各向异性磁阻传感器

各向异性磁阻传感器
各向异性磁阻传感器

物理研究性实验报告

各向异性磁阻传感器(AMR)与地磁场测量

第一作者:

学号:

第二作者:

学号:

2013年5月17日星期五

目录

一、摘要 (3)

二、实验目的 (3)

三、实验原理 (3)

四、实验仪器介绍 (4)

五、实验内容 (6)

1、测量前的准备工作 (6)

2、磁阻传感器特性测量 (6)

a.测量磁阻传感器的磁电转换特性 (6)

b.测量磁阻传感器的各向异性特性 (6)

3、赫姆霍兹线圈的磁场分布测量 (7)

a.赫姆霍兹线圈轴线上的磁场分布测量 (7)

b.赫姆霍兹线圈空间磁场分布测量 (8)

4、地磁场测量 (8)

六、原始数据记录和处理 (9)

(1)、原始数据记录及初步处理 (9)

1)AMR磁电转换特性的测量 (9)

2)ARM方向特性的测量 (9)

3)赫姆霍兹线圈轴向磁场分布测量 (9)

4)赫姆霍兹线圈空间磁场分布测量 (10)

5)地磁场的测量 (10)

(2)、数据处理 (10)

1)AMR磁电转换特性的测量 (10)

2)ARM方向特性的测量 (11)

3)赫姆霍兹线圈轴向磁场分布测量 (11)

4)赫姆霍兹线圈空间磁场分布测量 (11)

5)地磁场的测量 (12)

七、误差分析与思考题 (12)

1、误差分析 (12)

2、推导公式(1) (13)

3、通过网上或图书馆查阅文献,列举某个AMR传感器在有关领域的应用实例,简要介

绍其测量原理和方法 (13)

八、讨论 (14)

1实验中发现的问题 (14)

2 对实验仪器的一个小改进 (14)

九、总结与收获 (14)

十、附录(原始数据) (15)

一、摘要

物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。

磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。

磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。

二、实验目的

1.熟悉和了解AMR的原理

2.测量磁阻传感器的磁电转换特性和各向异性特性

3.测量赫姆霍兹线圈的磁场分布

4.测量地磁场磁场强度,磁倾角,磁偏角

三、实验原理

各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻R max最大,电流与磁化方向垂直时电阻R min最小,电流与磁化方向成θ角时,电阻可表示为:

R = R min+(R max-R min)cos2θ

在磁阻传感器中,为了消除温度等外界因素对

输出的影响,由4个相同的磁阻元件构成惠斯通电

桥,结构如图1所示。图1中,易磁化轴方向与电

流方向的夹角为45度。理论分析与实验表明,采用

45度偏置磁场,当沿与易磁化轴垂直的方向施加外

磁场,且外磁场强度不太大时,电桥输出与外加磁

场强度成线性关系。

无外加磁场或外加磁场方向与易磁化轴方向平

行时,磁化方向即易磁化轴方向,电桥的4个桥臂

电阻阻值相同,输出为零。当在磁敏感方向施加如

图1所示方向的磁场时,合成磁化方向将在易磁化方向的基础上逆时针旋转。结果使左上和右下桥臂电流与磁化方向的夹角增大,电阻减小ΔR ;右上与左下桥臂电流与磁化方向的夹角减小,电阻增大ΔR 。通过对电桥的分析可知,此时输出电压可表示为:

U =V b ×ΔR/R (1)

式中V b 为电桥工作电压,R 为桥臂电阻,ΔR/R 为磁阻阻值的相对变化率,与外加磁场强度成正比,故AMR 磁阻传感器输出电压与磁场强度成正比,可利用磁阻传感器测量磁场。

商品磁阻传感器已制成集成电路,除图1所示的电源输入端和信号输出端外,还有复位/反向置位端、补偿端两个功能性输入端口,以确保磁阻传感器的正常工作。 复位/反向置位端的作用是:当AMR 置于超过其线性工作范围的磁场中时,磁干扰可能导致磁畴排列紊乱,改变传感器的输出特性。此时按下复位/反向置位端,通过内部电路沿易磁化轴方向产生强磁场,使磁畴重新沿易磁化轴方向整齐排列,恢复传感器的使用特性。

补偿端的作用是:当4个桥臂电阻不严格相等,或是外界磁场干扰,使得被测磁场为零而输出电压不为零时,此时可调节补偿电流,通过内部电路在磁敏感方向产生磁场,用人为的磁场偏置补偿传感器的偏离。

四、实验仪器介绍

实验仪结构如图2所示,核心部分是磁阻传感器,辅以磁阻传感器的角度、位置调节及读数机构,赫姆霍兹线圈等组成。

本仪器所用磁阻传感器的工作范围为±6高斯,灵敏度为1mV/V/Guass 。当磁阻电桥的工作电压为1V ,被测磁场磁感应强度为1高斯时,输出信号为1mV 。

图1 磁阻电桥

磁阻传感器盒

传感器轴向移动锁紧螺钉

传感器绕轴旋转锁紧螺钉 传感器水平旋转锁紧螺钉

赫姆霍兹线圈

传感器横向移动锁紧螺钉

线圈水平旋转锁紧螺钉 信号接口盒 仪器水平调节螺钉

图2 磁场实验仪

磁阻传感器的输出信号通常须经放大电路放大后,再接显示电路,故由显示电压计算磁场强度时还需考虑放大器的放大倍数。本实验仪电桥工作电压5V ,放大器放大倍数50,磁感应强度为1高斯时,对应的输出电压为0.25伏。

赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在公共轴线中点附近产生较广泛的均匀磁场,根据毕奥-萨伐尔定律,可以计算出赫姆霍兹线圈公共轴线中点的磁感应强度为:

003/2

85NI

B R

μ=

? 式中N 为线圈匝数,I 为流经线圈的电流强度,R 为赫姆霍兹线圈的平均半径,

m H /10470-?=πμ为真空中的磁导率。采用国际单位制时,由上式计算出的磁感应强度

单位为特斯拉(1特斯拉=10000高斯)。本实验仪N =310,R =0.14m ,线圈电流为1mA 时,赫姆霍兹线圈中部的磁感应强度为0.02高斯。

实验仪的前面板示意图如图3所示。

恒流源为赫姆霍兹线圈提供电流,电流的大小可以通过旋钮调节,电流值由电流表指示。电流换向按钮可以改变电流的方向。

补偿(OFFSET)电流调节旋钮调节补偿电流的方向和大小。电流切换按钮使电流表显示赫姆霍兹线圈电流或补偿电流。

图3 仪器前面板示意图

传感器采集到的信号经放大后,由电压表指示电压值。放大器校正旋钮在标准磁场中校准放大器放大倍数。

复位(R/S)按钮每按下一次,向复位端输入一次复位脉冲电流,仅在需要时使用。

五、实验内容

1、测量前的准备工作

连接实验仪与电源,开机预热20分钟。

将磁阻传感器位置调节至赫姆霍兹线圈中心,传感器磁敏感方向与线圈轴线一致。

调节赫姆霍兹线圈电流为零,按复位键恢复传感器特性,调节补偿电流以补偿地磁场等因素产生的偏离,使传感器输出为零。调节赫姆霍兹线圈电流至300mA(线圈产生的磁感应强度6高斯),调节放大器校准旋钮,使输出电压为1 .500伏。

2、磁阻传感器特性测量

a.测量磁阻传感器的磁电转换特性

磁电转换特性是磁阻传感器最基本的特性。磁电转换特性曲线的直线部分对应的磁感应强度,即磁阻传感器的工作范围,直线部分的斜率除以电桥电压与放大器放大倍数的乘积,即为磁阻传感器的灵敏度。

按表1数据从300mA逐步调小赫姆霍兹线圈电流,记录相应的输出电压值。切换电流换向开关(赫姆霍兹线圈电流反向,磁场及输出电压也将反向),逐步调大反向电流,记录反向输出电压值。注意:电流换向后,必须按复位按键消磁。

数据处理要求:以磁感应强度为横轴,输出电压为纵轴,将上表数据作图,并确定所用传感器的线性工作范围及灵敏度。

b.测量磁阻传感器的各向异性特性

AMR只对磁敏感方向上的磁场敏感,当所测磁场与磁敏感方向有一定夹角α时,AMR 测量的是所测磁场在磁敏感方向的投影。由于补偿调节是在确定的磁敏感方向进行的,实验过程中应注意在改变所测磁场方向时,保持AMR方向不变。

将赫姆霍兹线圈电流调节至200mA,测量所测磁场方向与磁敏感方向一致时的输出电压。

松开线圈水平旋转锁紧螺钉,每次将赫姆霍兹线圈与传感器盒整体转动10度后锁紧,松开传感器水平旋转锁紧螺钉,将传感器盒向相反方向转动10度(保持AMR 方向不变)后锁紧,记录输出电压数据于表2中。

数据处理要求:以夹角α为横轴,输出电压为纵轴,进行数据作图,判断曲线有何规律。

3、赫姆霍兹线圈的磁场分布测量

赫姆霍兹线圈能在公共轴线中点附近产生较广泛的均匀磁场。 a.赫姆霍兹线圈轴线上的磁场分布测量

根据毕奥-萨伐尔定律,可以计算出通电圆线圈在轴线上任意一点产生的磁感应强度矢量垂直于线圈平面,方向由右手螺旋定则确定,与线圈平面距离为X 1的点的磁感应强度为:

2012

23/2

1

()2()

R I

B x R x μ=

+

赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。两线圈内的电流方向一致,大小相同,线圈匝数为N ,线圈之间的距离d 正好等于圆形线圈的半径R ,若以两线圈中点为坐标原点,则轴线上任意一点的磁感应强度是两线圈在该点产生的磁感应强度之和:

2200223/2223/2

3/2

023/223/2()2[()]2[()]22

511{}

1116[1()][1()]22NR I NR I

B x R R

R x R x B x x R R

μμ=

+

+++-=++++- 式中B 0是X =0时,即赫姆霍兹线圈公共轴线中点的磁感应强度。表3列出了X 取不同值时B(X)/B 0值的理论计算结果。

调节传感器磁敏感方向与赫姆霍兹线圈轴线一致,位置调节至赫姆霍兹线圈中心(X =0),测量输出电压值。 已知R=140mm ,将传感器盒每次沿轴线平移0.1R ,记录测量数据。

数据处理要求:将表3数据作图,讨论赫姆霍兹线圈的轴向磁场分布特点。

b.赫姆霍兹线圈空间磁场分布测量

由毕奥-萨伐尔定律,同样可以计算赫姆霍兹线圈空间任意一点的磁场分布,由于赫姆霍兹线圈的轴对称性,只要计算(或测量)过轴线的平面上两维磁场分布,就可得到空间任意一点的磁场分布。

理论分析表明,在X ≤ 0.2R,Y ≤0.2R的范围内,(B X-B0)/B0小于百分之一,B Y/B X 小于万分之二,故可认为在赫姆霍兹线圈中部较大的区域内,磁场方向沿轴线方向,磁场大小基本不变。

按表4数据改变磁阻传感器的空间位置,记录X方向的磁场产生的电压V X,测量赫姆霍兹线圈空间磁场分布。

数据处理要求:由表4数据讨论赫姆霍兹线圈的空间磁场分布特点。

4、地磁场测量

地球本身具有磁性,地表及近地空间存在的磁场叫地磁场。地磁的北极,南极分别在地理南极,北极附近,彼此并不重合,可用地磁场强度,磁倾角,磁偏角三个参量表示地磁场的大小和方向。磁倾角是地磁场强度矢量与水平面的夹角,磁偏角是地磁场强度矢量在水平面的投影与地球经线(地理南北方向)的夹角。

在现代数字导航仪等系统中,通常用互相垂直的三维磁阻传感器测量地磁场在各个方向的分量,根据矢量合成原理,计算出地磁场的大小和方位。本实验学习用单个磁阻传感器测量地磁场的方法。

将赫姆霍兹线圈电流调节至零,将补偿电流调节至零,传感器的磁敏感方向调节至与赫姆霍兹线圈轴线垂直(以便在垂直面内调节磁敏感方向)。

调节传感器盒上平面与仪器底板平行,将水准气泡盒放置在传感器盒正中,调节仪器水平调节螺钉使水准气泡居中,使磁阻传感器水平。松开线圈水平旋转锁紧螺钉,在水平面内仔细调节传感器方位,使输出最大(如果不能调到最大,则需要将磁阻传感器在水平方向转动180度后再调节)。此时,传感器磁敏感方向与地理南北方向的夹角就是磁偏角。

松开传感器绕轴旋转锁紧螺钉,在垂直面内调节磁敏感方向,至输出最大时转过的角度就是磁倾角,记录此角度。

记录输出最大时的输出电压值U1后,松开传感器水平旋转锁紧螺钉,将传感器转动180度,记录此时的输出电压U2,将U=(U1-U2)/2 作为地磁场磁感应强度的测量值(此法可消除电桥偏离对测量的影响)。

在实验室内测量地磁场时,建筑物的钢筋分布,同学携带的铁磁物质,都可能影响测量结果,因此,此实验重在掌握测量方法。

六、原始数据记录和处理

(1)、原始数据记录及初步处理

1)AMR磁电转换特性的测量

2)ARM方向特性的测量

3)赫姆霍兹线圈轴向磁场分布测量

4)赫姆霍兹线圈空间磁场分布测量

5)地磁场的测量

磁偏角=90-(69+27)=-6(度)

(2)、数据处理

1)AMR 磁电转换特性的测量

以磁感应强度为横轴,输出电压为纵轴,将表1数据作图如右:

由图上可以看出,传感器的线性工作范围为

-6高斯到6高斯;

该直线的斜率为:0.2508 灵敏度为:(0.2508V/Guss )/(5V*50)=0.0010032/Guss

2)ARM 方向特性的测量

以夹角α为横轴,输出电压为纵轴,将表2数据做如右下图:

从图中可以看出:

该组数据近似的接近余弦规律,近似函数为U=1.025cos α,即输出电压与夹角的余弦成正比;

3)赫姆霍兹线圈轴向磁场分布测量

以位置x 为横坐标,B(X)测量值(V)为纵坐标将表3数据作如右下图:

由图中可以看出,磁感应强度关于原点对称,并且磁感应强度在-3R 到3R 之间大小可以近似认为保持不变,即在此区间内,为均匀磁场;符合磁场强

2200223/2223/2

3/2023/223/2()2[()]2[()]22511{}

1116[1()][1()]22NR I NR I

B x R R

R x R x B x x R R μμ=

+

+++-=++++-(B0=4高斯)

4)赫姆霍兹线圈空间磁场分布测量

由表格中的测量数据我们可以得到如下结论:

a.在距离线圈中心0.15R 的范围内,磁场的磁感应强度大小基本保持不变,即可以认为在这个区域内为均匀磁场;

b.在接近线圈中心的轴向和轴向垂直方向上,即|x|<0.1R 或者|Y|<0.15R 的范围内,磁感应强度的大小随着y 或者x 的绝对值的增大而减小;

c.在距离赫姆霍兹线圈中心较远的区域,即表中对应的0.1R<|X|<0.3R 或者0.15R

范围之内,其磁感应强度随着y或者x的绝对值的增大而增大;

5)地磁场的测量

磁偏角α=90-(69+27)=-6度,即北偏东6度;

磁倾角为70度;

磁感应强度为:0.478高斯。

七、误差分析与思考题

1、误差分析

1)1~4的实验室测量赫姆霍兹线圈相关特性,需要排除外界磁场的干扰才能保证其准确性,但是我们做实验的环境是出于地球磁场之中,对我们的测量也会带来一定的误差;

2)我们实验所在的环境中,有各种易磁化的磁性物质,它们的不同结构也会给实验带来误差,比如我们实验楼的钢筋结构;

3)实验仪器本身也是会有一定大小的误差,例如实验中电流也不能做到始终保持某个数值一点也不改变;

4)我们做实验的过程中不够精确的操作也会有一定大小的误差,比如移动距离,旋转传感器位置不是刚好是电压最大或者最小位置等;

5)作图不够准确,计算中的取舍问题都会带来一定的误差;

2、推导公式(1)

3、通过网上或图书馆查阅文献,列举某个AMR传感器在有关领域的应用实例,简要介绍其测量原理和方法

1)车辆探测器:该车辆探测器由三维AMR传感器及相应的信号处理电路组成.当车辆驶过探测器上方时,车辆的存在将会引起周围磁场的变化,三维AMR传感器输出将发生相应的变化,根据AMR传感器的输出可判断周围空间内车辆的存在与否.对该探测器的特性进行了实验研究.实验结果表明:当车辆分别沿南北向、东西向通过AMR传感器上方时,传感器输出变化规律不同;该探测器可实现车辆探测.

2)高速公路监测系统:高速公路监测系统的原理是根据不同型号车辆对地球磁场影响不同,由传感器输出信号判别目标车型和速度,针对具体高速公路规则进行安全行驶监视,防止汽车在高速公路无人监视区超速、逆行等危险行为,特别是根据大小车型限速不同,针对我国常见的大型货运车辆超速的情况,进行限速监控。

3)磁阻角传感器:其包含传感器装置,该传感器装置用于检测外部磁场相对于该传感器装置基准轴的角度(α),该磁阻角传感器允许在测量结果不受加工误差影响的情况下该角度(α)的测量,建议该传感器装置包含平坦的AMR层(14,15),该AMR层具有一个用于施加电流(I)的电触点(K↓[0])和多个用于测量经通过该AMR层(14,15)的电流的流动的电触点(K↓[i])。

八、讨论

1实验中发现的问题

在做该实验的过程中,发现了做这个实验的相关问题如下:

1)赫姆霍兹线圈基座的水平很不稳定,开始调节好之后过一会在重新测试的时候发现没有保持水平了,这其中可能是由于基座的水平调节旋钮不够牢靠,比较松,当实验桌面有细小震动之后,破坏了仪器的水平;

2)移动ARM磁阻感应器的时候,由于需要在两边同时移动,操作时难以做到移动相同距离,横向和纵向移动的时候都不准确,而且仪器上的刻度不明确,移动一定距离时需要花很多时间去找移动位置的刻度;

3)实验中连接ARM传感器的导线过于僵硬,影响到了传感器的移动和水平位置;

4)该实验仪器需要有相对运动的连接部分过于松弛,比较难以把握转动或者移动的尺度,影响调节的准确;

2 对实验仪器的一个小改进

为了更加方便的做好实验,可以将ARM磁阻传感器的横向和纵向移动机制由滑动改为齿轮的传动,设计齿轮没转动一圈,传感器横向或者纵向移动0.05R;而其它有转动的地方也可以改成齿轮,更加便于调节;

第二,为了提高实验的精度,可以将传感器横向锁紧螺钉改为类似于千分尺原理的读数装置,这样有利于准确的读出传感器横向移动距离。

九、总结与收获

这个实验总体来说说相对的简单,对实验数据的准确度也没有太高的要求,主要目的在于掌握利用ARM磁阻传感器测量磁场的一些应用方法和了解赫姆霍兹线圈,通过这个实验,了解了ARM磁阻传感器在实际生活中一些相关应用的原理,是一种让我们了解知识原理的很有效的方法;

实验虽然比较容易完成,但是在操作的过程中还是能够给我们很多启示,比如本实验需要做大量的微小的移动,慢慢的转动,这些没有足够的耐心和细致就会让我们感到很头疼,但是本实验对微小移动有着比较高的要求,可以说差之毫厘,谬以千里。所以我们必须仔细并且反复试验,以减少实验误差。细细想来,生活中的很多事不都是需要细心和耐心么?搞工程的人经常说的一句话就是细节决定成败,所以我们没有理由不注重细节。其次,耐得住寂寞方可做得出学问,耐心是一切工作的必要条件,是我们工科学生必须具备的素质。

以上,就是我们在本实验中的体会。

十、附录(原始数据)

研究性实验报告——各向异性磁阻传感器与磁场测量

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 基础物理学 研究性实验报告 题目:各向异性磁阻传感器(AMR)与地磁场测量第一作者: 第二作者: 学院:航空科学与工程学院 专业:飞行器设计与工程 班级:110519 2013年5月14日 1

目录 摘要 ............................................................................................... 错误!未定义书签。关键词 ........................................................................................... 错误!未定义书签。 一、实验要求 ............................................................................... 错误!未定义书签。 二、实验原理 ............................................................................... 错误!未定义书签。 三、实验仪器介绍 ....................................................................... 错误!未定义书签。 四、实验内容 ............................................................................... 错误!未定义书签。 1、测量前的准备工作 ......................................................... 错误!未定义书签。 2、磁阻传感器特性测量...................................................... 错误!未定义书签。 3、测量磁阻传感器的各向异性特性.................................. 错误!未定义书签。 4、赫姆霍兹线圈的磁场分布测量...................................... 错误!未定义书签。 5、地磁场测量 ..................................................................... 错误!未定义书签。 五、思考题 ................................................................................... 错误!未定义书签。 六、误差分析 ............................................................................... 错误!未定义书签。 七、AMR传感器的应用举例 ...................................................... 错误!未定义书签。 八、实验感想 ............................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。附录——原始实验数据(影印版).................................................. 错误!未定义书签。 各向异性磁阻传感器与磁场测量 摘要:物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,广泛用于各类需要自动检测与控制的领域。磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:AMR,磁阻效应,电磁转换,磁场测量

巨磁电阻效应及其传感器的原理

巨磁阻效应及其传感器的原理和应用 一、概述 对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。利用这一效应制成的传感器称为GMR传感器。 1、分类 GMR材料按其结构可分为具有层间偶 合特性的多层膜(例如Fe/Cr)、自旋阀多层膜 (例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例 如Fe-Co)和钙钛矿氧化物型多层膜(例如 AMnO3)等结构;其中自旋阀(spin valve)多层膜又分为简单型和对称型两 类;也有将其分为钉扎(pinning)和非钉扎型两类 的。 2、巨磁电阻材料的进展 1986年德国的Grunberg和C.F.Majkrgak 等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中 的层间偶合现象。1988年法国的M.N.Baibich 等人首次在纳米级的Fe/Cr多层膜中发现其Δ r/r在4.2K低温下可达50%以上,由此提出了 GMR效应的概念,在学术界引起了很大的反 响。由此与之相关的研究工作相继展开,陆续 研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、 Co/Ag、Co/Au……等具有显著GMR效应的层 间偶合多层膜。自1988年发现GMR效应后仅 3年,人们便研制出可在低磁场(10-2~10-6T) 出现GMR效应的多层膜(如 [CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。 1992年人们利用两种磁矫顽力差别大的 材料(例如Co和Fe20Ni80)制成Co/Cu/ Fe20Ni80/Cu多层膜,他们发现,当Cu 层厚度大于5nm时,层间偶合较弱,此时利用 磁场的强弱可改变磁矩的方向,以自旋取向的 不同来控制膜电阻的大小,从而获得GMR效 应,故称为自旋阀。

巨磁阻传感器原理及其应用

巨磁阻传感器原理及其应用 日期:2013-11-15 作者:何喜富,传感器系统应用工程师,英飞凌科技(中国)有限公司 目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握磁性感应技术并应用于产品中的半导体公司之一。 磁性传感器广泛应用于现代汽车中,如速度检测,角度检测,位置检测,电流检测等。根据磁性感应原理,可分为霍尔原理及磁阻原理。其中磁阻式根据原理又可分为常磁阻效应(Ordinary Magneto Resistance, OMR)、各项异性磁阻效应(Anisotropic Magneto Resistance,AMR)、巨磁阻效应(Giant Magneto Resistance,GMR)、超巨磁阻效应(Colossal Magneto Resistance,CMR)、穿遂磁阻效应(Tunnel Magneto Resistance,TMR)、巨磁阻抗效应(Giant Magneto impedance,GMI)以及特异磁阻效应(Extraordinary Magneto Resistance,EMR)等。 目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握有以上磁性感应技术并应用于产品中的半导体公司之一。 相比于霍尔效应和各项异性磁阻效应,巨磁阻效应具有更好的灵敏度,更小的噪声以及气隙表现,非常适合汽车领域中需要高精度以及较大工作气隙要求的应用。目前英飞凌巨磁阻系列传感器涵盖速度及角度应用,本文主要介绍巨磁阻传感器原理及其在速度检测和角度检测方面应用。 集成巨磁阻原理 所谓磁阻效应是指导体或半导体在磁场作用下其电阻值发生变化的现象,巨磁阻效应在1988年由彼得?格林贝格(Peter Grünberg)和艾尔伯?费尔(Albert Fert)分别独立发现,他们因此共同获得2007年诺贝尔物理学奖。研究发现在磁性多层膜如Fe/Cr和Co/Cu中,铁磁性层被纳米级厚度的非磁性材料分隔开来。在特定条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,这一现象称为“巨磁阻效应”。 巨磁阻效应可以用量子力学解释,每一个电子都能够自旋,电子的散射率取决于自旋方向和磁性材料的磁化方向。自旋方向和磁性材料磁化方向相同,则电子散射率就低,穿过磁性层的电子就多,从而呈现低阻抗。反之当自旋方向和磁性材料磁化方向相反时,电子散射率高,因而穿过磁性层的电子较少,此时呈现高阻抗。 如图1所示,两侧蓝色层代表磁性材料薄膜层,中间橘色层代表非磁性材料薄膜层。

磁阻传感器在导航系统中的应用

Applications of Magnetoresistive Sensors in Navigation Systems Michael J. Caruso Honeywell Inc. ABSTRACT Most navigation systems today use some type of compass to determine heading direction. Using the earth?s magnetic field, electronic compasses based on magnetoresistive (MR) sensors can electrically resolve better than 0.1 degree rotation. Discussion of a simple 8- point compass will be described using MR sensors. Methods for building a one degree compass using MR sensors will also be discussed. Compensation techniques are shown to correct for compass tilt angles and nearby ferrous material disturbances. INTRODUCTION The magnetic compass has been used in navigation for centuries. The inventor of the compass is not known, though evidence suggests that the Chinese were using lodestone?a magnetic iron ore?over 2000 years ago to indicate horizontal directions. It appears that Mediterranean seamen of the 12th century were the first to use a magnetic compass at sea [1]. Today, the balanced needle compass is only a slight variation of this early discovery. Advances in technology have led to the solid state electronic compass based on MR magnetic sensors and acceleration based tilt sensors. Electronic compasses offer many advantages over conventional òneedleó type or gimbaled compasses such as: shock and vibration resistance, electronic compensation for stray field effects, and direct interface to electronic navigation systems. Two types of compasses will be discussed in this paper?a basic eight-point compass and a one-degree compass. EARTH?S MAGNETIC FIELD The earth?s magnetic field intensity is about 0.5 to 0.6 gauss and has a component parallel to the earth?s surface that always point toward magnetic north. This is the basis for all magnetic compasses. The key words here are òparallel to the earth?s surfaceó and òmagnetic northó.

TLE5012B英飞凌Infineon 360°角度传感器GMR巨磁阻

TLE5012B英飞凌Infineon 360°角度传感器GMR巨磁阻 Infineon TLE5012B GMR-Based Angle Sensors 英飞凌TLE5012B 基于GMR 的角度传感器是一款360°角度传感器,可检测磁场的方向。这是通过使用单片式集成巨磁阻(iGMR)元件测量正弦和余弦角分量来实现的。可对原始信号(正弦和余弦)在内部进行数字处理以计算磁场(磁铁)的角方向。TLE5012B 是经过预校准的传感器。校准参数存储在激光引信中。启动时引信值被写入双稳态多谐振荡器触发电路中,在其中这些值可由具体应用的参数进行修改。数据通信通过一个兼容SPI 的双向同步串行通信接口(SSC)实现。传感器配置存储在寄存器中,可由SSC 接口进行访问。 特点 巨磁阻(GMR)原理 集成磁场感应用于角度测量 360°角度测量,有转数表和角速度测量 两个单独的高精度单位SD-ADC 绝对角度值在输出端的15 位表示( 0.01°的分辨率) 正弦/余弦值在接口上的16 位表示 使用周期和温度范围内最大为1.0°的角度误差,并有激活自校准功能 达8Mbit/s 的双向SSC 接口 有诊断功能和状态信息,支持安全完整性等级(SIL) 接口:SSC、PWM、增量接口(IIF), 霍尔开关模式(HSM), 短PWM 码(SPC, 基于SAE

J2716 中规定的SENT 协议) 输出引脚可配置(编程或预配置)为推挽或开漏 SSC 或SPC 接口为开漏配置时,可以实现一条线上多个传感器的总线模式工作0.25μm CMOS 技术 汽车级:-40°C 到+ 150°C(结温) ESD > 4kV (HBM) 符合RoHS(无铅封装) 不含卤素 应用:电换向电机,旋转开关,转向角测量,通用角测量 方框图Block Diagram

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

磁阻传感器实验报告

磁阻传感器/地磁场测量 一、 二、 关于磁阻传感器 磁阻效应传感器是根据磁性材料的磁阻效应制成的一种传感器。广泛应用于工业,汽车制造,以及可用于地磁场测量。 三、 四、 磁阻传感器原理(如图1) 磁性材料(如坡莫合金)具有各向异性,对它进行磁化时,其磁化方向将取决于材料的易磁化轴、材料的形状和磁化磁场的方向。当给带状坡莫合金材料通电流时,材料的电阻取决于电流的方向与磁化方向的夹角。如果给材料施加一个磁场B(被测磁场), 就会使原来的磁化方向转动。如果磁化方向 转向垂直于电流的方向,则材料的电阻将减 小;如果磁化方向转向平行于电流的方向,则 材料的电阻将增大。磁阻效应传感器一般有 四个这样的电阻组成,并将它们接成电桥。 在被测磁场B 作用下,电桥中位于相对位置 的两个电阻阻值增大,另外两个电阻的阻值 减小。在其线性范围内,电桥的输出电压与 被测磁场成正比。 五、 六、 磁阻传感器/地磁场测量的实验过程(如图2) 1.将磁阻传感器放在赫姆霍兹线圈公共轴线中点,使管脚和磁感应强度方向平行。 2. 从0开始每隔10mA 改变励磁电流,分别测量出励磁电流为正向和反向时磁阻传感器的输出电压1U 和2U ,2/)(21U U U -=。测正向和反向两次,目的是消除地磁沿亥姆霍兹线圈方向(水平)分量的影响。 3.用亥姆霍磁线圈产生的磁场磁感应强度作为已知量,采用最小二乘法拟合,测量磁阻传感器的灵敏度K 。 4.将磁阻传感器平行固定在转盘上,调 整转盘至水平(可用水准器指示)。水平 旋转转盘,找到传感器输出电压最大方 向,这个方向就是地磁场磁感应强度的 水平分量∥B 的方向。记录此时传感器输 出电压1U 后,再旋转转盘,记录传感器 图1 磁阻传感器示意图 图2 地磁场测量/磁阻传感器演示

磁阻传感器实验报告

磁阻传感器/地磁场测量 一、 关于磁阻传感器 磁阻效应传感器是根据磁性材料的磁阻效应制成的一种传感器。广泛应用于工业,汽车制造,以及可用于地磁场测量。 二、 磁阻传感器原理(如图1) 磁性材料(如坡莫合金)具有各向异性,对它进行磁化时,其磁化方向将取决于材料的易磁化轴、材料的形状和磁化磁场的方向。当给带状坡莫合金材料通电流时,材料的电阻取决于电流的方向与磁化方向的夹角。如果给材料施加一个磁场B(被测磁场),就会使原来的磁化方向 转动。如果磁化方向转向垂直于电流的方向,则材料的电阻将减小;如果磁化方向转向平行于电流的方向,则材料的电阻将增 大。磁阻效应传感器一般有四个这样的电 阻组成,并将它们接成电桥。在被测磁场B 作用下,电桥中位于相对位置的两个电阻 阻值增大,另外两个电阻的阻值减小。在 其线性范围内,电桥的输出电压与被测磁 场成正比。 三、 磁阻传感器/地磁场测量的实验过程(如图2) 1.将磁阻传感器放在赫姆霍兹线圈公共轴线中点,使管脚和磁感应强度方向平行。 2. 从0开始每隔10mA 改变励磁电流,分别测量出励磁电流为正向和反向时磁阻传感器的输出电压1U 和2U ,2/)(21U U U -=。测正向和反向两次,目的是消除地磁沿亥姆霍兹线圈方向(水平)分量的影响。 3.用亥姆霍磁线圈产生的磁场磁感应强度作为已知量,采用最小二乘法拟合,测量磁阻传感器的灵敏度K 。 4.将磁阻传感器平行固定在转盘上,调整转盘至水平(可用水准器指示)。水平旋转转盘,找到传感器输出电压最大方向,这个方向就是地磁场磁感应强度的水平分 量∥B 的方向。记录此时传感器输出电压 1U 后,再旋转转盘,记录传感器输出最小 电压2U ,由∥KB U U =-2/21,求得当地地磁场水平分量∥B 。 量∥B 方向放置,只是方向转900。转动调节转盘,分别记下传感器输出最大和最小 时转盘指示值和水平面之间的夹角1β和2β,同时记录此最大读数'1U 和'2U 。由 2/)(21βββ+=计算磁倾角β的值。测量10组β值,求其平均值。 6.由 KB U U ='-'2/21,计算地磁场磁感应强度B 的值。并计算地磁场的垂直分量 βsin B B =⊥。 图1 磁阻传感器示意图 图 2 地磁场测量/磁阻传感器演示

8实验八锑化铟磁电阻传感器的磁阻特性测量和应用

实验八 锑化铟磁阻特性测量 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测,导航系统、伪钞检测、位置测量等,其中最典型的锑化铟(InSb )传感器是一种价格低廉、灵敏度高的磁电阻,有着十分重要的应用价值。本实验装置结构简单、实验内容丰富,使用两种材料的传感器:利用砷化镓(GaAs )霍尔传感器测量磁感应强度,研究锑化铟(InSb )磁阻传感器的电阻随磁感应强度的变化情况。 一、实验目的 1 、测量锑化铟传感器的电阻与磁感应强度变化的关系。 2 、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。 3 、对此关系曲线的非线性区域和线性区域分别进行曲线和直线拟合。 二、实验仪器 FD-MR-Ⅱ型磁阻效应实验仪(直流双路恒流电源、 0~2V 直流数字电压表、电磁铁、数字式毫特仪、锑化铟磁阻传感器、电磁铁及双向单刀开关等)、示波器、电阻箱、正弦交流低频发生器及导线若干。 三、实验原理 在一定条件下,载流导体或半导体的电阻值 R 随磁感应强度 B 变化的规律称为磁阻效 应。如图 43-1 所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场,如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大出现横向磁阻效应。如果将图43-1中的 a 端和 b 端短路,磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用 )0(/ρρ?表示。其中)0(ρ为零磁场时的电阻率,设磁阻在磁感应强度为B 的磁场作用下的电阻率为)B (ρ, 则 )0()B (ρρρ-=?。由于磁阻传感器电阻的相对变化率 △R/R(0)正比于)0(/ρρ?,这里△R = R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。测量磁阻电阻值R 与磁感应强度 B 的关系所用实验装置及线路如图 43-2 所示。

GMR磁场传感器的工作原理

GMR磁场传感器的工作原理 巨磁电阻(GMR)效应是1988年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。 1. 巨磁电阻(GMR)原理,见图一。 巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。这种效应只有在纳米尺度的薄膜结构中才能观测出来。赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。 2. 巨磁电阻(GMR)传感器原理,见图二。 巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。

3. 巨磁电阻(GMR)传感器性能,见图三,表一。 图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。 表一所示为国际上各公司生产的巨磁电阻(GMR)传感器的性能对照,表中标注有(库万军)处为本公司产品。对比表明本公司的产品无论灵敏度或线性范围都有较大的优越性,而且本公司产品性能仍在不停的丰富和完善过程中。更为重要的是,本公司产品采用特殊的结构,适宜于采用半导体集成化规模生产,因此生产成本低。

3. 产品使用说明 a.巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V的直流电源。而且该 电源的稳定性直接影响传感器的测试精度,因此要求以稳压电源提供;使用中也应避免过电压供电; b.巨磁电阻(GMR)传感器作为一种高精度的磁敏传感器,对使用磁环境也有一定的要求, 其型号选用应根据使用环境的磁场大小来决定; c.巨磁电阻(GMR)传感器对磁场的灵敏度与方向有关。其外形结构上标注的敏感轴为传感 器对磁场最为灵敏的方向,参见图四。当不平行时,灵敏度降低,其关系为 Sθ=S0COSθ 其中Sθ为磁场方向与传感器敏感轴间的夹角为θ时的灵敏度,S0为磁场方向与传感器敏感轴平行时的灵敏度。 图4 巨磁电阻(GMR)传感器外形结构及接线图 d.对于输出特性相对于外磁场为偶函数时,则将传感器作为测量使用时需要外加偏置磁场。理想情况偏置磁 场的大小为传感器保持线性范围磁场的1/2。

传感器原理与应用习题_第5章磁电式传感器

第5章 磁电式传感器习题集与部分参考答案 5-1 阐明磁电式振动速度传感器的工作原理,并说明引起其输出特性非线性的原因。 5-2 试述相对式磁电测振传感器的工作原理和工作频率范围。 5-3 试分析绝对式磁电测振传感器的工作频率范围。如果要扩展其测量频率范围的下限应采取什么措施;若要提高其上限又可采取什么措施? 5-4 对永久磁铁为什么要进行交流稳磁处理?说明其原理。 5-5 为什么磁电式传感器要考虑温度误差?用什么方法可减小温度误差? 5-6 已知某磁电式振动速度传感器线圈组件(动圈)的尺寸如图P5-1所示:D1=18mm ,D2=22mm ,L=39mm ,工作气隙宽Lg=10mm ,线圈总匝数为15000匝。若气隙磁感应强度为0.5515T ,求传感器的灵敏度。 5-6 解:已知D1=18mm ,D2=22mm ,L=39mm ,Lg=10mm ,W=15000匝,Bg=0.5515T 工作气隙的线圈匝数Wg=(总匝数W/线圈长度L )*气隙长度Lg g g W l B K 0=,2)(210D D l +=π 5-7 某磁电式传感器固有频率为10Hz ,运动部件(质量块)重力为2.08N ,气隙磁感应强度B g =1T ,工作气隙宽度为t g =4mm ,阻尼杯平均直径D CP =20mm ,厚度t=1mm ,材料电阻率m mm /1074.128?Ω?=-ρ。试求相对阻尼系数ξ=?若欲使ξ=0.6,问阻尼杯璧厚t 应取多大? 5-8 某厂试制一磁电式传感器,测得弹簧总刚度为18000N/m ,固有频率60Hz ,阻尼杯厚度为1.2mm 时,相对阻尼系数ξ=0.4。今欲改善其性能,使固有频率降低为20Hz ,相对阻尼系数ξ=0.6,问弹簧总刚度和阻尼杯厚度应取多大? 5-9 已知惯性式磁电速度传感器的相对阻尼系数ξ=2/ 1,传感器-3dB 的下限频率为16Hz ,试求传感器的自振频率值。 5-10 已知磁电式速度传感器的相对阻尼系数ξ=0.6,求振幅误差小于2%测试时的n ωω/范围。

《各向异性磁电阻》报告

各向异性磁电阻测量姓名: 学号: 院系:

各向异性磁电阻测量 引言 磁电阻(MR)效应是指物质在磁场作用下电阻发生变化的现象。按磁电阻效应的机理和大小,磁电阻效应一般可以分为:正常磁电阻(OMR)效应,各向异性磁电阻(AMR)效应,巨磁电阻(GMR)效应。 磁阻材料在高密度读出磁头磁传感器、微弱磁场测量、各类运动的检测等领域有着宽广的应用,从而成为国际上引人瞩目的研究领域。图1为早期报道的Co-Cu颗粒膜磁电阻曲线。 磁电阻效应,特别是巨磁电阻效应的理论涉及较多的固体量子知识,CMR等尚未有比较完善的统一理论解释,这里不作介绍。本文仅从纯粹的技术角度上测量各向异性磁电阻,不作物理细节上的深入划分。 实验原理 各向异性磁电阻效应(AMR效应)指在铁磁性的过渡族金属、合

金中,即材料的磁阻和其在磁场中的磁化方向有关,即磁阻值是其磁化方向与电流方向之间夹角的函数。外加磁场方向与电流方向的夹角不同,饱和磁化时电阻率不一样,即有各向异性。 通常取外磁场方向与电流方向平行和垂直两种情况测量AMR 。即有: Δρ∥=ρ∥-ρ(0) Δρ⊥=ρ⊥-ρ(0) 这里ρ(0)为铁磁材料在磁场为零状态下的电阻率。 若退磁状态下磁畴是各向同性分布的,畴壁散射变化对磁电阻的贡献较小,将之忽略,通常取: 3/)2(0//⊥+=≈ρρρρav )( 其中ρav 表示物质在饱和磁场H 中和磁场为零时的平均电阻率。 大多数材料ρ∥>ρ(0),故: AMR 常定义为: 图2是曾用作磁盘读出磁头和磁场传感器材料的Ni81Fe19的磁电阻曲线,很明显ρ∥>ρ(0),ρ⊥<ρ(0),各向异性明显。图3是一些铁磁金属与合金薄膜的各向异性磁电阻曲线。图中的双峰是材料的磁滞引起的。 av av av av av av av av ρρρρρρρρρρρρρρ//////2100?=?<-=?>-= ?⊥⊥⊥00//0//ρρρρρρρ⊥⊥?-?=-=AMR

变磁阻式传感器习题

第3章 变磁阻式传感器 3.1何谓变磁阻式传感器?常用来测量哪些参数? 答:变磁阻式传感器是一种利用磁路磁阻变化引起传感器线圈的电感(自感或互感)变化来检测非电量的机电转换装置。常用量检测位移、振动、力、应变、流量、密度等物理量。 3.2说明差动自感式传感器产生零位电压的原因。 答:差动自感式传感器的铁芯处于中间位置时,电桥输出理论上应为零,但实际上总存在零位不平衡输出(零位电压),造成零位误差。零位电压包含有基波和高次谐波。产生基波分量的主要原因是传感器两线圈的电气参数和几何尺寸的不对称,以及构成电桥另外两臂的电气参数不一致。造成高次谐波分量的主要原因是磁性材料磁化曲线的非线性。 3.3在电感式传感器测量电路中常使用相敏检波电路,其作用是什么?说明相敏检波电路的原理。 答:相敏检波电路是常用的判别电路,用来判别衔铁位移的方向。 如上图所示,1Z 、2Z 为传感器两线圈的阻抗,34Z Z =构成另两个桥臂,U 为供桥电压,0U 为输出。当衔铁处于中间位置时,12Z Z Z ==,电桥平衡,00U =。若衔铁上移,1Z 增大,2Z 减小。如供桥电压为正半周,即A 点电位高于B 点,二极管1D 、4D 导通,2D 、3D 截止。在A E C B ---支路中C 点电位由于1Z 增大而降低;在A F D B ---支路中,D 点电位由于2Z 减小而增高。因此 D 点电位高于C 点,输出信号为正。如供桥电压为负半周,B 点电位高于A 点,二极管2D 、3D 导通,1D 、4D 截止。在B C F A ---支路中,C 点电位由于Z 2

减小而比平衡时降低;在B D E A ---支路中,D 点电位则因Z 1增大而比平衡时增高。因此D 点电位仍高于C 点,输出信号仍为正。同理可以证明,衔铁下移时输出信号总为负。于是,输出信号的正负代表了衔铁位移的方向。 3.4说明电涡流式传感器的基本结构、工作原理和主要特点。电涡流式传感器的基本特性有哪些? 答:在传感器线圈中通以交变电流1I ,线圈周围就产生一个交变磁场1H 。若被测导体置于该磁场范围内,导体内便产生电涡流2I 。2I 也将产生一个新磁场2H ,2H 与1H 方向相反,削弱原磁场1H ,从而导致线圈的电感量、阻抗和品质因数发生变化。这些参数的变化与导体的几何形状、电导率、磁导率、线圈的几何参数、电流的频率以及线圈到被测导体间的距离有关。如果控制上述参数中一个参数改变,余者皆不变,就能构成测量该参数的传感器。 电涡流传感器的主要优点是结构简单,灵敏度高,频响范围大,不受灰尘油污等介质的影响进行非接触测量;主要缺点是测量范围有限,仅适用于近距离测试,非线性,精度不高,体积大、功耗高。 因为金属存在趋肤效应,电涡流只存在于金属导体的表面薄层内,实际上涡流的分布是不均匀的。涡流区内各处的涡流密度不同,存在径向分布和轴向分布。所以电涡流传感器的检测范围与传感器的尺寸(线圈直径)有关。 3.5试证明下图(a )所示之U 型差动变压器的输出特性为图(b )所示的V 形特性。设一次线圈匝数N 11=N 12=N 1,二次线圈匝数N 21=N 22=N 2,忽略铁损、漏磁及电感线圈的铜损,并设负载电阻为无穷大。

浅谈变磁阻式传感器的原理及应用 论文

《传感器原理及应用》 期中论文 题目:浅谈变磁阻式传感器的原理及应用

摘要 随着信息时代的到来,信息技术对社会发展、科学进步起到了决定性的作用。 信息技术的基础包括信息采集、信息传输与信息处理,而信息的采集离不开传感 器技术。近年来,传感器正处于传统型向新型传感器转型的发展阶段。作为新型 传感器的一种——变磁阻式传感器,对其深入研究也就更加愈加重要。本文磁阻 式传感器的基本概念入手,着重讨论了电感式、变压器式和电涡流式三种传感器 的工作原理、输出特性、测量电路及其在生活中的实际应用。旨在帮助我们利用 传感器知识更好的改善生活,提高生活质量,从而促进社会进步。 关键词:变磁阻式传感器电感式变压器式电涡流式原理应用 Abstract With the advent of the information age, information technology played a decisive role on social development, scientific progress.The foundation of information technology includes information collection,information transmission and information processing,and information collection cannot ignore the sensor technology. In recent years, the sensor is in the stage of development from traditional to new. Magnetic resistance sensor as a kind of new type of sensor, the research of it is becoming more and more important. This paper started with the basic concept of magnetic resistance sensor,and discussed the inductive, transformer and the eddy current type of the sensor's working principle,output characteristics,measurement circuit and the actual application in the https://www.360docs.net/doc/d59028148.html,ing sensors aimed at helping us improve life,also to promote social progress. Keywords:magnetic resistance sensor; inductive; transformer; eddy current type; working principle application

各向异性磁阻传感器与磁场测量

图5-10-1磁阻电桥 实验5-10 各向异性磁阻传感器与磁场测量 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。磁阻传感器也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。本实验研究AMR 的特性并利用它对磁场进行测量。 【实验目的】 1. 了解AMR 的原理并对其特性进行实验研究。 2. 测量赫姆霍兹线圈的磁场分布。 3. 测量地磁场。 【实验原理】 各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors )由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。易磁化轴是指各向异性的磁体能获得最佳磁性能的方向,也就是无外界磁干扰时磁畴整齐排列方向。 铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为: R = R min +(R max -R min )cos2θ (5-10-1) 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图5-10-1所示。图5-10-1中,易磁化轴方向与 电 流方向的夹角为45度。理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的 方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。 无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。当在磁敏感方向施加如图29-1所示方向的磁场时,合成磁化方向将在易磁化方向的基础上逆时针旋转。结果使左上和右下桥臂电流与磁化方向的夹角增大,电阻减小ΔR ;右上与左下桥臂电流与磁化方向的夹角减小,电阻增大ΔR 。通过对电桥的分析可知,此时输出电压可表示为:

巨磁电阻传感器

The magnetoresistance is the change of electrical resistance of a conductor when subjected to an external magnetic field. In bulk ferromagnetic conductors, the leading contribution to the magnetoresistance is due to the anisotropic magnetoresistance (AMR) discovered in 1857 by W. Thomson (Lord Kelvin) (Proc. R. Soc. London A8, 546 (1857)). This originates from the spin-orbit interaction, which leads to a different electrical resistivity for a current direction parallel or perpendicular to the magnetization direction. As a magnetic field is applied, misoriented magnetic domains tend to align their magnetization along the field direction, giving rise to a resistance change of the order of a few percent. Magnetoresistive effects are of great interest for industrial applications, and the AMR has been applied for making magnetic sensors and read-out heads for magnetic disks. Until 1988, the 130 years old AMR remained the most important contribution to the magnetoresistance of ferromagnets. The situation at that time is best summarized by the following pessimistic quotation, taken from an authorative treatise on magnetic sensor technology written in 1988: “More t han t wo decades of research and development have established the principle of magnetoresistive sensors. (...). It is doubtful, however, whether magnet oresist ive layers t hemselves will be improved considerably in t he coming years.”(From“Sensors, A Comprehensive Survey, Vol. 5: Magnetic Sensors”, VCH (1989)). It was therefore a great sensation when, in 1988, Albert Fert and Peter Grünberg independently discovered that a much greater magnetoresistive effect (hence dubbed “giant magnetoresistance” or GMR) can be obtained in magnetic multilayers. These systems essentially consist of an alternate stack of ferromagnetic (e.g., Fe, Co, Ni, and their alloys) and non-ferromagnetic (e.g., Cr, Cu, Ru, etc.) metallic layers. Each individual layer in these multilayers is only a few atomic layers thick. Fert and Grünberg discovered that when the relative orientation of the magnetization of the successive ferromagnetic layers is changed from antiparallel to parallel by applying an external magnetic field, the electrical resistance of the multilayers is reduced by as much as 50% as shown schematically in Figure 1.

相关文档
最新文档