解析几何试卷及答案整理

解析几何试卷及答案整理
解析几何试卷及答案整理

《解析几何》期末试卷及答案

一、 填空(每题3分,共30分)

1

1=, 2=?,则摄影= 2 。

2.已知不共线三点)5,2,3(),5,1,2(),3,2,1(--C B A 则三角形ABC 的 BC 边上的高

为 8 。

3.a ,b

= 时a +b 平分a ,b 夹角。

4.自坐标原点指向平面:035632=-++z y x 的单位法矢量为 ???

???32,31,92 。

5.将双曲线?????==-0

1

22

22x c z b y 绕虚轴旋转的旋转曲面方程为 1222

22=-+c z b y x 。 6.直线???=+++=+++00

22221111D z C y B x A D z C y B x A 与X 轴重合,则系数满足的条件为

??????

?====0

0,02

2

1122

1

1

21A C A C C B C B D D 。

7.空间曲线???=+=-0042

2z x z y 的参数方程为 ?????==-=242t z t y t x 或??

?

??=-=-=2

4

2t z t y t

x 。 8.直纹曲面0222=-+z y x 的直母线族方程为 ???-=-=+)

()()(y w y x u uy

z x w ,或

?

?

?=--=+sy y x t y t z x s )()

()( 。 9.线心型二次曲线0),(=y x F 的渐近线方程为 0131211=++a y a x a 。 10.二次曲线027522=+-++y x y xy x 在原点的切线为 02

1

=+-y x 。

二、选择题(每题3分,共15分)

1. 二次曲线0126622=-++++y x y xy x 的图象为( B )

A 椭圆型

B 双曲型

C 无心型

D 线心型 2. 点O 到平面0522:=++-z y x π的距离为( D )

A 5

B 95

C 56

D 3

5

3. 设,,a b c 满足关系0a b c ++=,则c a b b c a ?+?+?=( C )

A 、0

B 、0

C 、3()a b ?

D 、b c ? 4. 若直线

11112x y z λ-+-==,与11111

x y z ++==相交,则必有( B )。 A 、1λ= B 、32λ= C 、34λ= D 、5

4

λ=

5. 二次曲线012),(22=-+-≡y xy x y x F 的渐近方向为( A )

A 、1:1

B 、 2:1

C 、1:1-

D 、2:1-

三、计算题(6×5=30分)

1. 已知{}1,2,3=a ,{}2,1,0-=b ,{}0,5,6=c

① 试证a ,b ,c 共面

② 把c 分解为a ,b 的线性组合。

解 0306240562101

2

3

),,(=-+=-=c b a ,∴a ,b ,c 共面

而a ,b 不共线,所以c 可以分解为a ,b 的线性组合-=2

2. 求与平面05=-++z y x 垂直且通过直线3

1

2211:

-=+=-z y x l 的平面π的方程 解 平面π的方程为03

2

1

111

1

21=-+-z y x ,

即0)1()2(2)1(=-++--x y x , 整理得062=--y x

3. 求过单叶双曲面116492

22=-+

z y x 上点()8,2,6p 的两条直母线方程 解 单叶双曲面116

49222=-+

z y x 上的两族直母线方程为 ?????-=-+=+)21()43()21()43(y w z

x u y u z

x w 和?????+=--=+)2

1()43()21()4

3(y s z

x t y

t z

x s 将点()8,2,6p 代入得2:1:=u w ,0=s 所以,过点()8,2,6p 的两条直母线方程为

?????=--+=-+-012

2320243z y x z y x 和?????=-=-0

43021z x y 4. 求通过点()1,0,4-p 且与x 轴平行的直线的参数式、对称式、一般式及摄影式方程

解 所求直线的参数式方程为??

?

??-==+=104z y t

x

对称式方程为

1

014+==-z y x 一般式方程为???-==10

z y

摄影式为???-==1

z y

5. 求两条二次曲线0:221=----y x y xy x l 与02:222=+-++y x y xy x l 的公共直径 解 对于0:221=----y x y xy x l ,0454111

2

121

12≠-=--=---

=

I 为中心型

从?????

=---=--0

212

102121y x y x 解出中心坐标为)53,51(-

而对于02:222=+-++y x y xy x l ,011112==I 但是2

121

1

1

11-

≠=,为无心型,它的

渐近方向为1:1::1112-=-=a a Y X ,

因此公共直径方程为

1

53

151+=--

y x ,整理得052=++y x 即0255=++y x 四、证明题(2×5=10分)

1. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以

构成一个三角形.

证明 因为)(2

1

),(21),(21BM +=+=+=

所以

)(21

)(21)(21=+++++=

++

因此, , CN 可 以构成一个三角形.

2. 证明直线453231-=-+=-z y x 与直线??

?

??+-=+=+=1

2227

3t z t y t x 共面并求它们所在的平面的方程 证明 因为02448364824362234334

4

6

=+--+-=---=?,所以两直线共面

而它们所在的平面方程为

02

23433

5

21=---+-z y x ,整理得03715182=---z y x 五、利用坐标变换化简二次曲线04222=-++-y x y xy x 并作图(15分)

解 因为0431

2

121

1

2≠=-

-

=

I ,所以曲线为中心二次曲线,解方程组

???

???

?

=-+-≡=+-≡0221),(012

1),(21y x y x F y x y x F

得中心的坐标为2,0==y x ,取)2,0(为新的原点,作移轴???+==2''

y y x x

原方程变为04''''22=-+-y y x x

再转轴消去''y x 项,设旋转角为α,则022cot 12

22

11=-=

a a a α 即

0tan 2tan 12=-α

α

, 从而可取4

π

α=

,所以得转轴公式为

???

?

??

?+=-=)""(21')""(21'y x y y x x ,经转轴后曲线的方程化简为最简形式 04"2

3"212

2=-+y x 或者写成标准形式

13

8"8

"2

2=+y x 这是一个椭圆,它的图形如图所示。

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高中解析几何知识点

曲线与方程 (2)求曲线方程的基本方法 直线 一、直线的倾斜角与斜率 1、倾斜角的概念:(1)倾斜角:当直线 与x 轴相交时,取x 轴作为基准,x 轴正向与直线 向上方向之间所成的角 叫做直线 的倾斜角。 (2)倾斜角的范围:当 与x 轴平行或重合时,规定它的倾斜角 为0°因此0°≤ <180°。 2、直线的斜率 (1)斜率公式:K=tan ( ≠90°) (2)斜率坐标公式:K=12 1 2x x y y -- (x1≠x 2) (3)斜率与倾斜角的关系:一条直线必有一个确定的倾斜角,但不一定有斜率。当 =0°时,k=0;当0°< <90°时,k >0,且 越大,k 越大;当 =90°时,k 不存在;当90°< <180°时,k <0,且 越大,k 越大。 二、两直线平行与垂直的判定 1、两直线平行的判定: (1)两条不重合的直线的倾斜角都是90°,即斜率不存在,则这两直线平行; (2)两条不重合的直线,若都有斜率,则k1=k2 1 ∥2 2、两直线垂直的判定:

已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程. 已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为11 12122121(,) y y x x x x y y y y x x --=≠≠--, 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式 已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1 =+b y a x 叫做直线 的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-. 特殊地:(,)P x y 与原点的距离为 22 OP x y =+. 直线名称 已知条件 直线方程 使用范围 点斜式 111(,),P x y k 11() y y k x x -=- k 存在 斜截式 b k , y kx b =+ k 存在 两点式 ) ,(11y x (),22y x 11 2121 y y x x y y x x --= -- 12x x ≠ 12y y ≠ 截距式 b a , 1x y a b += 0a ≠ 0b ≠

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

解析几何常用知识点总结

“解析几何”一网打尽 (一)直线 1.[)?? ? ??≠≠--= =∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα 2.直线的方程 (1)点斜式 11() y y k x x -=- (直线l 过点 111(,) P x y ,且斜率为k ). (2)斜截式 y k x b =+(b 为直线l 在y 轴上的截距). (3)一般式 0A x B y C ++=(其中A 、B 不同时为0). 特别的:(1)已知直线纵截距,常设其方程为或;已知直线横截距,常设其方程为 (直线斜率k 存在时,为k 的倒数)或.知直线过点,常设其方程为 或 (2)直线在坐标轴上的截距可正、可负、也可为0. 直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等 直线的斜率为或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式 (1)两点间距离公式: 1122(,)(,)A x y B x y A B =点点 (2)00(,)x y P 到直线0A x B y C ++= 的距离为d = 特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-. (3). 两平行线间的距离公式:设1122:0,:0,l A x B y C l A x B y C d ++=++==则4.两直线的位置关系:; ;重合 5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A (x ,y )、22B (x ,y )、33C (x ,y ),则△ABC 的重心的坐标是123 123 (, )3 3 x x x y y y G ++++. b y k x b =+0x =0x x m y x =+m 0y =00(,) x y 00 ()y k x x y =-+0 x x =???1±1 2121212121()0 l l k k k k A A B B ⊥?=-?+=、都存在时{ { 12 1221121212 1221 //()k k A B A B l l k k b b A C A C ==? ? ≠≠、都存在时

第八章 空间解析几何与向量代数知识点,题库与答案

第八章:空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量); ③几种常见的旋转曲面、柱面、二次曲面; ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角; ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程),两直线的夹角、直线与平面的夹角; 2、难点 ①向量积(方向)、混合积(计算); ②掌握几种常见的旋转曲面、柱面的方程及二次曲面所对应的图形; ③空间曲线在坐标面上的投影; ④特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等;) ⑤平面方程的几种表示方式之间的转化; ⑥直线方程的几种表示方式之间的转化; 二、基本知识 1、向量及其线性运算 ①向量的基本概念: 向量:既有大小又有方向的量; 向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小有向线段的方向表示向量的方向.; 向量的符号:以A为起点、B为终点的有向线段所表示的向量记作向量可用粗体字母表示也可用上加箭头书写体字母表示例如a、r、v、F或、、、; 向量的模:向量的大小叫做向量的模向量a、、的模分别记为|a|、、 单位向量: 模等于1的向量叫做单位向量; 向量的平行: 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a与b平行记作a // b零向量认为是与任何向量都平行;两向量平行又称两向量共线

零向量:模等于0的向量叫做零向量记作0或零向量的起点与终点重合它的方向可以看作是任意的 共面向量:设有k(k3)个向量当把它们的起点放在同一点时如果k个终点和公共起点在一个平面上就称这k个向量共面; 两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超 过的夹角称为向量a与b的夹角记作或如果向量a与b中有一个是零 向量规定它们的夹角可以在0与之间任意取值; ②向量的线性运算 向量的加法(三角形法则):设有两个向量a与b平移向量使b的起点与a的终点重合此时从a的起点到b的终点的向量c称为向量a与b的和记作a+b即ca+b . : 平行四边形法则:向量a与b不平行时平移向量使a与b的起点重合以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和ab 向量的加法的运算规律: (1)交换律abba (2)结合律(ab)ca(bc) 负向量: 设a为一向量与a的模相同而方向相反的向量叫做a的负向量记为a 向量的减法:把向量a与b移到同一起点O则从a的终点A向b的终点B所引向 量便是向量b与a的差ba 向量与数的乘法:向量a与实数的乘积记作规定a是一个向量它的模|a||||a| 它的方向当>0时与a相同当<0时与a相反当0时 |a|0 即a为零向量这时它的方向可以是任意的 运算规律: (1)结合律 (a)(a)()a; (2)分配律 ()aaa;(ab)ab 向量的单位化: 设a0则向量是与a同方向的单位向量记为e a,于是a|a|e a 定理1 设向量a0那么向量b平行于a的充分必要条件是: 存在唯一的实数使b a ③空间直角坐标系 在空间中任意取定一点O和三个两两垂直的单位向量i、j、k就确定了三条都以O为原点的两两垂直的数轴依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴) 统称为坐标轴它们构成一个空间直角坐标系称为Oxyz坐标系 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x轴和y轴配置在水平面上而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

空间解析几何(下篇)剖析

空解精要(升华部分) 序 这个部分是空解的精华部分,与高代数分都有联系,关键在于你 能否发现其中的玄机。我相信,当你看完以下的知识点时,一切都会 水落石出。这部分的重点有:柱面,锥面,旋转曲面,二次曲面及其 一般线性理论,还有参数方程。 *注意:这部分的知识点如果不涉及度量问题,那么在仿射坐标系 下也成立。 一.最完美二次曲面--球面 1.定义:在三维线性空间中,我们把到定点的距离等于定长的点 的集合叫做球面,这个定点叫球心。球心到球面的任何 点的距离叫做半径。 2.球面的方程: 以点()000,,z y x 为球心,R 为半径的球面标准方程为 ()()()2202020R z z y y x x =-+-+- 这是一个二次曲面,它的一般形式为 0222=++++++D Cz By Ax z y x 命题1:用一个平面去截取球面,得到的截面是一个圆。 命题2:如果一个平面与球面相切,那么切点与球心的连线垂 直于该平面。

3.切面的求法:根据数学分析里面的求偏导数来做,无需刻意记 住二次曲面一般理论中的公式。 二.柱面的锥面 (一).柱面 1.定义:由平行于某一定方向且与一条空间定曲线相交的一 族平行直线所组成的曲面叫做柱面,定曲线叫做准线,平行 直线中的每条都叫(直)母线,定方向是直母线的方向,也叫 柱面方向。 2.柱面方程的构造 从定义中可以看出,柱面的存在由准线和母线族决定,如果 确定了准线的方程和母线的方向,那么就可以得出柱面的方 程。如果已知准线方程为 ()()? ??==0,,0,,z y x G z y x F 母线方向为(l,m,n )

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

解析几何试题及答案

解析几何试题及答案https://www.360docs.net/doc/d62405975.html,work Information Technology Company.2020YEAR

解析几何 1.(21)(本小题满分13分) 设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足 BQ QA λ=,经 过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足 QM MP λ=,求点P 的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知 识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设 .)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ① 再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由 解得???-+=-+=.)1(, )1(011λλλλy y x x ②,将①式代入②式,消去0y ,得 ???-+-+=-+=. )1()1(,)1(2 211λλλλλλy x y x x ③,又点B 在抛物线2 x y =上,所以211x y =, 再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+- 22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++ 2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得 故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p

1、定义: 2、几个概念: ① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1 4 ; ③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p 3、如:AB 是过抛物线)0(22 >=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证: (1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥; (4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则2 21p y y -=,2 214 1p x x =; (6)p FB FA 2| |1 | |1= +; (7)D O A ,,三点在一条直线上 (8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2 1||AB EF =,||||||2 FB FA ME ?=;

1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 注意: a PF PF 2|||| 21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; 2、 双曲线的标准方程 ①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22 221y x a b -= (a>0,b>0); ③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2 -ny 2 =1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线: ①求双曲线12 2 22 =-b y a x 的渐近线,可令其右边的1为0,即得022 22=-b y a x ,因式分解得到。②与双曲线122 2 2 =-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x ; 4、等轴双曲线: 为2 22t y x =-,其离心率为2 5、共轭双曲线: 6、几个概念: ①焦准距:b 2 c ; ②通径:2b 2 a ; ③等轴双曲线x 2-y 2=λ (λ∈R,λ≠0):渐近线是y=±x,离心率为:2 ;④22 221x y a b -=焦点三角形的面积:b 2 cot θ2 (其中∠F 1PF 2=θ); ⑤弦长公式:c 2 =a 2 -b 2 ,而在双曲线中:c 2 =a 2 +b 2 ,

平面解析几何测试题及答案

平面解析几何测试题 一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( ) A.一条直线 B.两条直线 C.半个圆 D.一个圆 3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( ) A.-1 B.2 C.1 D.-2 4.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( ) A.8,6 B.8,-6 C.-8,-6 D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( ) A.-13 B.9 C.-9 D.13 6.已知过点P (2,2)的直线与圆(x-1)2 +y 2 =5相切,且与直线ax-y+1=0 垂直,则a 的值为( ) A.2 B.1 C.-21 D.2 1 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心 8.已知双曲线22a x -22b y =1的渐近线的斜率k=±3 4,则离心率等于 ( )

A.53 B.45 C.34 D.3 5 9.若椭圆22a x +22 b y =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆 上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A. 22 B.21 C.4 1 D.3-1 10.已知双曲线22x -22 b y =1(b>0)的左右焦点分别为F 1,F 2,其中一条 渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1?2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( ) A.812x +722y =1 B.812x +92 y =1 C.812x +452y =1 D.812x +16 2y 12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A. 3 30 B.6 C.12 D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( ) A.6 π B.3 π C.2 π D. 3 π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )

高中数学必修2解析几何公式知识点总结

高中数学必修2解析几何知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

上海高考解析几何试题

近四年上海高考解析几何试题 一.填空题: 1、双曲线116922=-y x 的焦距是 . 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?OA OP ,则点P 轨迹方程 ___。 3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。 4、将参数方程?? ?=+=θ θ sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。 5、已知圆)0()5(:2 22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共 点,则r 的取值范围是 . 6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 7、已知圆2x -4x -4+2 y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ; 10、曲线2 y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 13、若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14 、以双曲线1542 2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22 219x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 17、已知(1,2),(3,4A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是 i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 二.选择题:

相关文档
最新文档