最新超级电容器材料电化学电容特性测试

最新超级电容器材料电化学电容特性测试
最新超级电容器材料电化学电容特性测试

华南师范大学实验报告

学生姓名:蓝中舜学号:20120010027

专业:新能源材料与器件勷勤创新班年级、班级:12新能源

课程名称:化学电源实验

实验项目:超级电容器材料电化学电容特性测试

实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏

一、实验目的

1、了解超级电容器的原理;

2、了解超级电容器的比电容的测试原理及方法;

3、了解超级电容器双电层储能机理的特点;

4、掌握超级电容器电极材料的制备方法;

5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。

二、实验原理

1、超级电容器的原理

超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图

从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。

(1) 双电层超级电容器的工作原理

双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电

层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。

(2) 法拉第鹰电容的工作原理

法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。

目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。

2、循环伏安法(CV)测定材料的比电容

循环伏安法是电化学测量中经常使用的一种重要方法,它一方面能较快的观测到较宽电位范围内发生的电极过程,为电极过程研究提供丰富的信息;另一方面又能通过扫描曲线形状的分析、估算电极反应参数,由此来判断不同因素对电极反应的影响。

控制研究电极的电势以速率ν从起始电位Ei开始向电势负方向扫描,到电势为Em时(时间为λ),电势改变扫描方向,以相同的速率回扫至起始电势,然后再次换向,反复扫描,即采用的电势控制信号为连续三角波信号,如图2-1所示。记录i-E曲线,称为循环伏安曲线(cyclic voltammogram),如图2-2所示。这一测量方法称为循环伏安法(cyclic voltammetry)。

图2-1三角波扫描图2-2循环伏安曲线

Fig. 2-1 Triangular wave scanning Fig. 2-2 Cyclic voltammetry curve 对于一个电化学反应O+ne-===R,正向扫描(即电势负方向扫描)时发生阴极反应

O+ne-→R;反向扫描时,则发生正向扫描过程中生成的反应产物R的重新氧化的反应R→O+ ne-,这样反向扫描时也会得到峰状的i-E曲线。一次三角波扫描,完成一个还原和氧化过

程的循环,故该法称为循环伏安法,其电流-电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。

循环伏安法测定电极比电容计算公式如下:

SC(CV) = Q / mΔV

式中,SC是超级电容器的比电容,单位为F/g;Q为放电电量,单位为A,可以通过电流时间曲线积分获得;△V扫描区间电压差,单位为V,m为电极质量,单位g。

3、恒流充放电法(CP)

恒流充放电法是计时电势技术的一种,其激励信号和响应信号见图2-3所示。向体系输入一定大小的正向电流+i,经过时间t1,改变电流方向,待时间为t2时,再将电流反向,输入如此连续的电流信号,所得到的就是电极电势随着电流的变化而变化的响应信号。

图2-3 恒流充放电激励信号及电位时间响应

Fig. 2-3 Charge and discharge curves

对于电化学超级电容器来说,在一定的电流密度(+i)下对其进行正向充电,随着充电过程的进行,电压从E1不断上升至E2;随着电流反向变成-i,电容器开始放电过程,随着放电过程的进行,电压又开始从最高的E2不断下降到E1,如此反复进行充放电循环,所得的电势-时间曲线就是超级电容器充放电曲线。从超级电容器的恒电流充放电实验结果中,可以得到充电时间、放电时间的数据,并可以由这些数据来计算充放电过程的库仑效率、超级电容器的放电容量。超级电容器恒电流放电比电容计算公式如下:

SC = I △t /m△V

式中,SC是超级电容器的比电容,单位为F/g;I为放电电流,单位为A;△t为放电时间,单位为s;△V为放电过程的电压差,单位为V,m为电极质量,单位g。另外,从超级电容器恒流充放电曲线中还可以初步判断其充放电过程的可逆性。理想的完全可逆的充放电过程的曲线呈现等腰三角形,其充放电半支是对称的。但是在实际的电化学超级电容器充放电过程中,由于不可避免的电极极化过程的发生,或者受到电极反应可逆性的影响,而使得其充放电曲线不完全对称。

三、仪器与试剂

仪器:CHI, 620C,上海辰华仪器公司、电热恒温鼓风干燥箱、饱和甘汞参比电极, 232型, 上海精密科学仪器有限公司、烧杯、玻璃棒、容量瓶

试剂:石墨粉、乙炔黑、PVDF、石墨棒、N-甲基-2-吡咯烷酮, 化学纯(CP)、无水硫酸钠, 分析纯(AR)

四、实验步骤

1、工作电极的制备

工作电极的制备采用涂覆法,将所制得的活性电极材料(MnO2和活性炭)分别与乙炔黑和PVDF 按85:10:5质量比例在玛瑙研钵中研磨均匀,再加入溶剂NMP(N,N-二甲基吡

咯烷酮),将混合物调成糊状,再将所得糊状物涂覆到面积为1cm 2的钛片表面,并于60℃真空干燥5小时,即得工作电极。电极上活性物质的质量通过涂片前后钛片的质量差而求得。 2、电容器活性材料的比电容的测试

电化学测试包括循环伏安、恒流充放电,所有的电化学都是在电化学三电极体系中进行的。三电极体系中,以涂覆了活性电极材料的钛片作为工作电极,以钛片作为对电极,以甘

汞电极作为参比电极,电解质为0.1mol ·L -1

Na 2SO 4溶液。所有的电化学测试均在上海辰华CHI660a 型电化学工作站和Eco Echemie B.V 公司的Autolab PGATAT30电化学分析仪上进

行。循环伏安法实验,0.1~0.9V ,扫描速度分别为2mV s -1 (400s ,9C)、10mV s -1

(80s ,45C)、

50mV s -1

(16s ,225C)。恒流充放电区间为0.1~0.9V ,先采用恒流充放电电流进行充放电,通过比电容计算比电容,保持和循环伏安下相同倍率进行充放电实验。 五、数据记录与处理 1、实验数据记录

循环伏安法实验中记录循环伏安曲线i-V 图,恒流充放电记录V-t 图。 (1)循环伏安曲线: A 、活性炭材料

C u r r e n t (A )

E/V vs. Hg/Hg 2Cl 2

B 、MnO 2材料

C u r r e n t (A )

E/V vs. Hg/Hg 2Cl 2

(2)恒流充放电 A 、活性炭材料

E /V

Time/s

B 、MnO 2材料

E /V

Time/s

2、 实验数据处理

(1)分别从循环伏安曲线计算两种材料的比电容; A 、活性炭材料

2mV :从最后一个循环中可得出两个端点的电量值相减为0.03515C ,所以电容值为

0.03515/0.8=0.04394F 。由于所涂上的活性物质的质量为 4.0×10-3

g ,所以比电容为

0.04394/4.0×10-3

=10.985F/g 。

10mV :从最后一个循环中可得出两个端点的电量值相减为0.02058C ,所以电容值为

0.02058/0.8=0.02572F 。由于所涂上的活性物质的质量为 4.0×10-3

g ,所以比电容为

0.02572/4.0×10-3

=6.43F/g 。

50mV :从最后一个循环中可得出两个端点的电量值相减为0.01895C ,所以电容值为

0.01895/0.8=0.02369F 。由于所涂上的活性物质的质量为 4.0×10-3

g ,所以比电容为

0.02369/4.0×10-3

=5.923F/g 。

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

超级电容的充放电实验曲线测试(含答案)

超级电容器的充放电实验曲线测试 一、实验目的 了解超级电容器结构组成以及工作原理,理解超级电容器等效电路模型,学会绘制超级电容器充放电曲线。 二、超级电容器结构以及工作原理 超级电容器通常包含双电极、电解质、集流体、隔膜四个部件。超级电容器电极由多孔材料在金属薄膜(常用铝)上沉积而成,而活性炭则是常用的多孔材料。充电时,电荷存储于多孔材料和电解质之间的界面上。电解质的选择往往是电容器单体电压和离子导电性之间妥协的结果,追求离子导电性的最大化可能会导致所选择的电解质分解电压低至1V 。隔膜通常是纸,起绝缘作用,可以防止电极之间任何的导电接触。必须能够浸泡在电解质中,并且不影响电解质的离子导电性。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,

为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。 三、实验线路图 四、实验步骤 1、充电实验 按照实验线路图连接电路,将开关接到K端,使电源接入电路中,实现超级电容的充电过程,通过串口命令记录电流和电压。 2、放电实验 在超级电容器充电完成后,将开关接到另一端,将电源断开,实现超级电容的放电过程,通过串口命令记录电流和电压。 五、注意事项 1、超级电容器具有固定的极性。在使用前,应确认极性。 2、超级电容器应在标称电压下使用。当电容器电压超过标称电压时,将会导致电解液分解,同时电容器会发热,容量下降,而且内阻增加,寿命缩短,在某些情况下,可导致电容器性能崩溃。 3、超级电容器不可应用于高频率充放电的电路中,高频率的快速充放电会导致电容器内部发热,容量衰减,内阻增加,在某些情况下会导致电容器性能崩溃。 4、外界环境温度对于超级电容器的寿命有着重要的影响。电容器应尽量远离热源。 5、安装超级电容器后,不可强行倾斜或扭动电容器,这样会导致电容器引线松动,导致性能劣化。

电容器阻抗

电容器阻抗/ESR频率特性是指什么? 本专栏为解说电容器基础的技术专栏。 现就电容器的阻抗大小|Z|和等价串联电阻(ESR)的频率特性进行阐述。 通过了解电容器的频率特性,可对诸如电源线消除噪音能力和抑制电压波动能力进行判断,可以说是设计回路时不可或缺的重要参数。此处对频率特性中的阻抗大小|Z|和ESR进行说明。 1.电容器的频率特性 如假设角频率为ω,电容器的静电容量为C,则理想状态下电容器(图1)的阻抗Z可用公式 (1)表示。 图1.理想电容器 由公式(1)可看出,阻抗大小|Z|如图2所示,与频率呈反比趋势減少。由于理想电容器中无损耗,故等价串联电阻(ESR)为零。 图2.理想电容器的频率特性 但实际电容器(图3)中除有容量成分C外,还有因电介质或电极损耗产生的电阻(ESR)及电极或导线产生的寄生电感(ESL)。因此,|Z|的频率特性如图4所示呈V字型(部分电容器可能会变为U字型)曲线,ESR也显示出与损耗值相应的频率特性。

图3.实际电容器 图4.实际电容器的 |Z|/ESR频率特性(例) |Z|和ESR变为图4曲线的原因如下。 低频率范围:低频率范围的|Z|与理想电容器相同,都与频率呈反比趋势减少。ESR值也显示出与电介质分极延迟产生的介质损耗相应的特性。 共振点附近:频率升高,则|Z|将受寄生电感或电极的比电阻等产生的ESR影响,偏离理想电容器(红色虚线),显示最小值。|Z|为最小值时的频率称为自振频率,此时|Z|=ESR。若大于自振频率,则元件特性由电容器转变为电感,|Z|转而增加。低于自振频率的范围称作容性领域,反之则称作感性领域。 ESR除了受介电损耗的影响,还受电极自身抵抗行程的损耗影响。 高频范围:共振点以上的高频率范围中的|Z|的特性由寄生电感(L)决定。高频范围的|Z|可由公式(2)近似得出,与频率成正比趋势增加。 ESR逐渐表现出电极趋肤效应及接近效应的影响。 以上为实际电容器的频率特性。重要的是,频率越高,就越不能忽视寄生成分ESR或ESL的影响。随着电容器在高频领域的应用越来越多,ESR和ESL与静电容量值一样,成为表示电容器性能的重要参数。

Y5V电容特性

Y5V材料电容特性 Y5V电容器瓷属于低频高介电容器瓷,即Ⅱ类瓷,是强介铁电陶瓷,具有自发极化特性的非线性陶瓷材料,其主要成分为钛酸钡(BaTiO3);其特点是介电系数特别高,介电系数随温度呈非线性变化,介电常数随施加的外电场有非线性变化的关系; Y5V:温度特性Y代表-25℃;“5”代表+85℃;温度系数V代表-80%~+30%; 在交变电压作用下,电容器并不是以单纯的电容器的形式出现,它除了具有电容量以外,还存在一定的电感和电阻,在频率较低时,它们的影响可以不予考虑,但随着工作频率的提高,电感和电阻的影响不能忽视,严重时可能导致电容器失去作用。因此,我们一般通过四个主要参数来衡量片式电容的一般电性能:电容量、损耗角正切、绝缘电阻、耐电压。下面主要针对电容量的变化进行研究: 1、电容量与温度的关系: 温度是影响电容器电容量的一个重要因素,电容量与温度之间的这种关系特性称为电容器的温度特性,一般说来,对于Ⅱ类瓷电容器,其影响相对较大,故我们采用“%”来表示它的容量变化率。 下面以Y材料0402F/104规格产品为例来说明Y5V材料的温度特性: 2、电容量与交流电压的关系: 对于Ⅱ类瓷电容器,其容量基本是随所加电压的升高而加速递升的,在生产测试中,一般采用0.5±0.2V和1.0±0.2V作为电容量与损耗正切角的测试电压,电压较低,因此对于同一容量采用不同的介质厚度设计,最终表现出来的容量值不会有太大差异,但是,随着工作电路中交流电压的不同,这种差异较为明显。 下面以Y材料0805F/105规格产品为例来说明Y5V材料交流特性:

3、电容量与直流电压的关系: 在电路的实际应用中,电容器两端可能要施加一个直流电压,电容器在这种情况下的特性叫做直流偏压特性;相对X7R材料来说,Y5V材料偏压特性较差,可以通过增加介质厚度的方法取得较好的直流偏压特性。 下面我们以Y材料0805F/224规格14um介质厚度设计的产品为例来说明Y5V产品的直流偏压特性: 另外,Y5V材料电容量与工作频率也存在一定的关系,作为Ⅱ类瓷电容器,相对容值变化较小的Ⅰ类瓷电容器而言,随着工作频率的增加,容值下降较为明显。

超级电容器材料电化学电容特性测试电子教案

超级电容器材料电化学电容特性测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日 实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理

双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。 目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。 2、循环伏安法(CV)测定材料的比电容 循环伏安法是电化学测量中经常使用的一种重要方法,它一方面能较快的观测到较宽电位范围内发生的电极过程,为电极过程研究提供丰富的信息;另一方面又能通过扫描曲线形状的分析、估算电极反应参数,由此来判断不同因素对电极反应的影响。 控制研究电极的电势以速率ν从起始电位Ei开始向电势负方向扫描,到电势为Em时(时间为λ),电势改变扫描方向,以相同的速率回扫至起始电势,然后再次换向,反复扫描,即采用的电势控制信号为连续三角波信号,如图2-1所示。记录i-E曲线,称为循环伏安曲线(cyclic voltammogram),如图2-2所示。这一测量方法称为循环伏安法(cyclic voltammetry)。

不同材质电容特点

一、按照功能 1.名称:聚酯(涤纶)电容 符号:(CL) 电容量:40p--4μ 额定电压:63--630V 主要特点:小体积,大容量,耐热耐湿,稳定性差 应用:对稳定性和损耗要求不高的低频电路 2.名称:聚苯乙烯电容 符号:(CB) 电容量:10p--1μ 额定电压:100V--30KV 主要特点:稳定,低损耗,体积较大 应用:对稳定性和损耗要求较高的电路 3.名称:聚丙烯电容 符号:(CBB) 电容量:1000p--10μ 额定电压:63--2000V 主要特点:性能与聚苯相似但体积小,稳定性略差 应用:代替大部分聚苯或云母电容,用于要求较高的电路 4.名称:云母电容 符号:(CY)

电容量:10p--0.1μ 额定电压:100V--7kV 主要特点:高稳定性,高可靠性,温度系数小应用:高频振荡,脉冲等要求较高的电路 5.名称:高频瓷介电容 符号:(CC) 电容量:1--6800p 额定电压:63--500V 主要特点:高频损耗小,稳定性好 应用:高频电路 6.名称:低频瓷介电容 符号:(CT) 电容量:10p--4.7μ 额定电压:50V--100V 主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路 7.名称:玻璃釉电容

符号:(CI) 电容量:10p--0.1μ 额定电压:63--400V 主要特点:稳定性较好,损耗小,耐高温(200度)应用:脉冲、耦合、旁路等电路 8.名称:铝电解电容 符号:(CD) 电容量:0.47--10000μ 额定电压:6.3--450V 主要特点:体积小,容量大,损耗大,漏电大 应用:电源滤波,低频耦合,去耦,旁路等 9.名称:钽电解电容 符号:(CA) 电容量:0.1--1000μ 额定电压:6.3--125V 主要特点:损耗、漏电小于铝电解电容 应用:在要求高的电路中代替铝电解电容 10.名称:空气介质可变电容器

电化学超级电容器

姓名:严臣凤学号:10121570125 班级:应化(1)班 电化学超级电容器 电化学超级电容器(electrochemical supercapacitor)亦称超大容量电容器,是一种介于电池和静电电容之间的新型储能器件。超级电容器具有功率密度比电池高、能量密度比静电电容高、充放电速度快、循环寿命长、对环境无污染等优点,成为本世纪的一种新型绿色能源。利用超级电容和电池组成混合动力系统能够很好地满足电动汽车启动、爬坡、加速等高功率密度输出场合的需要,并保护蓄电池系统。另外超级电容器可以用于电路元件、小型电器电源、直流开关电源等,还可以用于燃料电池的启动动力,移动通讯和计算机的电力支持等。 1.1 电化学超级电容器类型 电化学超级电容器依据其储能原理可以分为双电层电容器、法拉第准电容器、混合型电容器和锂离子电容器,电极材料主要有碳材料、金属氧化物和导电聚合物等。 (1)双电层电容器双电层电容器是建立在 双电层理论基础之上的.双电层理论由l9世纪末 Helmhotz等提出.Helmhotz模型认为电极表面的 静电荷从溶液中吸附离子,它们在电极/溶液界 面的溶液一侧离电极一定距离排成一排,形成一 个电荷数量与电极表面剩余电荷数量相等而符号 相反的界面层.由于界面上存在位垒,两层电荷 都不能越过边界彼此中和,因而形成了双电层电 容.为形成稳定的双电层,必须采用不和电解液 发生反应且导电性能良好的电极材料,还应施加 直流电压,促使电极和电解液界面发生“极化”. (2)法拉第准电容器法拉第准电容器 (Faradic capacitor)是在电极材料表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容器,其储能过程不仅包括双电层存储电荷,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH、Li+等)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容器的充放电机理。 (3)混合型电容器混合型电容器(hybrid capacitor)一般由双电层电容过程和法拉第准电容过程共同来构成,一部分是由碳电极形成双电层电容,另一部分是由导电聚合物或金属氧化物电极进行氧化还原反应或锂离子嵌入反应形成法拉第准电容。在水溶液电解质体系中,可以形成碳/氧化镍、碳/二氧化锰等混合电容器;在有机电解质体系中,可以形成双电层碳/锂离子嵌入型碳的锂离子型混合电容器。 (4)锂离子电容器锂离子电容器(1ithium—ion capacitor)是一种特殊的混合型电容器,它是将锂离子充电电池的负极与双电层电容器的正极组合在一起构造,是一种正负极充放电原理不同的非对称电容,因而同时具备双电层电容和锂离子电池的电化学储电性能。

超级电容常识

超级电容常识 超级电容基本知识 寿命 超级电容具有比电池更长的使用寿命,但是寿命也不是无限延长的。寿命终止失效模式为等效串联内阻的增加(ESR)升高和容量降低。超级电容实际的寿命失效取决于应用要求,比如长期置于 高温下,高电压和超电流将会导致ESR升高和容量降低。这些参数降低将会延长超级电容的寿命。 电压 超级电容具有推荐的额定工作电压,电压值是根据超级电容在最高的额定温度下最长寿命来设定的。如果使用电压超出额定电压,将会导致寿命缩短,若过压时间较长则内部电解液将会分解为气体,当气体的压力逐渐增强时,超级电容内部将会漏液或防爆阀破裂。 极性 超级电容采用对称的电极设计,正负极具有类似的结构,当电容首次装配时,任一电极都可以被当成正极或者负极,一旦超级电容被第一次充满电时,超级电容将会形成极性化。所以我们在生产过程中将会100%的充放电将极性定型,同时在每一个电容的外壳上面都有一个负极标志。提醒一点:虽然超级电容可以被放电使电压降低到零电压,但是电极还是保留非常少的电荷,此时变换极 性是不可以的。超级电容按照一个方向被充电的时间越长,他们的极性就变得越强。若此时更改极性将会使电容的寿命缩短或损坏。 环境温度 能量型超级电容的正常工作温度是-25℃--70℃,功率型超级电容的正常工作温度是-40℃--60℃,温度及电压对超级电容寿命有影响。一般来说,超级电容的环境温度每升高10℃,超级电容的寿 命就会缩短一半。也就是说在可能的情况下尽可能在最低温度下使用超级电容,那么就可以降低电容的衰减与ESR的升高。若低于正常室温环境下,那么可以降低电压以抵消高温对电容的负面 影响。相反在低温下提高超级电容的工作电压,可以有效的抵消超级电容在低温下内阻的升高。在高温情况下,电容内阻升高。在低温下,电容的内阻升高时暂时的,因为在低温下电解液的稠性升高,降低了电离子的远动速度。 放电特性 超级电容放电时,是按照一条斜率曲线放电,当确定应用时超级电容的容量与内阻要求时,最重要的就是要了解电阻及容量对放电特性的影响。在高脉冲电流应用时,ESR是重要的因素。而在低电流应用时,容量是最重要的因素。计算公式如下: Vd=I(R+T/C) Vd是起始工作电压与截止电压之差,I是放电电流,R是超级电容的(ESR),T是放电时间,C是电容的容量。在脉冲应用中,由于瞬间放电流很大,为减少电压的降幅,选用低内阻(ESR) 的超级电容,而在低电流应用中则需要选用高容量的超级电容。 充电方法 超级电容可用各种方法进行充电,如:恒定电流、恒定功率、恒定电压或与能量储存器,或者电源并联(如电池、DC变换器等)。如果超级电容与电池并联,加一个低阻值串联电阻将降低超级 电容的充电电流,并提高电池的使用寿命。但是如果使用串联电阻,必须要保证电容的电压输出端是直接与应用器连接而不是通过电阻与应用器连接,否则超级电容的低内阻特性将是无效的。在高脉冲电流放电时,许多电池系统寿命均会缩短。 超级电容最大充电电流I计算公式如下: I=V/5R I是推荐的充电电流,V是充电电压,R是超级电容的ESR。超级电容持续大电流或者高压充电,超级电容将会过度发热,过度发热将会导致ESR增加,电解液分解气化,缩短寿命、漏液、防爆 阀爆裂。如果要使用高于额定值的电流或电压充电请与生产厂商联系。 自放电与漏电流 以不同方法进行测量时自放电与漏电流在本质上是相同的,针对超级电容的结构,从正极到负极具备高的耐电流特性。也就是说保留电容电荷,需要少量的额外电流,这个电流就是漏电流。而当移除充电电压时,电容不在负荷时,额外的电流会促使超级电容放电,称为自放电流。 电容串联 单体超级电容的电压一般为2.5V或2.7V,而在许多应用领域要求高电压,超级电容可以设置串联的方法来提高工作电压。确保单一的超级电容电压不超过其最大的额定工作电压是很重要的,否 则会导致电解液分解产生气体,ESR升高,寿命减短。 在放电或者充电时,在稳定状态下因容量和漏电流的差异,都将会导致串联的超级电容电压不平衡现象。在充电时,串联的超级电容将起到电压分配作用,因此低容量单体超级电容将承受更大的电压。例如: 2.5V1F的超级电容串联,两个容量分别为+20%与-20%,则电压分配如下: V1=V供*(C1/(C1+C2)) V供是供给给串联两端的充电电压。 假设V1是+20%容量偏差的电容,若供应充电电压是5V,则: V1=5*(1.2/(1.2+0.8))=3V 所以,为避免超出3V的超级电容浪涌电压范围,串联超级电容的容量必须在同一个趋势范围内。在选择上可以用主动电压平衡电路来降低因容量不平衡而产生的电压不平衡。注意大多数的电压 平衡方法都是取决于具体的应用。 主动电压平衡 主动电压平衡电路能使串联的超级电容上的电压与额定电压驱同而不管有多少电压不平衡产生。同时在确保精确的电压平衡时,主动平衡电路在稳定的状态下只有非常低的电流,只有当电压超出平衡范围时才会产生比较大的电流,这些特性使得主动电压平衡电路是超级电容频繁充放电及如电池等能量组件使用的最理想电路。 被动电压平衡 被动电压平衡电路是忽略超级电容的低内阻直接用高电阻来做平衡电路的一种方式,采用与电容并联电阻进行分压,这就允许电流从高电压的超级电容上流至低电压的超级电容上实现电压的平衡。最重要的是选择平衡电阻值来提供超级电容更高电流的流动而不增加超级电容的漏电流。同时要注意:“漏电流在温度升高的时候会上升的”。 被动平衡电路使用在不频繁对超级电容进行充放电的应用,同时要能够承受平衡电阻的额外电流负载时推荐使用。使用平衡电阻时,建议使用平衡电阻的应能提供最差超级电容漏电流50倍以上 的额外电流,根据最高使用温度选择在3.3KΩ-22KΩ。尽管更大阻值的平衡电阻在大多数情况下也能工作,但其不可能在不匹配的超级电容串联时起到保护作用。 逆向电压防护 当串联使用的超级电容被快速放电时,低容量超级电容的电压将潜在地变为负电压。这是不允许的,同时会降低超级电容的使用寿命。一个简单的防护逆向电压的方法是在超级电容上的两端增加一个二极管。使用适当的额定的限流二极管替代标准的二极管,还可以保护超级电容出现过电压现象。在选择二极管时,“二极管必须能够承受电源的峰值电流”。 脉动电流 超级电容虽然有比较低的内阻,但是相对电解电容而言,其内阻还是比较大的,若应用在脉冲电流的环境中容易引起内部发热,从而导致电解液分解、ESR增加,从而引起超级电容寿命缩短。为了保证超级电容的使用寿命,在应用在脉冲环境中时,最好要保证超级电容表面的温度上升不超过3℃。 比能量: 是指电容器在单位重量或单位体积下所给出的能量。(通常也叫:重量比能量、体积比能量、能量密度)单位:WH/KG、WH/L 超级电容器的能量与本身的容量与电压有关。其计算方式: E=CV2/2 (单位焦耳J)

贴片电容材质分类

这个是按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。 COG,X7R,X5R,Y5V均是电容的材质,几种材料的温度系数和工作范围是依次递减的,不同材质的频率特性也是不同的。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一 NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%, NPO(COG) 多层片式陶瓷电容器,它只是一种电容 COG(Chip On Glass)即芯片被直接邦定在玻璃上。这种安装方式可以大大减小LCD模块的体积,且易于大批量生产,适用于消费类电子产品的LCD,如:手机,PDA等便携式产品,这种安装方式,在IC生产商的推动下,将会是今后IC与LCD 的主要连接方式。 相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二 X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

电化学工作站测试超级电容器

电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。

运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流

电容的特性

电容的特性: 电容器是一种能储存电荷的容器.它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器等.在构造上,又分为固定电容器和可变电容器.电容器对直流电阻力无穷大,即电容器具有隔直流作用.电容器对交流电的阻力受交流电频率影响,即相同容量的电容器对不同频率的交流电呈现不同的容抗.为什么会出现这些现象呢?这是因为电容器是依靠它的充放电功能来工作的,如图1,电源开关s未合上时.电容器的两片金属板和其它普通金属板—样是不带电的。当开关S合上时,如图2所示,电容器正极板上的自由电子便被电源所吸引,并推送到负极板上面。由于电容器两极板之间隔有绝缘材料,所以从正极板跑过来的自由电子便在负极板上面堆积起来.正极板便因电子减少而带上正电,负极板便因电子逐渐增加而带上负电。电容器两个极板之间便有了电位差,当这个电位差与电源电压相等时,电容器的充电就停上了.此时若将电源切断,电容器仍能保持充电电压。对已充电的电容器,如果我们用导线将两个极板连接起来,由于两极板间存在的电位差,电子便会通过导线,回到正极板上,直至两极板间的电位差为零.电容器又恢复到不带电的中性状态,导线中也就没电流了.电容器的放电过程如图3所示.加在电容器两个极板上的交流电频率高,电容器的充放电次数增多;充放电电流也就增强;也就是说.电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大.对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大. 第2讲:电容器的参数与分类 在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源的退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指针和一般特性,而且还必须了解在给定用途下各种组件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。 1. 标称电容量(C R )。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF 以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF );通常电解电容器的容量较大。这是一个粗略的分类法。 2. 类别温度范围。电容器设计所确定的能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。 3. 额定电压(U R )。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/ 电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4. 损耗角正切(tg )。在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。对于电子设备来说,要求R S 愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。 5. 电容器的温度特性。通常是以20 ℃基准温度的电容量与有关温度的电容量

用电化学工作站测试超级电容器

用电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。 运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。

2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压- 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。 3.2 放电电流 放电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的放电电流超过 Im,则电压曲线立即越过放电限制电压线,无法对超级电容器实施放电。放电电流一般应设在Im / 2以下。 3.3 充电限制电压 应低于超级电容器的击穿电压,例如:3V。 3.4 放电限制电压 应低于充电限制电压,例如:0V。 3.5采样周期 采样周期应根据不同的测量目的来设定,一般以每个充放电循环 100 至 1000 个样点为为宜。例如:(A)测量电压阶跃值,可将采样周期设为0.01S、0.001S,以

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

相关文档
最新文档