转导、接合是细菌三种_______基因重组________ 的方式。 60.四种引起细菌基因重组的方式是____转化________、______转导________、________接合_________ 和_______原生质体融合_________。 61.在紫外线诱变作用下,常引起DNA 链上形成_________胸腺嘧啶二聚体_________。 62.E.coli的性因子是通过_______性菌毛__________ 传递的。 63.可以结合并吸收自由DNA 分子的细菌细胞所处的状态称为_______感受态__________。 65.对微生物进行化学诱变时,可采用__________亚硝酸盐___________和___________碱基类似物_______________ 等诱变剂。 66.在__________专性__________ 转导中,噬菌体仅可转移整合位点相邻的寄主DNA 片段。 67.可以转移供体细胞任何部分基因到受体细胞的噬菌体,称作______普遍性转导_________ 噬菌体。 68.1944 年_____艾弗里_______ 等人证明了转化因子为DNA。 69.在微生物基因工程中,目前应用最多的载体是_____质粒______ 和_____噬菌体________。 70.在基因工程中,质粒和噬菌体的作用常是作___基因载体________。 71.在进行诱变育种工作时,经紫外线照射后的菌体都须在避光下进行操作或处理,其理由是______避免光复活作用_______。 72.5- 溴尿嘧啶为__________胸腺嘧啶____________ 的结构类似物。 73.紫外线杀菌的原理是________形成胸腺嘧啶二聚体造成DNA 损伤

光遗传学的研究进展

光遗传学的研究进展 1111047 李双 摘要:光遗传学就是应用光来控制细胞的活性,已经被证明是神经科学中一种潜力无穷的研究工具。近来光遗传学的应用扩展到了信号转导的研究,也开始有医学临床的应用的报道,进一步发展光遗传学无疑将推动合成神经学、生理学及细胞生物学等多领域的研究。本文介绍光遗传学的发展历程,以及光遗传学在疾病治疗的多方面应用。 关键词:光遗传学疾病治疗神经病学 光遗传学(optogenet-ics)是一种通过使用光学技术和遗传技术来实现控制细胞行为的方法,它克服了传统的只用光学手段控制细胞或有机体活动的许多缺点,为神经科学提供了一种变革性的研究手段。通过光遗传学工具,能够激活清醒哺乳动物的单一神经元,并直接演示神经元激活表现出的行为结果,使得研究人员能够获得关于脊髓回路的一些重要信息。光遗传学研究使用的新技术可以推广到所有类型的神经细胞,比如大脑的嗅觉、视觉、触觉、听觉细胞等,开辟了一个新的让人激动的研究领域。 1.光遗传学的迅速崛起 在光遗传学领域中,格罗·米森伯克(Gero Miesenbck)实验室率先开展这方面的研究。2005 年,卡尔·迪瑟罗思(Karl Deisseroth)、爱德华·博伊登(Edward Boyden)和他们的同事们证明了来自于绿藻的视蛋白可以使神经元产生对光的应答。光遗传学开始引起人们的广泛注意。在其后的几年中,人们实现了活小鼠脑中光可控蛋白质的表达——甚至在活动中的、神志清醒的其他动物中也实现了这种表达——成为了神经科学中的一种重要的实验方法。在研究中,兴奋性的光学开关,比如蓝光激活了的通道视紫红质,已经与抑制性的光敏蛋白质(黄光激活的盐细菌视紫红质氯离子泵)联系起来了,从而开启了这

《微生物遗传育种学》复习题A专升本

《微生物遗传育种学》复习题A(专升本) 一、填空题 1、工业微生物菌种的五大基本特征为:非致病性;;利于应用规模化产品加工工艺;;形成具有商业价值的产品或具有商业应用价值。 2、复制型转座涉及到两种酶:一是,作用在原来转座子的末端;二是 ,它作用在重复的拷贝上。 3、大肠杆菌的RecA蛋白在DNA 复制和损伤修复中共行使三种功能,即、 和。 4、表达载体的四大结构要素:多克隆位点、、 和。 5、反转录病毒RNA基因组是,因此反转录病毒具有二倍体基因组。 6、λ噬菌体侵入宿主细胞后5分钟内环化,环状DNA分子先进行复制,产生约20个DNA分子,约16分钟后进行复制产生多连体分子。 7、基因组序列的功能分析以及代谢途径的构建改造等都需要克隆目的 DNA,目前,获得大片段 DNA 序列的方法主要有:构建和筛选基因文库、PCR 扩增、、体外大片段 DNA 合成和组装,以及等方法。 二、判断题 1、假基因是一段DNA序列,与正常基因相似,但丧失相应的正常功能。 2、R/M体系:即限制与修饰体系,用于保护外源DNA在细胞内稳定存在。 3、原核生物遗传物质复制时,需要多种酶参与,可形成灵活的多种相关酶的复合体结构。 4、DNA的碱基配对时,氨式的A和酮式的T配对,氨式的A异构化为亚氨式时和氨式的C配对。 5、在微生物工业应用中,微生物菌种工作主要包括以下四方面:菌种的分离筛选、菌种培育、菌种的保藏和退化菌种的复壮。 6、细菌染色体DNA 为环状形式,而真核生物中没有环状DNA。 7、目前发现的质粒都是cccDNA。

8、DNA结合蛋白常含有HTH结构。 9、Bam HI的酶切位点为G↓GATCC,Bgl II的酶切位点为A↓GATCT,所以可判断两者为同尾酶。 10、反义RNA指的是可以编码出目的蛋白的一段RNA序列。 三、名词解释 1、反向代谢工程 2、Z-DNA 3、严谨反应 4、基因的回复突变 5、操纵子 6、自主转移质粒 7、呼吸现象 四、简答题 1、T4噬菌体末端冗余ab的亲本病毒是怎样产生cd、de、ef等末端冗余的子代的? 2、简述切除修复的流程。 3、简述不依赖于ρ因子的终止子转录终止模型。 4、已知Mgt05196p是一个重要的单糖转运蛋白编码基因,其氨基酸序列内的单位点N376S 突变可提高转运活性,用什么方法可以实现这一定点突变?请写出大体实验流程。 5、转座子的负调控机制有什么生物学意义?并简述复杂转座子Tn3的负调控机制。 五、论述题 1、详细论述单倍体酿酒酵母菌的a/α接合型转换机制。 2、某研究机构从辣椒根际土壤中分离得到了一株多粘类芽孢杆菌,发现其可很好地促进辣椒生长和预防真菌病害,属于植物根际促生细菌,具有适合做微生物肥料菌种的应用价值。为了在实际应用中效果更佳,用哪些方法可以进一步改良此菌种?请列举至少四种方法,并详细介绍其原理。 《微生物遗传育种学》复习题B(专升本) 一、填空题 1、微生物遗传育种学是研究微生物规律,阐述微生物的原理和技术的一门科学,在微生物学和整个生物科学中发挥着重要的作用。

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

环境微生物学论文

根据微生物的特点,谈谈为什么说微生物既是人类的敌人,更是人类的朋友 人类的生存和发展与微生物息息相关的,要对微生物有全面的了解才能让微生物为人类所用。事物都具有两面性的,可以说微生物既是人类的敌人,更是人类的朋友。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 另外微生物还为人类带来巨大危害,如疫病的传播。并且微生物的遗传稳定性差,容易发生变异,引起疫病传播的新微生物种类总不断出现。 最近出现的超级病菌就是由于变异产生的一种耐药性细菌,这种超级病菌能在人身上造成浓疮和毒疱,甚至逐渐让人的肌肉坏死。更可怕的是,抗生素药物对它不起作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡。这种病菌的可怕之处并不在于它对人的杀伤力,而是它对普通杀菌药物——抗生素的抵抗能力,对这种病菌,人们几乎无药可用。2010年,英国媒体爆出:南亚发现新型超级病菌NDM-1,抗药性极强可全球蔓延。 MRSA是一种耐药性细菌,耐甲氧西林金黄葡萄球菌(Methicillin-Resistant Staphylococcus Aures)的缩写。1961年,MRSA在英国被首次发现,它的致病机理与普通金黄葡萄球菌没什么两样,但危险的是,它对多数抗生素不起反应,感染体弱的人后会造成致命炎症。在医院里,“肮脏的白大褂”臭名昭著。现在金黄葡萄球菌是医院内感染的主要病原菌,人们从外面带来各种各样的球菌,这些病菌附着在医生和护士们的白大褂上,跟着四处巡视,有时掉在手术器械上,有时直接掉在病人身上。在医院内感染MRSA的几率是在院外感染的170万倍。最令医生们头痛的是,由于MRSA对大多数的抗生素具抵抗力,患者治愈所需的时间会无限拉长,最终转为肺炎而死。很幸运,至今这种多重耐药性的超级病菌仍然只在医院里传播。 钟南山教授提到,“超级细菌”是革兰氏阴性杆菌、肺炎克雷伯菌、大肠杆菌或不动杆

光遗传学技术在神经生物学领域的发展及应用_邴杰

2014年第49卷第11期生物学通报5 1光遗传学技术 光遗传学技术是一种利用光学原理与基因工程相结合,使特定细胞类群表达或缺失某项功能的新兴实验技术。基于该项技术目的性强、精确度高等特点,近年来,在复杂的生物学机制尤其是脑科学、神经科学等领域的研究中得到了广泛应用,被《Nature Methods》定义为2010年的年度新兴实验方法[1],光遗传学技术被誉为21世纪神经生物学最有影响力的技术方法。 1.1光遗传学技术的发展过程光遗传学技术起源于神经生物学,1979年Francis Crick等认为神经生物学领域中面临的最大挑战是:如何在脑神经研究中精确控制一类被研究的神经元而不影响其他周边神经元的功能。传统研究一般采用的方法是电极刺激或药物处理,然而电极刺激的针对性不强,药物处理作用时间周期太长、作用靶细胞多样等局限性因素,并不能很好地解决此类问题。在20世纪70年代人们对光激活细胞表达机制还不是很清楚,Crick提出可否用光控制细胞中的特定事件。40年前,微生物学家发现一些微生物可产生光门控蛋白,能直接调控质膜离子通道,1971年Stoeckenius和Oesterhelt研究发现细菌视紫红质作为一种离子通道能被光迅速激活,1977年Matsuno-Yagi和Mukohata发现了盐细菌视紫红质,Hegemann等发现了光敏感通道。 传统认为外来膜蛋白对神经细胞具有毒害作用,所以感光蛋白的研究并没有引起神经生物学领域学者的重视。随着基因工程的发展和绿色荧光蛋白在生命科学领域的广泛应用,通过引进外来吸光复合物对相应蛋白进行研究示踪,人们才把视线重新转移到视蛋白的研究上。2005年发现了一种微生物视蛋白,该视蛋白在没有添加任何化学或光敏感复合体的情况下就可以极为敏感地响应光刺激。2010年研究证明通道视紫红质、细菌视紫红质和盐细菌视紫红质蛋白在不同光作用下对神经细胞可以迅速、安全地起到“开关”作用。后期发现哺乳动物体内含有光控蛋白辅因子—— —全反式视黄醛,随着GPRS信号通路的研究发现,光遗传学的应用在活体哺乳动物体内具有更广阔的前景[2]。 1.2光遗传学技术作用机理生物体中存在一类膜蛋白可以感受不同波长光的刺激并对该光学刺激产生一系列效应的响应机制,该类蛋白被称为视蛋白(opsin)。视蛋白属于一类视紫红质通道蛋白,可分为2种类型:typeI为一类微生物视蛋白,typeII为一类动物视蛋白。两者均需要视觉色素视黄醛作为辅基。视蛋白的种类和结构不同,导致蛋白对光的吸收峰有所不同。2种类型视蛋白虽然都可编码7次跨膜的蛋白,但序列同源性系数极低,相似性系数跨度达到25%~80%[3]。typeI 在原核生物、藻类和真菌中表达,是个庞大的亚家族,功能主要是感光和作为离子通道,作用原理为typeI编码的视紫红质通道蛋白与全反式视黄醛共价结合,当一定波长的光照时,全反式视黄醛异构化为13-顺式视黄醛,引起通道蛋白构象变化,打开离子通道,完成细胞生理功能;typeII在高等真核生物中表达,功能主要是视觉通路、昼夜节律和色觉分辨通路,作用原理为typeII基因编码GPCRS(G蛋白偶联受体),在黑暗环境中与11-顺式视黄醛结合,当视蛋白GPRS吸收光后,共价结 光遗传学技术在神经生物学领域的发展及应用 邴杰(北京师范大学生命科学学院北京100875) 摘要光遗传学技术是基因工程学与光学相结合的一项新兴技术。简要介绍了光遗传学技术的概念、发展过程及作用机理,概述了光遗传学技术中通道视蛋白的类型和该技术在神经生物学领域的应用。 关键词光遗传学技术视蛋白光学技术神经生物学 中国图书分类号:Q31文献标识码:A

细胞遗传学论文

细胞融合技术的发展及其应用 摘要 细胞融合技术作为细胞工程的一项核心技术在农业、医药、环保等领域得到迅速发展和应用,且其应用领域不断扩大。本文简述了细胞融合技术技术中的常用方法:仙台病毒(HVJ)诱导法、聚乙二醇(PEG)化学诱导法、电融合诱导法、激光诱导法及此技术的最新研究进展:空间细胞融合技术、离子束细胞融合技术、非对称细胞融合技术等。该技术不仅为核质关系、基因定位、基因调控、遗传互补、细胞免疫、疾病发生、膜蛋白动力学等理论领域的研究提供了有力的手段,而且被广泛应用于免疫学、遗传学、发育生物学,在实际应用中特别是在单克隆抗体、抗肿瘤疫苗及动植物远缘杂交育种和微生物茵种选育,绘制基因图谱等方面具有十分重要的意义。随着细胞融合技术的不断改进和完善,动物、植物及微生物细胞融合技术无论在基础理论研究还是在实际应用产生的影响将日益显著。 关键词:细胞融合;方法;应用;进展 细胞融合技术是近年来迅速发展起来的一项新生物工程技术。所谓细胞融合指在外力(诱导剂或促融剂)作用下,两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合,并形成杂种细胞的现象称为细胞融合(cell fusion)或细胞杂交(cell hybridization)[1]。利用现代科学技术,把来自于不同种生物的单个细胞融合成一个细胞,这个新细胞(杂合细胞)得到了来自两个细胞的遗传物质(包括细胞核的染色体组合和核外基因),将具有新的遗传学或生物学特性。目前,通过原生质体融合进行体细胞杂交已成为细胞工程研究的重要内容之一[2]。 细胞融合技术不仅为核质相互关系、基因调控、遗传互补、肿瘤发生、基因定位、衰老控制等领域的研究提供了有力的手段,而且在遗传学、动植物远缘杂交育种、发生生物学、免疫医学以及医药、食品、农业等方面都有广泛的应用价值。特别是在单克隆抗体的制备、哺乳动物的克隆以及抗癌疫苗的研发等技术中,细胞融合技术已成为关键技术。随着研究的不断深入,细胞融合技术的应用领域越来越广,产生的影响也日益显著。本文就其目前的研究进展及其应用进行综述。

微生物遗传育种

一名词解释 1 突变:泛指细胞内(或病毒颗粒内)遗传物质分子结构或数量发生可遗传的变化,他是一种遗传状态,往往引起新的等位基因的形成和新的表型 2 表型:指一个生物体(或细胞)可以观察到的性状或特征,是特定的基因型和环境相互作用的结果 3 抗性突变:指由于发生基因突变而对某些化学药物.致死物理因子或噬菌体产生抗性的变异菌株.抗性突变型包括抗药性突变型.抗噬菌体突变型.抗辐射突变型.抗高温突变型,抗高浓度酒精突变型.抗高渗透压突变型等 4 基因重组:凡把两个不同形状个体内的遗传物质转移到一起,经过遗传分子间的重新组合,形成新遗传个体的方式 5 诱变育种:用物理和化学等因素,人为的对出发菌株进行诱变处理,然后运用合理的筛选方案和适当的筛选方法把符合要求的优良的变异菌株筛选出来的一种方法 6 营养缺陷型:某一野生菌株由于发生基因突变而丧失合成一种或多种生长因子的能力,因而不能在基本培养基上生长繁殖的变异类型。主要有氨基酸缺陷型、维生素缺陷型、嘌呤嘧啶缺陷型。 二解答题 1 筛选生物活性物质产生菌的成功因素有哪些,并简述筛选的一般思路 因素:(1)待筛选样品的性质; (2)产生菌的选择; (3)采用什么样的筛选方案,选择筛选方案有两个要点即选择性和灵敏度; (4)筛选方案的设计; 思路:(1)定方案:首先要查阅资料,了解所需菌生长培养特性; (2)采样:有针对性的采取样品; (3)增殖:人为的通过控制养分或培养条件,使所需菌种增殖后,在数量上占优势;(4)分离:利用分离技术得到纯种 (5)发酵性能的测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种质量、耐受最高温度、生长和发酵最适PH、提取工艺等 2 微生物遗传育种工作中突变产生的突变类型有哪些? 3 突变引起的遗传性状有哪几种类型? 答:(1)形态突变型:指发生在细胞个体形态或菌落形态改变的突变型,是一种可见的突变;(2)营养缺陷型:某一野生菌株由于发生基因突变而丧失合成一种或多种生长因子的能力,因而不能在基本培养基上生长繁殖的变异类型。主要有氨基酸缺陷型、维生素缺陷型、嘌呤嘧啶缺陷型; (3)抗性突变型:指由于发生基因突变而对某些化学药物.致死物理因子或噬菌体产生抗性的变异菌株.抗性突变型包括抗药性突变型.抗噬菌体突变型.抗辐射突变型.抗高温突变型,抗高浓度酒精突变型.抗高渗透压突变型等; (4)致死突变型:由于基因突变而导致个体死亡的突变型。分为显性致死和隐性致死;(5)条件致死突变型:在某种条件下可以正常生长繁殖并呈现其固有的表型,而在另一条件下却是致死的突变型叫做条件致死突变型。温度敏感突变型是典型的条件致死突变型;(6)产量突变型:所产生的代谢产物的产量明显有别于原始菌株的突变株称产量突变型;产量高于原始菌株的成为正突变菌株,反之称为负突变菌株。

细胞遗传学

染色体原位杂交技术在植物研究中的应用 摘要:染色体原位杂交(chromosome in situ hybridization,CISH)是一种新兴的日趋完善的技术。本文从以下几个方面对其在植物研究中的应用进行了综述:(1)外源染色质及远缘杂种的鉴定;(2)多倍体起源、非整倍体的鉴定;(3)植物基因工程及基因表达研究;(4)物种进化及亲缘关系的探讨;(5)植物基因物理图谱的构建等。 关键词:染色体原位杂交;植物;细胞遗传学 Abstract: In situ hybridization (chromosome in situ hybridization, CISH) is an emerging maturing technology. Its application in plant research are reviewed as follows: (1) exogenous chromatin and Identification of distant hybrids; (2) polyploid origin, identification of aneuploidy; (3) plant genetic engineering and gene expression studies; (4) the evolution of species and of kinship; (5)physical map construction of plant genes. Keywords: in situ hybridization; plants; cytogenetic 引言 原位杂交技术最早是由Gall和Parue[1]利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。该技术是从Southern和Northern杂交技术衍生而来的,其中染色体原位杂交在原位杂交技术中应用最为广泛。染色体原位杂交技术是根据核酸分子碱基互补配对原则,利用标记的DNA或寡核苷酸等探针同染色体上的DNA进行杂交,从而对染色体的待测核酸进行定位、定性或相对定量分析。 早期的染色体原位杂交技术,由于使用的探针为放射性标记,虽然该方法对于组织及染色体样本制备的要求不太高,且具有较高的灵敏度,但它不安全、不稳定、背景不理想,周期长,因而该技术发展较慢;然而20世纪80年代以后,非放射性探针的使用及PCR技术的发明,使得染色体原位杂交技术在动物及人类遗传学和分子生物学研究中迅速得到了广泛的应用,但在植物研究中一直很难有突破性的进展[2,3]。原因主要是由于植物细胞较低的有丝分裂指数和细胞壁的存在。随着植物染色体制备技术的改进,染色体显带技术、荧光标记技术、检测技术及电镜技术的发展和完善,染色体原位杂交技术在植物学研究上展示了更加广阔的应用前景。 1染色体原位杂交技术在植物研究中的应用

光遗传学

光遗传学技术与光起搏:心电生理研究中的新手段 [摘要] 光遗传学是2006年提出的一个将光控技术和遗传学技术相结合的新概念,以遗传学技术将光敏感蛋白表达于可兴奋的靶细胞或靶器官上,利用相应波长的光照激活光敏感蛋白以实现对细胞、组织、器官及动物生理功能的精准调控。该技术于2010年被引入心电生理研究,有离体及在体实验证实利用光遗传学技术实现光起搏心脏的可能性。研究表明光照刺激可引起心肌细胞电兴奋、恢复心肌细胞电传导、实现心脏再同步化,甚至可以模拟缓慢性、快速性心律失常。随着光敏感蛋白种类与功能的发掘、其转入心肌细胞方式和锚定心脏靶点多样化的研究,及安全便捷的光照条件和设备的研发,光遗传学技术与光起搏将成为临床心电生理研究及心律失常治疗等的重要新手段。 [关键词] 光遗传学光起搏 光遗传学(optogenetics)这一概念由Deisseroth等于2006年首次提出[1],是指一种将光控技术和遗传学技术相结合用以进行细胞生物学研究的新技术,即将光敏感的离子通道蛋白表达于可兴奋的靶细胞或靶器官上,利用相应波长的光照激活光敏感通道以实现对细胞、组织、器官及动物生理功能的精细调控。光遗传学技术原理的最初应用源于2002年Zemelman等将光敏感蛋白导入靶细胞进行神经活动的研究[2],此后光遗传学技术在大脑神经环路、神经功能调控的研究中得到了迅速发展,并于2011年被《Nature Methods》杂志评为2010年度技术[3]。2010年Arrenberg[4]和Bruegmann[5]先后将光遗传学技术引入斑马鱼及转基因小鼠的心脏节律控制研究,使光遗传学技术成为了心电生理研究的一个新手段[6-10]。本文拟就光遗传学技术及其在心脏电生理研究中的现状与前景介绍如下。 一、光遗传学技术的原理与实施 光遗传学技术转化应用的原理是以特定波长的外源光照射(刺激)激活或抑制表达在哺乳动物细胞或体内的光敏感蛋白,因光敏蛋白活性的改变进而调控靶细胞生物学行为,因此光敏感蛋白是该技术中一个至关重要的元件。光敏感蛋白是一类发现于单细胞微生物如绿藻、单胞菌的视蛋白(Opsin),目前最常用的是来源于绿藻(Chlamydomonas reinhardtii)的光敏感蛋白视紫红质通道蛋白2(channelrhodopsin-2,ChR2)[11,12]。ChR2是一种光敏感电压依赖性的非选择性阳离子通道蛋白,含737个氨基酸,有7个跨膜区域,其中第1、2、3、7跨膜区为导电孔。ChR2可被波长350~550nm的光活化,中心激活波长为470nm。ChR2对阳离子的选择强度依次为H+、Na+、K+、Ca2+,其介导的电流呈内向整流特性,反转电位为0mV,其大小与光源在单位面积的辐照度(irradiance)正相关。因ChR2通道快速激活和失活的动力学特性,在经470nm蓝光照射时可迅速引发离子流触发可兴奋细胞去极化,进而产生相应电生理效应。其他一些来源于藻类的光敏感蛋白亦被用于不同的光遗传学研究中,包括CyChR1、CraChR2、MChR1、DChR、VChR1。VChR1也是一种阳离子通道,可被波长为589nm的黄光激活[13],如将VChR1与ChR2同时表达于组织器官上的不同靶细胞,则可用两组不同波长的光照同时调控两类靶细胞。除驱动靶细胞兴奋的光敏感蛋白外,具抑制功能的光敏感蛋白亦必不可少,常用的抑制性光敏感蛋白有Halorhodopsin (HaloR、NpHR)和Archaerhodopsin-T(ArchT)[14,15]。NpHR为氯离子转运视紫红质蛋白,来源于嗜盐碱单孢菌,可被黄光激活,泵入氯离子使细胞膜超极化从而抑制其兴奋性。ArchT则对红光敏感,为一种抑制性的超极化质子泵。随着各种特性不同、激活波长不同的光敏感蛋白的逐步发现与丰富,利用光照精准调控细胞的光遗传学技术亦得到了迅速发展,使其在多种细胞如中枢神经元、外周神经元、视网膜细胞、骨骼肌细胞、心肌细胞、多能干细胞等,多种疾病如成瘾、抑郁、焦虑、自闭等精神疾病、帕金森症、视网膜疾病等的研究

微生物遗传与育种(09140)

《微生物遗传育种》课程(09140)教学大纲 一、课程基本信息 课程中文名称:微生物遗传育种 课程代码:09140 学时与学分:76学时4学分(理论课52学时,实验课24学时) 课程性质:专业选修课(必选) 授课对象:生物工程专业 二、课程教学目标与任务 《微生物育种学》课程是为生物工程专业本科生开设的一门重要专业选修课,可在学生学习生物化学和微生物学之后选修该课程。该课程主要教授微生物育种的理论基础、诱变育种、代谢控制育种、杂交育种、原生质体融合育种、基因工程育种的原理和方法。通过本门课程的学习,学生可以掌握微生物育种的相关原理和具体方法,为从事生物工程领域的生产和科学研究打下基础。 三、学时安排 课程内容与学时分配表 章节内容课时 第一章绪论 1 第二章遗传物质的基础 2 第三章基因突变 3 第四章工业微生物育种诱变剂 4 第五章工业微生物产生菌的分离筛选 6 第六章工业微生物诱变育种 6 第七章工业微生物代谢控制育种 6 第八章工业微生物杂交育种 3 第九章工业微生物原生质体育种和原生 质体融合育种6 第一〇章微生物基因组改组育种 3 第一一章基因工程育种 3 第一二章分子定向进化育种 3 第一三章高通量筛选技术 3 第一四章工业微生物菌种复壮与保 3 试验1 细菌的原生质体融合 6 试验2 乳酸菌筛选及抑菌作用研究 6 试验3 香菇杂交育种 6 试验4 细菌营养缺陷型筛选试验 6

四、课程教学内容与基本要求 第一章绪论 教学目的:了解微生物育种在发酵工业中的地位,理解微生物育种的进展。 基本要求:通过教学,使学生了解本课程的研究对象和任务、微生物育种在发酵工业中的地位以及工业微生物育种的进展。 重点与难点: 重点:微生物育种的进展。 难点:当前微生物育种的主要技术概览。 教学方法:现代化教学手段,图片展示、讲述法。 主要内容: 第一节工业微生物育种在发酵工业中的地位 一、微生物菌种 二、微生物菌种的重要性 三、微生物菌种特性 四、菌种来源 第二节工业微生物育种的进展 一、自然选育 二、诱变育种 三、杂交育种 四、代谢控制育种 五、基因工程育种 六、基因组改组(genome shuffling) 七、分子定向进化(molecular directed evolution of enzyme) 八、高通量筛选技术(High throughput screening,HTS) 第二章遗传物质的基础 教学目的:了解微生物遗传的基本知识,掌握微生物基因组的组织与结构。 基本要求:通过教学,使学生回顾、了解微生物遗传的物质基础,掌握微生物基因组的组织与结构。 重点与难点: 重点:微生物基因组的组织与结构。 难点:微生物基因组与其他生物基因组的主要区别。 教学方法:现代化教学手段,图片展示、讲述法。 主要内容: 第一节染色体 一、染色体形态 二、原核生物及病毒染色体结构 三、真核生物染色体结构 四、染色体数目 第二节核酸 一、核酸

临床遗传学研究进展的认识与感悟

临床0904班 03 陈舒宁 遗传,是一个抽象性总结性的词语,而它和我们的生活密切相关,甚至决定我们的生活质量。基因的发现以及各种探究技术的发展,将遗传这个概念具体化清晰化,我们越来越多的了解到遗传物质对各种性状表达的影响。科学的进步最终是要运用到实际中去的,遗传学的研究也在向临床应用方向推进。 今天对遗传学的认识已经远远超越了“豌豆杂交”,现在已经可以运用医学遗传学理论知识,通过家系调查和各项检查来诊断、治疗和预防遗传病。临床遗传学是在分离定律、自由组合定律、连锁交换定律等研究基础上,结合细胞遗传学技术、分子细胞遗传学技术、分子遗传学技术等,对遗传病进行诊断、预防、治疗,并且提供详细咨询。临床遗传学还有其独自的知识体系,比如染色体的基本知识、染色体国际命名体制;基因的基本知识;细胞有丝分裂、减数分裂的基本知识及其与染色体、基因遗传的关系等。通过学习,在认识到临床上对遗传学技术的应用已经远远超出了我最开始的认为。临床治疗、预防都已经和遗传学产生了密切的联系,它们相互促进,协同发展。 目前所指的遗传病,主要分为染色体病和基因病。染色体病是指染色体数目结构发生异常所引起的疾病。染色体多一条或少一条都会造成染色体病,比如唐氏综合征、13三体综合征、18三体综合征;而染色体结构的变化往往具有复杂的临床表现,比如生长发育异常、智力发育迟缓等等。这些疾病,目前主要以预防为主,高龄产妇需要格外注意。血清学检查和超声筛选应该是比较普遍的检查方式,它们不会对孕妇造成创伤,比较安全。血清学检查的检出率随着人们的研究已经有了较大的提高,但是还有一定的假阳性和假阴性的例子出现。而且,血清学筛查还存在许多问题,比如取血和开单时间无法一致,没有一个严格规范的筛查时限,有的医院技术不达标等等。于是进一步想到了较为直接的侵入性产前检查,因为它直接提取到胎儿的遗传物质,可谓是目前检查的”金标准“。但是,想象一下自己或者自己的亲人做这样的检查,会产生多大的思想压力。并且直接侵入性产检可能造成对胎儿伤害,诱发流产等。为了能够不造成母体和胎儿伤害,而又能达到较高的检出率,于是有了从母体外周血中检查游离胚胎DNA的方法。这个方法有点将前面两种方法益处相结合的意思,即提高检出率,又减少对母胎的伤害,而且它还提高了检查的效率。但是,目前应用的FISH,PCR都还有一些弊端,比如FISH的成本高,价格贵;母血的污染可能影响结果判断等等。当然,一切都还是在进步的,非侵入性产前非整倍体检查正在被不断完善,随着发展也一定会更加普及。染色体质的改变也会造成疾病,目前的检查方法检出率一般,而且并没有得到普及。并且由于染色的的缺失、重复等改变是微小的,多为新发,所以还需要更多的病例累积来帮助临床认识一些新的综合征。 基因病则分为单基因病和多基因病。单基因病是由单个基因突变引起的疾病,有一定的遗传规律,而且遗传研究上已经累积了一些病例知识,对致病基因的有一定的认识。对于临床上的常见的单基因病,例如短指症,白化病都有较好的诊断。结合病人的系谱调查,该遗传病的遗传特点,加之PCR等基因检测技术,可以达到较高的检出率。当然每个技术都不可能称之为百分百的完美,单基因病的诊断中也有许多问题干扰诊断,比如:表现度不同,有时会产生拟表型等等。多基因病则是指多对微小的累加的等位基因与环境共同作用所引起的疾病,比如心血管疾病,中风,精神分裂等。临床上主要还是对症治疗,并且有一定疗效。但是,治问题要治之根本,所以目前对这些疾病的基因诊断、治疗还在不断的研究之中。

微生物遗传育种研究进展

题目:微生物遗传育种研究进展 姓名:毛德昌学号: 专业:微生物学方向:微生物生态学任课教师:翠新(副教授) 2017年12月29日

微生物遗传育种研究进展 摘要:微生物育种是现代工业、医药、食品等行业生产中重要的一个环节,本文中介绍了几种微生物育种的方法,包括诱变育种、杂交育种、代调控育种等育种方法,其中主要介绍微生物遗传育种一种新的育种技术——低能离子注入育种技术和原生质体育种技术。低能离子注入育种技术为我国科学家所创建的一种技术,为微生物的育种工作提供了新的方法。 关键词:微生物育种,离子注入,原生质体融合

目录 1前言 (1) 2自然选育 (1) 3诱变育种 (2) 3.1物理诱变 (2) 3.2化学诱变因子 (3) 3.3生物诱变因子 (4) 3.4复合因子诱变与新型诱变剂 (4) 4杂交育种 (4) 4.1有性杂交 (4) 4.2准性杂交 (5) 4.3原生质体融合育种 (5) 4.3.1 原生质体融合的促融方法 (6) 4.3.2原生质体融合育种的应用 (6) 4.4 代控制育种 (7) 5基因重组 (7) 6小结 (8) 参考文献 (8)

1前言 微生物是自然界中广泛存在的生物群体,在工业、医药、食品、科研等行业中具有广泛的应用,在工业上是某些工业产物的产生个体,医药行业将的很多种药物是来源于微生物个体的初级或次生代产物,方方面面都有微生物的影子,对于微生物育种最早是来源于什么时候,这个也许应该可以追溯到人类对微生物的应用。生活中到处都存在着微生物的影子,人类为了能够更加充分的利用微生物,就会将个体形状优良的微生物保留下来,以便将其更好的利用,这边开始了微生物的育种,儿这种育种似乎是对微生物的育种工作已经开展,只是仍然停留在一个比较初步的阶段。 上世纪五十年以前对微生物的育种是在个体宏观表现上的对人类有用的形状上的育种工作,上世纪五十年代以后,DNA分子结构的确立,微生物的各个基因结构逐步得到阐释,微生物的各种代途径调控机制也逐步得到解释,对微生物进行遗传育种的方法也逐步开始出现多样化。微生物遗传育种的主要方法可以大概分为物理方法、化学方法和生物方法,或者将微生物的育种工作分为传统育种和现代生物技术育种,二者的区别在于是否有现代生物技术方法参与育种工作。 2自然选育 不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。这类突变没有人工参与并非是没有原因的,一般认为自然突变有两种原因引起,即多因素低剂量效应和互变异构效应。所谓多因素低剂量效应,是指在自然环境中存在着低剂量的宇宙射线、各种短波辐射、低剂量的诱变物质和微生物自身代产生的诱变物质等作用引起的突变。互变异构效应是指四种碱基第六位上的酮基或氨基的瞬间变构,会引起碱基的错配[1]。自然突变可能会产生两种截然不同的结果,一种是菌种退化而导致目标产量或质量下降;另一种是对生产有益的突变。为了保证生产水平的稳定和提高,应经常地进行生产菌种自然选育,以淘汰退化的,选出优良的菌种。 在工业生产上,由于各种条件因素的影响,自然突变是经常发生的,也造成了生产水平的波动,所以技术人员很注意从高生产水平的批次中,分离高生产能力的菌种再用于生产。同时也可利用自发突变而出现的菌种性状的变化,去选育优良的菌株,如在味精发酵被噬菌体污染过程中,所选出的抗噬菌体菌株。自然选育是一种简单易行的选育方法,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。

微生物遗传与育种-湖北自考网

湖北省高等教育自学考试大纲 课程名称:微生物遗传与育种课程代码:06709(理论) 第一部分课程性质与目标 一、课程性质与特点 微生物遗传学是当今分子生物学研究中最重要的一个分支学科,它是在经典遗传学基础上发展起来的,同时它又为分子遗传学的发展奠定了基础。由于微生物遗传学与生物化学、分子生物学以及其他学科的相互渗透,微生物遗传学对生物工程,生物技术和遗传工程技术的建立和发展起到了重要的推动作用。其研究的理论和操作方法为改良品种、定向育种、改造生物环境以及治疗人类疾病等重大生命科学的研究和运用都起到了不可估量的作用。 《微生物遗传与育种》作为微生物学中的一门重要课程,既可以作为生物工程专业,食品工程专业、生物技术专业、食用菌专业等的专业基础课,也作为其他相关专业的选修课程。 二、课程目标与基本要求 本课程主要以微生物作为遗传研究的对象,根据微生物的遗传体制来阐明生物遗传的基本原理和规律。根据这一目的,要求学生首先要有较强的微生物学理论知识和操作技能。同时,还要求学生掌握一定的生物化学、普通遗传学、以及微生物生理学等学科的相关基础知识。 课程内容主要通过对一些经典实例的阐述来验证某一理论的正确性。或者通过对一些遗传现象的发现进行分析,推论而最终得出某一结论。使学生通过对这些实例的理解去学习和掌握书本中的理论知识。再通过配套的课程实验,使学生掌握必要的微生物遗传学的实验手段。 三、与本专业其他课程的关系 要想学好《微生物遗传与育种》这门课,首先必须学好微生物学,因为微生物遗传学是以微生物作为研究的对象,所以必须把微生物的形态特征、生理、生化特征等搞清楚。微生物遗传学是在研究对象上区别于经典遗传学的一门分支学科,但它们的着眼点是一致的,都是为了阐明生物遗传的基本规律。因此,《微生物遗传与育种》的先行课程是:微生物学和微生物学技术,普通遗传学、微生物生理学,生物化学等相关课程。在本课程学完后,还可以继续学习分子生物学、分子遗传学等后续课程,因为分子遗传学它是在研究水平上区别于微生物遗传学的一门分支学科。微生物遗传学可以说起到了一个承上启下的作用。 第二部分考核内容与考核目标

相关文档
最新文档