专题3:空间向量法求角基础知识与典型例题(原卷版)

专题3:空间向量法求角基础知识与典型例题(原卷版)
专题3:空间向量法求角基础知识与典型例题(原卷版)

专题3:空间向量法求角基础知识与典型例题(原卷版)

⑴求异面直线所成的角

已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD

AC BD θ?=

1.已知棱长为2的正方体1111ABCD A B C D -,点M 、N 分别是11A B 和1BB 的中点,建立如图所示的空间直角坐标系.

(1)写出图中M 、N 的坐标;

(2)求直线AM 与NC 所成角的余弦值.

2.如图,三棱柱111OAB O A B -中,平面11OBB O ⊥平面OAB ,且

160O OB ∠=?,190,2,3AOB OB OO OA ∠=?===,求异面直线1A B 与1O A 所成角的余弦值.

⑵求直线和平面所成的角

求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为?, 则θ为?的余角或?的补角

的余角.即有:cos s .in a u a u ?θ?=

=

3.如图,正方体1111ABCD A B C D -中,E 是1CC 的中点,求BE 与平面1B BD 所成角的正弦值.

4.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=?,点P 是AC 的中点,连接,BP DP .

(1)证明:平面ACD ⊥平面BDP ;

(2)若6BD =,且二面角A BD C --为120?,求直线AD 与平面BCD 所成角的正弦值.

⑶求二面角

二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射

线

l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.

如图:

求法:设二面角l αβ--的两个半平面的法向量分别为m n 、

,再设m n 、的夹角为?,二面角l αβ--的平面角为θ,则二面角θ为m n 、

的夹角?或其补角.π?- 根据具体图形确定θ是锐角或是钝角:

如果θ是锐角,则cos cos m n

m n θ??==, 即arccos m n

m n θ?=;

如果θ是钝角,则cos cos m n

m n θ??=-=-, 即arccos m n m n θ??? ?=- ???. 5.如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,//BC AD ,BA AD ⊥,224AE AD AB BC ====.

(1)求证://CF 平面ADE ;

(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.

O A

B O A B l

6.如图ABC ?和ABD ?均为等腰直角三角形,AD BD ⊥,AC BC ⊥,平面ABC ⊥平面ABD ,EC ⊥平面ABC ,1EC =,22AD =

(1)证明:DE AB ⊥;

(2)求二面角D BE A --的余弦值.

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

探索空间平面法向量的求法与方向的判定

“ 量无论无论是 和具有规具有规律性。 时有时会显得特别探索空间平面法向量的求法与方向的判定 问题,都离不开平面的 成角 ” ” 距离 “ 问题,还是 杨玉春 (铜仁市第二中学,贵州铜仁 554300) 向量具有一套完整的运算体系,可以把几何图形的性质 转化为向量运算,变抽象的逻辑推理为具体的向量运算,实 现了“数”与“形”的结合。因此用量知识解决某些立体几 何问题,有时会显得特别简洁和具有规律性。但用向量无论 是解决“成角”问题,还是“距离”问题,都离不开平面的 法向量,可以说平面的法向量是用向量来解决立几问题的瓶 颈,平面法向量的正确求出是关键。而用向量来求二面角的 大小时,往往还需判断法向量的方向,是指向二面角内还是 指向二面角外。本文介绍空间平面法向量的求法与方向的判 定。 一、平面法向量的求法 1、几何法:如图(1),若λ⊥α,在λ上任取两点A、B, 则或即为平面α的一个法向量。 2、待定系数法(两种设法):

(1)设n=(1,λ,μ)或n=(λ,1,μ)或n=(λ, μ,1)是平面α的一个法向量。a ,b 是平面α内任一两个不共线向量,由 n ·a=0 n ·b=0求出λ,μ即可。 (2)或设n=(x ,y ,z )是平面a=0 ·b=0 得出关于x 、y 、z 的三元一次方程组的一个解即为平面α的一个法向量。 3、利用空间平面方程:Ax+By+Cz+D=0(其中:A 、B 、C 不同时为零),则n=(A ,B ,C )为平面的一个法向量。 4利用向量的向量积:如图(1),设a=(111,,x y z ),b=(223,,x y z ) 则a ×b= =( ,| |,|) =(122121121221,,y z y z x z x z x y x y ---) 取n=(a ×b )(λ∈R 且λ≠0)是平面α的法向量。 二、空间平面法向量方向的判定 1、由几何法求出的法向量,此时方向看图即可。 2、由向量的向量积求出的法向量,用“右手定则”可确定a ×b 的方向,取n=λ(a ×b),当>0时,则n 方向与向

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

用空间向量解决空间中“夹角”问题

利用空间向量解决空间中的“夹角”问题 学习目标 : 1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法; 2.能够应用向量方法解决一些简单的立体几何问题; 3.提高分析与推理能力和空间想象能力。 重点 : 利用空间向量解决空间中的“夹角” 难点 : 向量夹角与空间中的“夹角”的关系 一、复习引入 1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) 2.向量的有关知识: (1)两向量数量积的定义:><=?,cos |||| (2)两向量夹角公式:| |||,cos b a >= < (3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析 知识点1:异面直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和, 问题1: 当与的夹角不大于90 的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ a

例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则 )2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC -=,)2,21 ,23(1a a a CB = 即21 323||||,cos 22 111111==>=<,与θ的关系? 例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤: 1. 求出平面的法向量 2. 求出直线的方向向量 3. 求以上两个向量的夹角,(锐角)其余角为所求角 解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a a AA ==)2,21 ,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n = x y

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

空间平面法向量求法

空间平面法向量求法 一、法向量定义 定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 二、平面法向量的求法 1、内积法 在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)], 在平面内任找两个不共线的向量,。由,得·=0且·=0,由此得到关于x,y的 方程组,解此方程组即可得到。 2、 任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。 Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3 个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 3、外积法 设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两 者交角,且0<θ<π,而与,, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指 由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。 设=(x1,y1,z1),=(x2,y2,z2),则×= (注:1、二阶行列式:;2、适合右手定则。) Code public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1, ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3) { try { double a = 0, b = 0,c=0; //方程参数

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)学案苏

3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一) 学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题. 知识点一直线的方向向量与平面的法向量 思考怎样用向量来表示点、直线、平面在空间中的位置? 梳理(1)用向量表示直线的位置 条件 直线l上一点A 表示直线l方向的向量a(即直线的________) 形式在直线l上取AB → =a,那么对于直线l上任意一点P,一定存在实数t,使得AP → =________ 作用定位置点A和向量a可以确定直线的________ 定点可以具体表示出l上的任意________ (2)用向量表示平面的位置 ①通过平面α上的一个定点O和两个向量a和b来确定: 条件平面α内两条相交直线的方向向量a,b和交点O 形式对于平面α上任意一点P,存在有序实数对(x,y)使得OP→=x a+y b

②通过平面α上的一个定点A和法向量来确定: 平面的法向量直线l⊥α,直线l的________________叫做平面α的法向 量 确定平 面位置 过点A,以向量a为法向量的平面是完全确定的(3)直线的方向向量和平面的法向量 直线的方向向量能平移到直线上的________向量a,叫做直线l 的一个方向向量 平面的法向量直线l⊥α,取直线l的______,n叫做平面α的法向量 (4)空间中平行关系的向量表示 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,v,则 线线平行l∥m?________?a=k b(k∈R) 线面平行l∥α?a⊥μ?________ 面面平行α∥β?μ∥v?________ 知识点二利用空间向量处理平行问题 思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系. (2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行? (3)用向量法处理空间中两平面平行的关键是什么? 梳理利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.

利用向量方法求空间角

利用向量方法求空间角 导学目标:1?掌握各种空间角的定义,弄清它们各自的取值范围2掌握异面直线所成 的角,二面角的平面角,直线与平面所成的角的联系和区别.3?体会求空间角中的转化思想、 数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 课前准备里」回扣戟材夯宴基础______________________________________________ 【自主梳理】 1.两条异面直线的夹角 (1)定义:设a, b是两条异面直线,在直线 a上任取一点作直线 a'// b,则a'与a的夹角叫做a与b的夹角. (2) 范围:两异面直线夹角0的取值范围是 __________________________________________ . (3)___________________________________________________________________________ 向量求法:设直线 a, b的方向向量为a, b,其夹角为購则有cos 0= ___________________________ = 2.直线与平面的夹角 (1)定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角. ⑵范围:直线和平面夹角0 的取值范围是 (3)向量求法:设直线I的方向向量为a,平面的法向量为u,直线与平面所成的角为0, a与u的夹角为為则有sin 0= ____________ 或cos 0= sin ? 3.二面角 (1) _____________________________ 二面角的取值范围是. (2)二面角的向量求法: ①若AB、CD分别是二面角a I—B的两个面内与棱I垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图①). 胖I ① ② ③ ②设ni,n2分别是二面角 a— I —B的两个面 a B的法向量,则向量 m与匝的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③). 自我检测】 1.已知两平面的法向量分别为 m= (0,1,0),n = (0,1,1),则两平面所成的二面角为( ) A. 45 ° B. 135 ° C. 45。或135 ° D. 90 ° 2?若直线l1,I2的方向向量分别为a= (2,4,- 4),b= (-6,9,6),则() A . I1 / I2 B. I1 丄丨2 C. l1与12相交但不垂直 D.以上均不正确 3.若直线I的方向向量与平面a的法向量的夹角等于 120。,则直线I与平面a所成的 角等于() A . 120 ° B. 60 ° C. 30° D.以上均错 4.(2011湛江月考)二面角的棱上有 A、B两点,直线AC、BD分别在这个二面角的两个半平

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

向量法求空间角(有答案)

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 17向量法求空间角 角的分类 向量求法 范围 两异面直线l 1与l 2所成的角θ 设l 1与l 2的方向向量为a ,b ,则cos θ=___________=_______________ (0,π 2 ] 直线l 与平面 α所成的角θ 设l 的方向向量为a ,平面 α的法向量为n ,则sin θ=___________=________ [0,π 2] 二面角α-l -β的平面角θ 设平面α,β的法向量为n 1, n 2,则|cos θ|=___________=|n 1·n 2| |n 1|·|n 2| [0,π] 类型一 异面直线所成的角 例1、如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ. 当θ=π 3时,求异面直线AC 与VD 所成角的余弦值 【自主解答】 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0) 当θ=π 3 时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD → =(1,1,-6), ∴cos 〈AC → ,VD → 〉= AC →·VD → |AC →||VD →| =-22×22=-24. ∴异面直线AC 与VD 所成角的余弦值为24. 1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可. 2.由于两异面直线夹角θ的范围是(0,π 2],而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意. 变式1、在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值. 【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),

利用空间向量求空间角-教案

利用空间向量求空间角-教案

利用空间向量求空间角 备课人:龙朝芬授课人:龙朝芬 授课时间:2016年11月28日一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标

系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l , m 的方向向量分别为a ,b ,异面直线l ,m 所成的角 为θ,则cos cos ,a b θ== a b a b ?. 2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则sin cos ,a n θ== a n a n ?. α m b θ a l

3、面面角公式:设1 n ,2 n 分别为平面α、β的法向 量,二面角为θ,则12 ,n n θ= 或12 ,n n θπ=- (需要根据 具体情况判断相等或互补),其中121212 cos ,n n n n n n ?= . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=, SO ⊥ 面OABC ,且1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n a

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD=DE=2AB ,且F 是CD 的中点. (1)求证:AF//平面BCE ; (2)求证:平面BCE ⊥平面CDE ; (3)求平面BCE 与平面ACD 所成锐二面角的大小. 4.(本小题满分12分)如图,在四棱锥ABCD P -中,PD ⊥底面ABCD ,且底面ABCD 为正方形,G F E PD AD ,,,2==分别为CB PD PC ,,的中点. (1)求证://AP 平面EFG ; (2)求平面GEF 和平面DEF 的夹角. 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角 B C O E P

向量法求空间角(高二数学-立体几何)-精选.

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

用向量方法求空间角和距离(教师)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a r 、b r 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b r r g r r (2)求线面角 设l r 是斜线l 的方向向量,n r 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n r r g r r (3)求二面角 法一、在α内a r l ⊥,在β内b r l ⊥,其方向如图,则二面 角l αβ--的平面角α=arccos |||| a b a b r r g r r 法二、设12,,n n u r u u r 是二面角l αβ--的两个半平面的法向

量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平 面角α=12 12arccos |||| n n n n u r u u r g u r u u r 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ==u u u r r u u u r g r 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO uuu r . (2)求异面直线的距离 法一、找平面β使b β?且a βP ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a r 、b r 分别为异面直线a 、b 的方向向量,求n r (n r a ⊥r ,n r b ⊥r ),则异面直线 a 、 b 的距离 || |||cos ||| AB n d AB n θ== u u u r r u u u r g r (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.

相关文档
最新文档