美国军规模压型超精密电阻器(RN)规格书

美国军规模压型超精密电阻器(RN)规格书
美国军规模压型超精密电阻器(RN)规格书

贴片电阻规格 封装 尺寸

贴片电阻规格、封装、尺寸 ChipR Dimensions 、Footprint 简述 基本结构 分类 规格、封装、 尺寸 额定功率及工 作电压 阻值,标准阻 值 标识 规格书、生产 厂家

命名方法 价格、报价 创建时间:2005-12-30 最后修改时间:2006-10-29 贴片电阻套件 为方便学生、研发人员试验和产 品试制,特推出片式电阻系列套 件。 我们常说的贴片电阻 (SMD Resistor)叫"片式固定电阻器"(Chip Fixed Resistor),又叫"矩形片状电阻"(Rectangular Chip Resistors),是由ROHM 公司发明并最早推出市场的。特点是耐潮湿,耐高温,可靠度高,外观尺寸均匀,精确且温度系数与阻值公差小。 按生产工艺分厚膜(Thick Film Chip Resistors)、薄膜(Thin Film Chip Resistors )两种。厚膜是采用丝网印刷将电阻性材料淀积在绝缘基体(例如玻璃或氧化铝陶瓷)上,然后烧结形成的。我们通常所见的多为厚膜片式电阻,精度范围±0.5% ~ 10%,温度系数:±50PPM/℃~ ±400PPM/℃。薄膜是在真空中采用蒸发和溅射等工艺将电阻性材料淀积在绝缘基体工艺(真空镀膜技术)制

成,特点是低温度系数(±5PPM/℃),高精度(±0.01%~±1%)。 封装有:0201,0402,0603,0805,1206,1210,1812,2010,2512。其常规系列的精度为5%,1%。阻值范围从0.1欧姆到20M欧姆。标准阻值有E24,E96系列。功率有1/20W、1/16W、1/8W、1/10W、1/4W、1/2W、1W。 特性: 体积小,重量轻 适合波峰焊和回流焊 机械强度高,高频特性优越 常用规格价格比传统的引线电阻还便宜 生产成本低,配合自动贴片机,适合现代电子产品规模化生产使用状况:由于价格便宜,生产方便,能大面积减少PCB面积,减少产品外观尺寸,现在已取代绝大部分传统引线电阻。除一些小厂或不得不使用引线电阻的设计,各种电器上几乎都在使用。目前绝大部分电子产品,以0603、0805器件为主;以手机,PDA为代表的高密度电子产品多使用0201、0402的器件;一些要求稳定和安全的电子产品,如医疗器械、汽车行驶记录仪、税控机则多采用1206、1210等尺寸偏大的电阻。 市场状况:目前,在全球的市场份额中,排名依次是台湾、日本、中国、韩国,欧美几乎不再生产。主要的生产厂商几乎都在中国建立生产基地。台湾国巨(Yageo)公司为世界上第一大生产商。日本企业则生产一些如0201、0402、高精度、高电压,具有工艺难度,利润高的系列。台湾及国内工厂则多生产些

热敏电阻抑制浪涌电流设计

图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。 浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。

NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。 开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。 断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。 改进型电源设计 上述使用NTC浪涌抑制器的电路与使用固定电阻的电路相比,已经具备了节能的特性。对于某些特殊的产品,如工业产品,有时客户会提出如下要求:1、如何降低NTC的故障率以提高其使用寿命?2、如何将NTC的功耗降至最低?3、如何使串联了NTC热敏电阻的电源电路能适应循环开关的应用条件? 对于第1、2两点,因为NTC热敏电阻的主要作用是抑制浪涌,产品正常启动后它所消耗的能量是我们不需要的,如果有一种可行的办法能将NTC热敏电阻从正常工作的电路中切断,就可以满足这种要求。 对于第3点,首先分析为什么使用了NTC热敏电阻的产品不能频繁开关。从电路工作原理的分析我们可以看到,在正常工作状态下,是有一定电流通过NTC热敏电阻的,这个工作电流足以使NTC的表面温度达到100℃~200℃。当产品关断时,NTC热敏电阻必须

常用贴片电阻选型资料

我们常说的贴片电阻(SMD Resistor)学名叫:片式固定电阻器,是从Chip Fixed Resistor直接翻译过来的。特点是耐潮湿,耐高温,可靠度高,外观尺寸均匀,精确且温度系数与阻值公差小。 按生产工艺分厚膜(Thick Film Chip Resistors)、薄膜(Thin Film Chip Resistors)两种。厚膜是采用丝网印刷将电阻性材料淀积在绝缘基体(例如玻璃或氧化铝陶瓷)上,然后烧结形成的。我们通常所见的多为厚膜片式电阻,精度范围±0.5% ~ 10%,温度系数:±50PPM/℃~ ±400PPM/℃。薄膜是在真空中采用蒸发和溅射等工艺将电阻性材料淀积在绝缘基体工艺(真空镀膜技术)制成,特点是低温度系数(±5PPM/℃),高精度(±0.01%~±1%)。 封装有:0201,0402,0603,0805,1206,1210,1812,2010,2512。其常规系列的精度为5%,1%。阻值范围从0.1欧姆到20M欧姆。标准阻值有E24,E96系列。功率有1/20W、1/16W、1/8W、1/10W、1/4W、1/2W、1W。 特性: 体积小,重量轻 适合波峰焊和回流焊 机械强度高,高频特性优越 常用规格价格比传统的引线电阻还便宜 生产成本低,配合自动贴片机,适合现代电子产品规模化生产 使用状况:由于价格便宜,生产方便,能大面积减少PCB面积,减少产品外观尺寸,现在已取代绝大部分传统引线电阻。除一些小厂或不得不使用引线电阻的设计,各种电器上几乎都在使用。目前绝大部分电子产品,以0603、0805器件为主;以手机,PDA为代表的高密度电子产品多使用0201、0402的器件;一些要求稳定和安全的电子产品,如医疗器械、汽车行驶记录仪、税控机则多采用1206、1210等尺寸偏大的电阻。 市场状况:目前,在全球的市场份额中,排名依次是台湾、日本、中国、韩国,欧美几乎不再生产。主要的生产厂商几乎都在中国建立生产基地。台湾国巨(Yageo)公司为世界上第一大生产商。日本企业则生产一些如0201、0402、高精度、高电压,具有工艺难度,利润高的系列。台湾及国内工厂则多生产些常规系列。 零售市场多见为一些台湾厂和国产的品牌,如国巨(Yageo)、风华(FH)、三星机电、厚生、丽智、美隆. 贴片电阻分为以下几大类:

高精密贴片电阻规格书

Sn Plating Ni Plating Overcoat Alumina Ceramic Substrate Thin Film Ni/Cr Conductor

Approval Specification for Thin Film Chip Resistors - Type RN Versio n:1.0 5. Operating Temperature Range (℃):-55℃ ~ +155℃ TYPE POWER RATING AT 70 ℃ (Watts ) Max. Working Voltage Max. Overload Voltage RESISTANCE TOLERANCE RESISTANCE RANGE TEMPERATURE COEFFICIENT (TCR; ppm / )℃ RN02 0.0625 25V 50V ±0.10% ±0.25% ±0.50% 10?~100K ? ±25 ±50 RN03 0.0625 50V 100V ±0.10% ±0.25% ±0.50% 10?~332K ? ±25 ±50 RN05 0.1 100V 200V ±0.10% ±0.25% ±0.50% 4.7?~1M ? ±25 ±50 RN06 0.125 150V 300V ±0.10% ±0.25% ±0.50% 4.7?~1M ? ±25 ±50 RN10 0.25 150V 300V ±0.10% ±0.25% ±0.50% 4.7?~1M ? ±25 ±50 RN12 0.5 150V 300V ±0.10% ±0.25% ±0.50% 4.7?~1M ? ±25 ±50

不同玻璃的参数

20) 玻璃的节能特性及节能玻璃 玻璃作为透明材料被广泛应用于建筑、交通运输、船舶、航空、制冷等行业,它不仅是良好的透明材料也是一种良好的热导性材料。不管玻璃被应用于哪个领域,通过玻璃进行热传导都会发生,而透过玻璃的热传导大部分是能量损失。例如在建筑上使用的普通平板玻璃所发生的能量损失所占的比例很大,据资料介绍普通玻璃应用于建筑上,有1/3能量是通过玻璃的传导而损失的。目前在世界性能源紧张的今天节能已成为一种趋势,减少通过玻璃的能量损失越来越被建筑师和建筑使用者所重视,几乎所有的建筑师都希望能透过某种途径尽量减少建筑上的损失,以使建筑物的能耗尽量少。减少透过玻璃的能量损失已被提到议事日程。其实节能玻璃在最近几年已获得了长足的发展,只是人们对玻璃的认识还不十分全面,因此

掌握玻璃的节能特性对正确选用玻璃品种至关重要。 1 玻璃节能评价的主要参数 自然界中热量的传递通常有三种形式:对流、辐射和传导。由于玻璃是透明材料,通过玻璃的传热除上述三种形式外还有太阳能量以光辐射形式的直接透过。衡量通过玻璃进行能量传播的参数有热传导率及K值(在美国称为U值)、太阳能透过率、遮蔽系数、相对热增益等。 1.1 K值 K值表示的是在一定条件下热量通过玻璃在单位面积(通常是1m2)、单位温差(通常指室内温度与室外温度之差一般10C或1K)、单位时间内所传递焦耳数。K值的单位通常是W/m2K。K值是玻璃的传导热、对流热和辐射热的函数,它是这三种热传方式的综合体现。玻璃的K值越大,它的隔热能力就越差,通过玻璃的能量损失就越多 1.2 太阳能参数 透过玻璃传递的太阳能其实有两部分,一是太阳光直接透过玻璃而通过的能量;二是太阳光在通过玻璃时一部分能量被玻璃吸收转化为热能,该热能中的一部分又进入室内。通常有三个概念来定义: (1)太阳光透射率 太阳光以正常入射角透过玻璃的能量占整个太阳光入射能的百分数; (2)太阳能总的透过率 太阳光直接透过玻璃进入室内的能量与太阳光被玻璃吸收转化为热能后二次进入室内的能量之和占整个太阳光入射能的百分数。 (3)太阳能反射率 太阳光被所有表面(单层玻璃有两个表面,中空玻璃有四个表面)反射后的能量占入射能的百分数。 1.3 遮蔽系数 遮蔽系数是相对于3mm无色透明玻璃而定义的,它是以3mm无色透明玻璃的总太阳能透过率视为1时(3mm无色透明玻璃的总太阳能透过率是0.87)其他玻璃与其形成的相对值,即玻璃的总太阳能透过率除以0.87。 1.4 相对热增益 用于反映玻璃综合节能的指标,它是指在一定条件下即室内外温度差为15OC时透过单位面积(3mm透明,1m2)玻璃在地球纬度30O处海平面,直接从太阳接受的热辐射与通过玻璃传入室内的热量之和。也就是室内外温差在15OC时的透过玻璃的传热加上地球纬度为30O时太阳的辐射热630W/m2与遮蔽系数的积。相对热增益越大,说明在夏季外界进入室内的热量越多,玻璃的节能效果越差。对于玻璃真实的热增益是由建筑所处的地球纬度、季节、玻璃与太阳光所形成的夹角以及玻璃的性能共同决定的。影响热增益的主要因素是玻璃对太阳能的控制能力即遮蔽系数和玻璃的隔热能力。

热敏电阻规格书

NTC规格书 1)型号: DAE-303AT-95 2)主要参数 3)图纸 5) 绝缘试验 5-1) 绝缘试验

在产品外层绝缘材料抗阻值为大于100MΩ,在绝缘层施加直流 电压为500V 时此产品不会被击穿。 6)电气性能试验 6-1)高温试验: 在产品经过环境为100 ℃1,000 个小时后, 本产品变化幅度 可以控制在±1% 以内。. 6-2) 恒温恒湿试验: 在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时 后, 本产品变化幅度可以控制在±1%以内。. 6-3) 低温试验: 在产品经过环境温度为-30℃1,000小时后, 本产品变化幅度可以 控制在±1%以内 6-4) 工作状态试验: 电阻在经过1mA恒定电流状态下,在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时后, 本产品变化幅度可以控制 在±1%以内 6-5) 冲击试验: .在产品经过环境为-30℃30分钟,然后放置在室温3分钟进入. + 90℃环境放置30 分钟。再拿出在室温3分钟。连续循环100 次。本产品变化幅度可以控制在±1%以内。 6-6) 通电高温试验: 在产品经过直流为1mA电流,环境温度为+110℃1,000小时, 本产 品变化幅度可以控制在±1%以内 7)物理测试: 7-1)拉力测试 在产品经过2N拉力情况下时间1分钟,此款产品胶体与引线连接处不会脱落。 7-2) 自由落体测试: 在经过1m高的位置此产品落下,此款产品不会产生破损现象。. 7-3) 焊接测试

在产品经过距离芯片8.5 mm 处,焊接温度为260℃±10%,时间为2 ±0.5s, 本产品变化幅度可以控制在±1%以内.

AUO 10.1寸玻璃规格书(2015.1.5)

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8899Fas: +886-3-577-2730 n t i a l F o r F O n 20 14 /0 8

Doc. version : 1.1Total pages : 13 Date : 2014/05/13 Note:The content of this specification is subject to change. ? 2013 AU Optronics All Rights Reserved, Do Not Copy. n t i a l F o r F O R 8

Record of Revision n t i a l F o r F n 20 14 /0 8

Contents A.General Information.....................................................................................................................................3 B.Outline Dimension .......................................................................................................................................41. LCD Outline.................................................................................................................................................4 C. Electrical Specifications..............................................................................................................................51. LCD Pin Assignment (FPC bonding side)...................................................................................................52. Electrical DC Characteristics.. (6) 3. Compatible Driver IC...................................................................................................................................6D.Optical Specification....................................................................................................................................7E.Reliability Test Items....................................................................................................................................8F.Packing and Marking...................................................................................................................................91. Packing Form ..............................................................................................................................................9G.Mark information........................................................................................................................................101. Chip Alignment Mark for Polarizer Attachment, COG and FPC Bonding . (10) H. Precautions (12) Appendix A: (13) n t i a l F o r F O R C H I N A M A R K E T U S E O N L Y I n t e r n a l U s e O n l y O n 20 14 /0 8

玻璃钢管道技术规格书范本

目录 1 范围 本技术规格书规定哈得逊油田开发调整地面工程产能建设站外注水系统单井洗井水回 收所需的技术要求、试验方法、检验规则、包装、标志等的最低要求。对技术规格书中未 提及的但又是必须的技术要求,卖方有责任提出建议,提供完善的性能。 2 术语定义 用户:塔里木油田分公司。 购方:塔里木油田分公司。 卖方:设计、制造并对购方销售的公司。 3 标准及规范 卖方所设计、制造的产品应符合或不低于中华人民共和国国家、行业相关法规、规范的要求。

卖方必须使其设计、制造、检验和试验等符合指定的标准、规范。当卖方不能接受本 技术规格书中的某些条款时,应将偏离内容和修正意见及时通知购方。 引用标准 SY/T 6267-2006 高压玻璃钢纤维管线管规范 SY/T 6419-2009 玻璃纤维管的使用与维护 SY/T 0415-96 埋地钢质管道硬质聚氨酯泡沫塑料防腐保温层技术标准 4 使用环境 安装环境 敷设位置:室外地下(冰冻线以下)。 4 环境温度:0~15℃。 输送介质物理性质 .1输送介质:含油污水; 输送温度(℃): 20~65; .3输送压力(MPag):≤ .4 介质物性: g/cm2 2) pH 3)CO32-:0 mg/L 4)HCO3- mg/L 5)Cl-×104 mg/L 6)SO42-:255 mg/L ×104 mg/L 8)Ca2+×104 mg/L 9)Mg2+:452 mg/L 10 )K++Na+(以Na+×104 mg/L ×104 mg/L 12)总矿化度:≤×104 mg/L 13)B mg/L 14)Fe2+:226 mg/L 15)OH-: 0 mg/L 16)水温:20~65℃

热敏电阻规格书

NTC 规格书 1) 型号 : DAE-303AT-95 2) 主要参数 3) 图纸 5) 绝缘试验 5-1) 绝缘试验 在产品外层绝缘材料抗阻值为大于100M Ω , 在绝缘层施加直流

电压为500V 时此产品不会被击穿。 6)电气性能试验 6-1)高温试验: 在产品经过环境为100 ℃1,000 个小时后, 本产品变化幅度 可以控制在±1% 以内。. 6-2) 恒温恒湿试验: 在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时 后, 本产品变化幅度可以控制在±1%以内。. 6-3) 低温试验: 在产品经过环境温度为-30℃1,000小时后, 本产品变化幅度可以 控制在±1%以内 6-4) 工作状态试验: 电阻在经过1mA恒定电流状态下,在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时后, 本产品变化幅度可以控制 在±1%以内 6-5) 冲击试验: .在产品经过环境为-30℃30分钟,然后放置在室温3分钟进入. + 90℃环境放置30 分钟。再拿出在室温3分钟。连续循环100 次。本产品变化幅度可以控制在±1%以内。 6-6) 通电高温试验: 在产品经过直流为1mA电流,环境温度为+110℃1,000小时, 本产 品变化幅度可以控制在±1%以内 7)物理测试: 7-1)拉力测试 在产品经过2N拉力情况下时间1分钟,此款产品胶体与引线连接处不会脱落。 7-2) 自由落体测试: 在经过1m高的位置此产品落下,此款产品不会产生破损现象。. 7-3) 焊接测试 在产品经过距离芯片8.5 mm 处,焊接温度为260℃±10%,时

贴片电阻大全

简述: 我们常说的贴片电阻(SMD Resistor)学名叫:片式固定电阻器,是从Chip Fixed Resistor直接翻译过来的。特点是耐潮湿,耐高温,可靠度高,外观尺寸均匀,精确且温度系数与阻值公差小。 按生产工艺分厚膜(Thick Film Chip Resistors)、薄膜(Thin Film Chip Resistors)两种。厚膜是采用丝网印刷将电阻性材料淀积在绝缘基体(例如玻璃或氧化铝陶瓷)上,然后烧结形成的。我们通常所见的多为厚膜片式电阻,精度范围±0.5% ~ 10%,温度系数:±50PPM/℃~ ±400PPM/℃。薄膜是在真空中采用蒸发和溅射等工艺将电阻性材料淀积在绝缘基体工艺(真空镀膜技术)制成,特点是低温度系数(±5PPM/℃),高精度(±0.01%~±1%)。 封装有:0201,0402,0603,0805,1206,1210,1812,2010,2512。其常规系列的精度为5%,1%。阻值范围从 0.1欧姆到20M欧姆。标准阻值有E24,E96系列。功率有1/20W、1/16W、1/8W、1/10W、1/4W、1/2W、1W。 特性: ?体积小,重量轻 ?适合波峰焊和回流焊 ?机械强度高,高频特性优越 ?常用规格价格比传统的引线电阻还便宜 ?生产成本低,配合自动贴片机,适合现代电子产品规模化生产 使用状况:由于价格便宜,生产方便,能大面积减少PCB面积,减少产品外观尺寸,现在已取代绝大部分传统引线电阻。除一些小厂或不得不使用引线电阻的设计,各种电器上几乎都在使用。目前绝大部分电子产品,以0603、0805器件为主;以手机,PDA为代表的高密度电子产品多使用0201、0402的器件;一些要求稳定和安全的电子产品,如医疗器械、汽车行驶记 录仪、税控机则多采用1206、1210等尺寸偏大的电阻。 市场状况:目前,在全球的市场份额中,排名依次是台湾、日本、中国、韩国,欧美几乎不再生产。主要的生产厂商几乎都在中国建立生产基地。台湾国巨(Yageo)公司为世界上第一大生产商。日本企业则生产一些如0201、0402、高精度、高电压,具有工艺难度,利润高的系列。台湾及国内工厂则多生产些常规系列。零售市场多见为一些台湾厂和国产的品牌,如国巨(Yag eo)、风华(FH)、三星机电、厚生、丽智、美隆。 贴片电阻基本结构(ChipR Construction)

功率型NTC热敏电阻器的选用原则

功率型 NTC热敏电阻器的选用原则 华巨电子 为了避免电子电路中在开机瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻,能有效的抑制开机时的浪涌电流,并在完成浪涌电流抑制作用后,由于通过其电流的持续作用,功率型热敏电阻的阻值将下降的一个非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以在电源回路中使用功率型NTC热敏电阻,是抑制开机浪涌电流保护电子设备免遭破坏的最为简便而有效的措施 1.电阻器的最大工作电流〉实际电源回路的工作电流 2.功率型电阻器的标称电阻值 R > 1.414*E/lm 式中E为线路电压Im为浪涌电流 对于转换电源,逆变电源,开关电源,UPSt源,Im=100倍工作电流 对于灯丝,加热器等回路|m=30倍工作电流 3. B 值越大,残余电阻越小,工作时温升越小 4.一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。 功率型NTC热敏电阻器典型的应用线路 I M* 下图为使用MF72热敏电阻前后浪涌电流得比较曲线图,虚线为使用热敏电阻前,实线为使用热敏电阻后。

■功率型NTC热敏电足器在电路中规閱浪酒电流示意图* Sketch Map of Surge Current Proteclion In Circuit of Power NTC Thermistor aftHirfiLmeBiiDrtPew^Tydf …… biTC Thsmsaor Ji灼 Real Line Afiei* Faw&f-T^e HTO TnernalDr Lifting --------- 随着电子产品对可靠性要求的不断提高和能源资源的日益紧缩,高可靠性和高效节能的电子产品将是未来电子产品发展的一个方向,因此在产品的电源设计上,必须要充分考虑其可靠性能和电源使用效率。 本文首先分析电子产品为什么会有开机浪涌,然后以典型的电源电路为例分析如何使用热敏 电阻抑制浪涌电流,最后介绍热敏电阻在实际应用中应如何选型。 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间, 电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立 的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。

NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=R0 exp {B(1/T-1/T0)} R: 温度T(K)时的电阻值 Ro:温度T0(K)时的电阻值 B: B 值 *T(K)= t(oC)+273.15 exp:指数函数,e(无理数)=2.71828;exp {B(1/T-1/T0)} 指e 的{B(1/T-1/T0)} 次方。 但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。 此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) B T=CT2+DT+E 上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 ?常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

?电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C 的电阻值。 ?步骤 (1) 根据电阻-温度特性表,求常数C、D、E。 T o=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入B T=CT2+DT+E+50,求B T。 (3) 将数值代入R=5exp {(B T1/T-1/298.15)},求R。 *T : 10+273.15~30+273.15 ?电阻-温度特性图如图1所示

NTC 负温度系数热敏电阻选型与应用

NTC负温度系数热敏电阻选型与应用 I、抑制浪涌电流用MF71型NTC热敏电阻应用说明 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 图1 电源示意图 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到 I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。 浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。 图2 110/220Vac双输入电源示意图

NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac 输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac 输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。 开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。 断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。 改进型电源设计 上述使用NTC浪涌抑制器的电路与使用固定电阻的电路相比,已经具备了节能的特性。对于某些特殊的产品,如工业产品,有时客户会提出如下要求:1、如何降低NTC的故障率以提高其使用寿命?2、如何将NTC的功耗降至最低?3、如何使串联了NTC热敏电阻的电源电路能适应循环开关的应用条件? 对于第1、2两点,因为NTC热敏电阻的主要作用是抑制浪涌,产品正常启动后它所消耗的能量是我们不需要的,如果有一种可行的办法能将NTC热敏电阻从正常工作的电路中切断,就可以满足这种要求。 对于第3点,首先分析为什么使用了NTC热敏电阻的产品不能频繁开关。从电路工作原理的分析我们可以看到,在正常工作状态下,是有一定电流通过NTC热敏电阻的,这个工作电流足以使NTC的表面温度达到100℃~200℃。当产品关断时,NTC热敏电阻必须要从高温低阻状态完全恢复到常温高阻状态才能达到与上一次同等的浪涌抑制效果。这个恢复时间与NTC热敏电阻的耗散系数和热容有关,工程上一般以冷却时间常数作为参考。所谓冷却时间常数,指的是在规定的介质中,NTC热敏电阻自热后冷却到其温升的63.2%所需要的时间(单位为秒)。冷却时间常数并不是NTC热敏电阻恢复到常态所需要的时间,但冷却时间常数越大,所需要的恢复时间就越长,反之则越短。 在上述思路的指导下,产生了图3的改进型电路。产品上电瞬间,NTC热敏电阻将浪涌电流抑制到一个合适的水平,之后产品得电正常工作,此时继电器线圈从负载电路得电后动作,将NTC热敏电阻从工作电路中切去。这样,NTC热敏电阻仅在产品启动时工作,而当产品正常工作时是不接入电路的。这样既延长了NTC热敏电阻的使用寿命,又保证其有充分的冷却时间,能适用于需要频繁开关的应用场合。

贴片电阻、电容的知识

贴片电阻、电容识别方法 1.贴片电阻的识别 贴片电阻标识方法贴片电阻的识别贴片元件具有体积孝重量轻、安装密度高,抗震性强.抗干扰能力强,高频特性好等优点,广泛应用于计算机、手机、电子辞典、医疗电子产品、摄录机、电子电度表及VCD机等。贴片元件按其形状可分为矩形、圆柱形和异形三类。按种类分有电阻器、电容器,电感器、晶体管及小型集成电路等。贴片元件与一般元器件的标称方法有所不同。下面主要谈谈片状电阻器的阻值标称法。片状电阻器的阻值和一般电阻器一样,在电阻体上标明.共有三种阻值标称法,但标称方法与一般电阻器不完全一样。 1.数字索位标称法(一般矩形片状电阻采用这种标称法)数字索位标称法就是在电阻体上用三位数字来标明其阻值。它的第一位和第二位为有效数字,第三位表示在有效数字后面所加“0”的个数.这一位不会出现字母。例如:“472'’表示“4700Ω”;“151”表示“1500”。如果是小数.则用“R”表示“小数点”.并占用一位有效数字,其余两位是有效数字。例如:“2R4"表示“2.4Ω”;“R15”表示“0.15Ω”。 2.色环标称法(一般圆柱形固定电阻器采用这种标称法)贴片电阻与一般电阻一样,大多采用四环(有时三环)标明其阻值。第一环和第二环是有效数字,第三环是倍率(色环代码如表1)。例如:“棕绿黑”表示"15Ω”;“蓝灰橙银”表示“68kΩ”误差±10%。 3.E96数字代码与事母混合标称法数字代码与字

母混合标称法也是采用三位标明电阻阻值,即“两位数字加一位字母”,其中两位数字表示的是E96系列电阻代码.具体见附表2。它的第三位是用字母代码表示的倍率(如表3)。 例如:“51D”表示“332x10 3;332kΩ”;“249Y”表示“249x10 -2 ; 2.49Ω”。 “棕绿黑”表示"15Ω”;“蓝灰橙银”表示“68kΩ”误差±10%。3.E96数字代码与事母混合标称法数字代码与字母混合标称法也是采用三位标明电阻阻值,即“两位数字加一位字母”,其中两位数字表示的是E96系列电阻代码.具体见附表2。它的第三位是用字母代码表示的倍率(如表3)。 例如:“51D”表示“332x10 3;332kΩ”;“249Y”表示“249x10 -2 ; 2.49Ω”。

2.25K热敏电阻规格书

6.R-T表 Part No.: MT1K355C37C3935A-L30B0.3D1.8 R37=1.355 KΩ±0.3%(R25=2.252 KΩ±1%) B25/50=3935±0.4% T emperature (℃) R min (KΩ) R nor (KΩ) R max (KΩ) T emperature (℃) R min (KΩ) R nor (KΩ) R max (KΩ) 25.0 2245.2 2252.0 2258.8 29.2 1864.9 1871.9 1878.9 25.1 2235.1 2241.9 2248.7 29.3 1856.8 1863.8 1870.8 25.2 2225.1 2231.9 2238.6 29.4 1848.8 1855.8 1862.8 25.3 2215.1 2221.9 2228.7 29.5 1840.9 1847.9 1854.9 25.4 2205.2 2212.0 2218.8 29.6 1832.9 1840.0 1847.0 25.5 2195.3 2202.1 2208.9 29.7 1825.1 1832.1 1839.1 25.6 2185.5 2192.3 2199.1 29.8 1817.2 1824.2 1831.2 25.7 2175.7 2182.5 2189.3 29.9 1809.4 1816.4 1823.5 25.8 2166.0 2172.8 2179.6 30.0 1801.7 1808.7 1815.7 25.9 2156.3 2163.1 2170.0 30.1 1794.0 1801.0 1808.0 26.0 2146.7 2153.5 2160.4 30.2 1786.3 1793.3 1800.3 26.1 2137.1 2144.0 2150.8 30.3 1778.7 1785.7 1792.7 26.2 2127.6 2134.5 2141.3 30.4 1771.1 1778.1 1785.1 26.3 2118.1 2125.0 2131.9 30.5 1763.5 1770.5 1777.5 26.4 2108.7 2115.6 2122.5 30.6 1756.0 1763.0 1770.0 26.5 2099.4 2106.3 2113.1 30.7 1748.5 1755.5 1762.6 26.6 2090.1 2097.0 2103.8 30.8 1741.1 1748.1 1755.1 26.7 2080.8 2087.7 2094.6 30.9 1733.7 1740.7 1747.7 26.8 2071.6 2078.5 2085.4 31.0 1726.3 1733.3 1740.4 26.9 2062.5 2069.4 2076.3 31.1 1719.0 1726.0 1733.1 27.0 2053.3 2060.3 2067.2 31.2 1711.7 1718.8 1725.8 27.1 2044.3 2051.2 2058.1 31.3 1704.5 1711.5 1718.5 27.2 2035.3 2042.2 2049.1 31.4 1697.3 1704.3 1711.3 27.3 2026.3 2033.2 2040.2 31.5 1690.1 1697.1 1704.2 27.4 2017.4 2024.3 2031.3 31.6 1683.0 1690.0 1697.0 27.5 2008.5 2015.5 2022.4 31.7 1675.9 1682.9 1689.9 27.6 1999.7 2006.7 2013.6 31.8 1668.9 1675.9 1682.9 27.7 1990.9 1997.9 2004.8 31.9 1661.8 1668.8 1675.9 27.8 1982.2 1989.2 1996.1 32.0 1654.9 1661.9 1668.9 27.9 1973.5 1980.5 1987.5 32.1 1647.9 1654.9 1661.9 28.0 1964.9 1971.9 1978.8 32.2 1641.0 1648.0 1655.0 28.1 1956.3 1963.3 1970.3 32.3 1634.1 1641.1 1648.1 28.2 1947.8 1954.8 1961.7 32.4 1627.3 1634.3 1641.3 28.3 1939.3 1946.3 1953.3 32.5 1620.5 1627.5 1634.5 28.4 1930.9 1937.8 1944.8 32.6 1613.7 1620.7 1627.7 28.5 1922.5 1929.4 1936.4 32.7 1607.0 1614.0 1621.0 28.6 1914.1 1921.1 1928.1 32.8 1600.3 1607.3 1614.3 28.7 1905.8 1912.8 1919.8 32.9 1593.7 1600.6 1607.6 28.8 1897.5 1904.5 1911.5 33.0 1587.0 1594.0 1601.0 28.9 1889.3 1896.3 1903.3 33.1 1580.5 1587.4 1594.4 29.0 1881.1 1888.1 1895.1 33.2 1573.9 1580.9 1587.9 29.1 1873.0 1880.0 1887.0 33.3 1567.4 1574.3 1581.3

相关文档
最新文档