浙江省2009年10月自考近世代数试卷

浙江省2009年10月自考近世代数试卷
浙江省2009年10月自考近世代数试卷

近世代数试题

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A =B =R (实数域), φ:a →2a +1 ?a ∈A 则φ是从A 到B 的( ) A.满射而非单射 B.单射而非满射 C.一一映射

D.既非单射也非满射 2.在整数集Z 中,Z 的代数运算a o b =??

?+为奇数时

当为偶数时当a a a a 1

( )

A.既适合结合律又适合交换律

B.适合结合律但不适合交换律

C.不适合结合律但适合交换律

D.既不适合结合律又不适合交换律

3.下列关系,______是整数集Z 中元素之间的等价关系.( ) A.大于 B.大于或等于 C.整除

D.同余

4.下列集合对所给运算作成群的是( ) A.非零有理数的全体对普通数的加法 B.非零有理数的全体对普通数的减法 C.非零有理数的全体对普通数的乘法 D.非零有理数的全体对普通数的除法

5.设R=???

???∈???? ??Z c b a b c a ,,0,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是( ) A.有单位元的可换环 B.无单位元的可换环 C.无单位元的非可换环

D.有单位元的非可换环

二、填空题(本大题共9小题,每小题3分,共27分)

请在每小题的空格中填上正确答案。错填、不填均无分。 6.在5次对称群S 5中,(134)2(3512)-1=______. 7.6阶循环群有______个生成元. 8.任何一个群都同一个______同构.

9.模6的剩余类环Z 6的子环个数等于______. 10.偶数环有______个单位元.

11.设F 是有四个元的域,则F 的特征为______.

12.一个主理想环的非零最大理想都是由一个______所生成.

三、解答题(本大题共3小题,第15小题10分,第16,17小题各12分,共34分) 15.设R ={a ·i |a 为实数,i =1-},问R 关于普通数的加法和乘法是否构成环?为什么? 16.找出模14的剩余类加群Z 14的所有子群,并找出Z 14的全部生成元. 17.假定R 是由所有复数a +bi (a ,b 是整数)组成的环,求商环R /(1+i ). 四、证明题(本大题共3小题,每小题8分,共24分)

18.设G 是一个非交换群,求证:G 中存在两个不同的非单位元a 和b ,满足ab =ba . 19.假定H 是群G 的子群,N 是G 的不变子群,证明:HN 是G 的子群.

20.设A =??????∈???? ??Z c b a c b a ,,0关于矩阵的加法和乘法构成一个环,证明:A 1=???

???∈???? ??Z c a c a ,00是A 的子环,找出A 到A 1的一个同态满射f ,并求f 的核ker f .

近世代数试题

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.以下关系中,哪个不是所给集合元间的等价关系?( ) A.在有理数集Q 中关系~:a ~b ?a -b ∈Z B.在复数集C 中关系~:a ~b ?|a |=|b | C.在实数集R 中关系~:a ~b ?a ≤b D.在实数集R 中关系~:a ~b ?a =b

2.设A =Z ,D =Z +,σ∶n |→?

??<--≥+0,120

),1(2n n n n

则σ是Z 到Z +的( ) A.单射 B.满射 C.一一映射

D.不是映射

3.在实数集R 中定义代数运算aob =a +b +ab ,则这个代数运算( ) A.既适合结合律又适合交换律 B.适合结合律但不适合交换律 C.不适合结合律但适合交换律

D.既不适合结合律又不适合交换律

4.下列集合对所给运算作成群的是( )

A.非零有理数的全体Q *对普通数的加法

B.非零有理数的全体Q *对普通数的减法

C.非零有理数的全体Q *对普通数的乘法

D.非零有理数的全体Q *对普通数的除法

5.设R =?

??

???∈???? ??Z d c b a d c b a ,,,,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是 ( )

A.有单位元的可换环

B.无单位元的可换环

C.无单位元的非可换环

D.有单位元的非可换环

二、填空题(本大题共10小题,每小题3分,共30分)

请在每小题的空格中填上正确答案。错填、不填均无分。 6.设A ={a ,b ,c ,d ,e },则A 的子集共有________个. 7.在4次对称群S 4中,(143)2(132)-1=________. 8.模12的剩余类加群Z 12的生成元有________个. 9.设Z 6是模6的剩余类环,则Z 6中的零因子是________. 10.模p (素数)的剩余类环Z p 的特征为________. 11.剩余类环Z 17的可逆元有________个.

12.在高斯整环Z [i ]={a +bi |a ,b ∈Z }中,主理想(1+i )=________.

三、解答题(本大题共3小题,第16小题9分,第17、18小题各10分,共29分) 16.找出3次对称群S 3的所有子群,这些子群中哪些是S 3的不变子群? 17.设群G =Z 18子群H =([6]), (1)商群G /H =?

(2)商群G /H 与怎样的一个群同构?

18.设R =??????∈???? ??Z b a b a ,00关于矩阵的加法和乘法构成一个环,I=??????∈???? ??Z x x 000, 证明:I 是R 的理想,问商环R /I 由哪些元素组成?

四、证明题(本大题共3小题,第19、21小题每小题8分,第20小题10分,共26分)19.设R 为全体实数组成的加法群,R +表示全体正实数组成的乘法群,则R +与R 同构.

20.设M 2(Q )是有理数域Q 上的二阶矩阵环,证明:M 2(Q )只有零理想与单位理想,但不是除环. 21.证明:3-2i 是高斯整环Z [i ]={a +bi |a ,b ∈Z }的素元.

近世代数试卷

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A ={a ,b ,c ,d },则A 的一一变换共有______个.( ) A.4 B.16 C.24

D.64

2.设A ={所有实数x },A 的代数运算a 。b =a +b +ab ( ) A.既适合结合律又适合交换律 B.适合结合律但不适合交换律 C.不适合结合律但适合交换律

D.既不适合结合律又不适合交换律

3.设A ={所有有理数x },A 的代数运算是普通加法,则以下映射作成A 到A 的一个子集A 的同态满射的是( ) A.x →|x | B.x →2x C.x →x 2

D.x →|x|

4.在非零复数乘法群C *中,阶为2的元有______个.( ) A.0个 B.1个 C.2个

D.3个

5.设M 2(R )=?

?????∈???? ??为实数域R ,R b a,00b a 按矩阵的加法和乘法构成R 上的二阶方阵环,

那么这个方阵环是( ) A.有单位元的交换环 B.无单位元的变换环 C.无单位元的非交换环

D.有单位元的非交换环

二、填空题(本大题共9小题,每小题3分,共27分)

请在每小题的空格中填上正确答案。错填、不填均无分。 6.模8的剩余类加群Z 8有__________个生成元. 7.若α=(123)(45),β=(2345),则βα-1=__________. 8.设循环群G =(a ),如果a 的阶为n ,则G 同构于__________. 9.整数环有__________个可逆元.

10.剩余类环Z 5的零因子个数等于__________. 11.剩余类环Z 6的子环有__________个.

12.整环I ={所有复数a +b 5-(a ,b 是整数)},则I 的单位是__________.

三、解答题(本大题共3小题,第15小题6分,第16小题14分,第17小题12分,共32分)

15.若A ={a ,b ,c ,d }对于代数运算“o ”来说作成群,且除单位元以外,每个元的阶都是2,试作出A 的代数运算表.

16.找出模12的剩余类环Z12的所有子环,这些子环是否都是理想?为什么?

17.偶数环2Z的主理想(4)含有哪些元?2Z/(4)含有哪些元?2Z/(4)是否为域?为什么?

四、证明题(本大题共3小题,第18小题6分,第19,20小题各10分,共26分)

18.若F是一个有四个元的域,则F的特征是2.

19.证明:阶为p m的群(p是素数)一定包含一个阶是p的子群.

中a所在的剩余类,[a]表示Z r中a所在的剩余类,令f:a

20.设m,r是取定的正整数,且r|m.用符号a表示Z

[a],证明:

(1)f是Z m到Z r的同态满射.

(2)求ker f.

(3)Z m/ker f是怎样的环?

近世代数试题

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.以下关系中,哪个是实数集的元间的等价关系?( )

A.关系~:a~b?a2+b2=1

B.关系~:a~b?a≤b

C.关系~:a~b?a=2b

D.关系~:a~b?a=b

2.设A是区间[0,1]上全体实函数组成的集合,规定:

σ( f (x))=(x2+1) f (x),?f (x)∈A,

则σ是A的( )

A.满变换

B.单变换

C.一一变换

D.不是A的变换

3.在有理数集Q上定义代数运算a b=(a+b)2,则这个代数运算( )

A.既适合结合律又适合交换律

B.适合结合律但不适合交换律

C.不适合结合律但适合交换律

D.既不适合结合律又不适合交换律

4.下列集合对所给运算作成群的是( )

A.全体实数对普通数的加法

B.全体实数对普通数的减法

C.全体实数对普通数的乘法

D.全体实数对普通数的除法

5.设

???

???∈???? ??=Z b a b a R ,00,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是( ) A.有单位元的可换环 B.无单位元的可换环 C.无单位元的非可换环

D.有单位元的非可换环

二、填空题(本大题共9小题,每小题3分,共27分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设A={a,b,c,d,e},则A 的一一变换共有______个. 7.在4次对称群S4中,(134)2(312)-1=______.

8.在3次对称群S3中,H ={(1),(12)}是S3的一个子群,则H (23)=______. 9.设Z8是模8的剩余类环,则Z8中的零因子是______. 10.剩余类环Z15的可逆元有______个.

11.设Z [x ]是整系数多项式环,则Z [x ]的主理想(x2)=______. 12.整环I ={所有复数a+b 2-(a,b 是整数)},则I 的单位是______.

三、解答题(本大题共小3题,第15小题10分,第16,17小题各12分,共34分)

15.设M 是一个非空集合,2M 是M 的幂集(M 的子集的全体称为M 的幂集),问2M 关于集合的并∪是否构成群?为什么?

16.找出模20的剩余类加群Z20的所有子群,并找出Z20的全部生成元.

17.设

??????∈?

???

??=Z b a b a R ,00关于矩阵的加法和乘法构成一个环,I =???

???∈?

??? ??Z x x 000证明:I 是R 的理

想,问商环R/I 由哪些元素组成?

四、证明题(本大题共3小题,每小题8分,共24分) 18.设G 是一个群,?a ∈G 证明:a 与a-1的阶相同.

19.设G=)(Q M n ={有理数域上所有n 阶可逆矩阵},H = {A|A ∈G ,|A|=1}证明:H 是G 的不变子群.

近世代数试题

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设集合A中含有4个元素,那么积集合A×A中含有______个元素.( )

A.4

B.8

C.12

D.16

2.设R是整数集,A=R×R,σ∶(x,y)→(x,-y),则σ是A的( )

A.满变换

B.单变换

C.一一变换

D.不是A的变换

3.在有理数集Q中的代数运算a b=b2( )

A.适合结合律但不适合交换律

B.不适合结合律但适合交换律

C.既适合结合律又适合交换律

D.既不适合结合律又不适合交换律

4.在4次对称群S4中,阶为2的元有( )

A.6个

B.7个

C.8个

D.9个

5.除环的理想有( )

A.1个

B.2个

C.3个

D.4个

二、填空题(本大题共10小题,每小题3分,共30分)

请在每小题的空格中填上正确答案。错填、不填均无分。

6.剩余类加群Z4有______个生成元.

7.在4次对称群S4中,(123)(1423)-1=______.

8.阶为n的有限循环群同构于______.

9.剩余类环Z11的零因子个数等于______.

10.剩余类环Z13的可逆元有______个.

11.如果G是一个含有16个元素的群,那么,根据Lagrange定理知,对于?a∈G,元素a的阶只可能是______.

-(a,b是整数)},则I的单位是______.

12.整环I={所有复数a+b7

三、解答题(本大题共3小题,第16小题7分,第17,18小题各12分,共31分)

16.假定下表是一个群的乘法表,试填出未列出的元.

17.找出模15的剩余类环Z15的所有子环,这些子环是否都是Z15的理想?为什么? 18.设Z 是整数环,(2)∩(5)、(2,5)是Z 的怎样的理想?(2)∪(5)是Z 的理想吗?为什么? 四、证明题(本大题共3小题,每小题8分,共24分) 19.证明:循环群是交换群.

20.在高斯整环Z [i ]={a+bi |a,b ∈Z}中,证明:3是素元. 21.证明:整数加群与偶数加群同构,但整数环与偶数环不同构.

近世代数试题

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设m 是一个正整数,?a ∈Z,作带余除法:a=mq+r,0≤r

C.一一变换

D.既不是满变换也不是单变换

2.有理数集Q 上的代数运算b a =b 3( ) A.既适合结合律又适合交换律 B.适合结合律但不适合交换律 C.不适合结合律但适合交换律 D.既不适合结合律又不适合交换律

3.剩余类加群Z 8的子群有( ) A.4个 B.5个 C.6个

D.7个

4.在3次对称群S 3中可以与(132)交换的所有元素为( ) A.(1),(132) B.(12),(13),(23) C.(1),(123),(132)

D.S 3中的所有元素

5.M 2(R)=???

???????∈???? ??为实数域R ,R b ,a 0b 0a 按矩阵的加法和乘法构成R 上的二阶方阵环,这个方阵环是( )

A.有单位元的交换环

B.无单位元的非交换环

C.无单位元的交换环

D.有单位元的非交换环

二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设A={a,b,c,d,e,f},则A 的一一变换共有________个. 7.在非零实数乘法群R*中,阶为2的元有________个. 8.在4次对称群S 4中,(132)2(1234)-1=________. 9.模10的剩余类加群Z 10有________个生成元. 10.模P (素数)的剩余类环Zp 有________个可逆元. 11.模9的剩余类环Z 9的零因子为________.

12.设Z [x ]是整系数多项式环,则Z [x ]的理想(3,x)=________.

三、解答题(本大题共3小题,第16小题10分,第17小题14分,第18小题6分,共30分)

16.设M 是一个非空集合,2M 是M 的幂集(M 的子集的全体称为M 的幂集),问2M 关于集合的交∩是否构成群?试说明理由.

17.找出模20的剩余类环Z 20的所有子环.并说明这些子环是否是Z 20的理想,为什么? 18.Z 3={[0],[1],[2]},找出加群Z 3的所有自同构,再找出域Z 3的所有自同构. 四、证明题(本大题共3小题,第19小题6分,第20小题9分,第21小题10分,共25分) 19.设A={平面上所有直线},给定关系~:l 1~l 2?l 1∥l 2或l 1=l 2. 证明:关系~是A 元间的等价关系.

20.假定G 是一个循环群,N 是G 的一个子群,证明:G/N 也是循环群.

21.设R=??????∈???? ??Z b ,a b 0a 0关于矩阵的加法和乘法构成一个环,I=???

???∈???? ??Z x 00x 0, 证明:I 是R 的理想,问商环R/I 由哪些元素组成?

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数ch2(1-6节)习题参考答案

第二章前6节习题解答 P35 §1 1.全体整数集合对于普通减法来说是不是一个群? 解 ∵减法不满足结合律,∴全体整数对于减法不构成群。 2.举出一个有两个元的群例子。 解 }11{-,对于普通乘法构成一个群。 ]}1[]0{[,对于运算][][][j i j i +=+构成群。 ]}2[]1{[,对于运算][]][[ij j i =构成群。 它们都是两个元的群。 3. 设G 是一个非空集合,”“ο是一个运算。若①”“ο运算封闭;②结合律成立;③G 中存在 右单位元R e :G a ∈?,有a ae R =;④G a ∈?,G a R ∈?-1,有R R e aa =-1。则G 是一个群。 证(仿照群第二定义的证明) 先证R R R e a a aa ==--1 1。 ∵G a R ∈-1,∴G a ∈?',使R R e a a =-'1, ∴R R R R R R R R R R R e a a a e a a aa a a a a a e a a a a ======--------''')()')(()(11111111,R R e a a =?-1。 ∴R R R e a a aa ==--11。 再证a ae a e R R ==,即R e 是单位元。 G a ∈?,已证R R R e a a aa ==--11,∴a a e a ae a a a a aa a e R R R R R =?====--)()(1 1。 ∴a ae a e R R ==。即R e 就是单位元e 。再由e a a aa R R ==--11得到1 -R a 就是1-a 。 这说明:G 中有单位元, G a ∈?都有逆元1-a 。 ∴G 是一个群。 P38 §2 1. 若群G 的每一个元都适合方程e x =2,那么G 是可交换的。 证∵ 12,-=?=∈?x x e x G x 。 ∴。b b a a G b a 11,,--==?∈? ∴ba ba b a ab ===---111)(。 ∴ba ab =,即G 是可换群。 2.在一个有限群中阶大于2的元的个数一定是偶数。 证 令a 是有限群G 中一个阶2>的元,∵互逆元是同阶的,∴1-a 的阶也大于2,且a a ≠-1 (若矛盾的阶与2,21>=?=-a e a a a )。 设G 中还有阶2>的元b ,且1,-≠≠a b a b ,∴1-b 的阶也大于2,且b b ≠-1。

2008年1月浙江省自考试卷近世代数试题

1 浙江省2008年1月高等教育自学考试 近世代数试题 课程代码:10025 一、单项选择题(本大题共5小题,每小题3分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设m 是一个正整数,?a ∈Z,作带余除法: a=mq+r,0≤r

[精华版]近世代数期末考试试卷及答案

[精华版]近世代数期末考试试卷及答案 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。 33,,,,aa,e,,e,a,,e,a,aA、 B、 C、 D、 2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的,( ) A、a*b=a-b,,,B、 a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| ,,,,,,3322114、设、、是三个置换,其中=(12)(23)(13),=(24)(14),= ,3(1324),则=( ) 22,,,,,,122121A、 B、 C、 D、 5、任意一个具有2个或以上元的半群,它( )。 A、不可能是群,,,B、不一定是群 C、一定是群 D、是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 4Gaa3、已知群中的元素的阶等于50,则的阶等于------。 4、a的阶若是一个有限整数n,那么G与-------同构。 5、A={1.2.3} B={2.5.6} 那么A?B=-----。 6、若映射既是单射又是满射,则称为-----------------。,,

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 321个 n n a aa a ...=,43421个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数期末考试试卷与答案

一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。 A、a B、 a , e 33 C、 e, a D、 e, a , a 2、下面的代数系统( G, * )中,()不是群 A、G为整数集合, * 为加法 B、G为偶数集合, * 为加法 C、G为有理数集合, * 为加法 D、G为有理数集合, * 为乘法 3、在自然数集 N 上,下列哪种运算是可结合的?() A、a*b=a-b B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| 4、设 1 、 2 、 3 是三个置换,其中 1 =(12)(23)(13),2 =(24)(14),3=( 1324),则3=() A、2 B 、12 D 、2 1 12C 、2 5、任意一个具有 2 个或以上元的半群,它()。 A、不可能是群 B、不一定是群 C、一定是群 D、是交换群 二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正 确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子 ----- 称为整环。 4 3、已知群G中的元素a的阶等于 50,则a的阶等于 ------。 4、a 的阶若是一个有限整数n,那么 G与-------同构。 5、A={1.2.3}B={2.5.6}那么 A∩B=----- 。 6、若映射既是单射又是满射,则称为-----------------。 7 、叫做域F的一个代数元,如果存在F的----- a 0 , a1 , , a n使得 n a 0 a 1 a n0 。

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

近世代数期末考试试卷

近世代数模拟试题二 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数参考答案

安徽大学2008-2009学年第一学期《近世代数》 考试试卷(B 卷)参考答案 一、名词解释题(本题共5小题,每小题3分,共15分) 1、对,显然模n 的同余关系满足以下条件: 1)对Z 中的任意元素a 都有(mod )a a n ≡;(反身性) 2)如果(mod )a b n ≡,必有(mod )b a n ≡;(对称性) 3)如果(mod )a b n ≡,(mod )b c n ≡,必有(mod )a c n ≡(传递性) 则这个关系是的一个等价关系. 2、错,因为2Z ∈,在Z 中没有逆元. 3、错,因为由于[]Z x x Z <>?,而整数环Z 不是一个域. 4、错,在同态满映下,正规子群的象是正规子群. 5、对,[]F x 是一个有单位元的整环,且 1)存在?:()()f x f x →的次数, 是非零多项式到非负整数集的一个映射; 2)在[]F x 中任取()f x 及()0g x ≠,存在[]F x 上的多项式()q x ,()r x 满足 ()()()(f x g x q x r x =+,其中()0r x =或()r x 的次数<()g x 的次数. 因此[]F x 作成一个欧式环. 二、计算分析题(本题共3小题,每小题5分,共15分) 1、στ=(2453),2τσ=(2346),1τστ-=(256413). 2、12Z 的所有的可逆元为1,5,7,11;n Z 的子环共有()T n 个,故12Z 共有6个子环,它们分别是{}10S =,{}20,6S =,{}30,4,8S =,{}40,3,6,9S =,{} 50,2,4,6,8,10S =和12Z 本身. 3、在8Z 中:32([4][3][2])([5][3])x x x x +--+ 5432 [4][4][3][5][3][6]x x x x x =-+-+-. 三、举例题(本题共3小题,1,2题各3分,第3题4分,共10分) 1、在整数环上的一元多项式[]Z x 中,由于[]Z x x Z <>?,整数环Z 是一个

近世代数期末试卷

近世代数期末试卷 一、填空题(共20分) 1. 设G=(a)是6阶循环群,则G的子群有。 2. 设A、B是集合,| A |=| B |=3,则共可定义个从A到B的映射,其中 有个单射,有个满射,有个双射。 3. 在4次对称群S4中,(24)(231)=,(4321)-1=,(132)的阶为。 4. 环Z6的全部零因子是。 5. 整环Z中的单位有。 6. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=的在G中的指数是。 二、判断题(对打“√”,错打“×”,每小题2分,共20分) 1. ()一个阶是11的群只有两个子群。 2. ()设G是群,H1是G的不变子群,H2是H1的不变子群,则H2是G的不变子群。 3. ()存在特征是2004的无零因子环。 4. ()域是主理想整环。 5. ()模27的剩余类环Z27是域。 6. ()素数阶群都是交换群。 7. ()在一个环中,若左消去律成立,则消去律成立。 8. ()循环群的商群是循环群。 9. ()域只有零理想和单位理想。 10. ()相伴关系是整环R的元素间的一个等价关系。 三、解答题(共30分) 1. 设H={(1),(12)}是对称群S3的子群,写出H的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么 2. 求模12的剩余类加群(Z12,+,[0])的所有子群及这些子群的生成元。 3. 在整数环Z中,求由2004,17生成的理想A=(2004,17)。 四、证明题(共30分) 1.设I1={2k|k∈Z}, I2={3k|k∈Z},试证明: (1)I1,I2都是整数环Z的理想。(2)I1∩I2=(6)是Z的一个主理想。 2. 设φ是群G到群H的同态满射, H1是H的子群。证明:G1= {x|x∈G且φ(x)∈H1}是G的子群。 3. 设环(R,+,·,0,1)是整环。证明:多项式环R[x]能与它的一个真子环同构。 - 1 -

《近世代数》模拟试题2及答案

近世代数模拟试题 一、单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个就是单位元( )。 A 0 B 1 C -1 D 1/n,n就是整数 2、下列说法不正确的就是( )。 A G只包含一个元g,乘法就是gg=g。G对这个乘法来说作成一个群 B G就是全体整数的集合,G对普通加法来说作成一个群 C G就是全体有理数的集合,G对普通加法来说作成一个群 D G就是全体自然数的集合,G对普通加法来说作成一个群 3、下列叙述正确的就是( )。 A 群G就是指一个集合 B 环R就是指一个集合 C 群G就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 D 环R就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 4、如果集合M的一个关系就是等价关系,则不一定具备的就是( )。 A 反身性 B 对称性 C 传递性 D 封闭性 S的共轭类( )。 5、下列哪个不就是 3 A (1) B (123),(132),(23) C (123),(132) D (12),(13),(23) 二、计算题(每题10分,共30分) S的正规化子与中心化子。 1、求S={(12),(13)}在三次对称群 3

2、设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶。 3、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,求出其右零因子。

三、证明题(每小题15分,共45分) 1、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,证明??? ? ??0,00,0就是其零因子。 2、设Z 就是整数集,规定a ·b =a +b -3。证明:Z 对此代数运算作成一个群,并指出其单位元。

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). ¥ A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在.

》 D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. 二. 计算题(每题10分,共30分) 1. 设G是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G中下列各个元素 1213 ,, 0101 c d cd ???? == ? ? - ???? , 的阶.; ;

2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群. } … & 3. 若e 是环R 的惟一左单位元,那么e 是R 的单位元吗若是,请给予证明.

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算就是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、 2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能就是群 B 、不一定就是群 C 、一定就是群 D 、 就是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若就是一个有限整数n,那么G 与-------同构。 5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。 6、若映射?既就是单射又就是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。 8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为

近世代数模拟试题1及答案

近世代数模拟试题 单项选择题(每题5分,共25分) 1、在整数加群(Z+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n , n 是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg= g。G对这个乘法来说作成一个群 B . G是全体整数的集合,G对普通加法来说作成一个群 C . G是全体有理数的集合,G对普通加法来说作成一个群 D. G是全体自然数的集合,G对普通加法来说作成一个群 3.如果集合M的一个关系是等价关系,则不一定具备的是(). A . 反身性B. 对称性C. 传递性D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z 没有生成元. B. 1 是其生成元. C. -1 是其生成元. D. Z 是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R 是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律, 并且单位元, 逆元存在. D. 环R 是指一个非空集合和一个代数运算,满足结合律, 并且单位元,

逆元存在. 二. 计算题(每题10 分,共30 分) 1.设G是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 3 的群,试求中G中下列各个元素c ,cd , 1 的阶. 2. 试求出三次对称群 S3 (1),(12),(13),(23),(123),(132) 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗若是, 请给予证明. 证明题(第1小题10分,第2小题15分,第3小题20分,共45 分). 1. 证明: 在群中只有单位元满足方程

《近世代数》作业参考答案

《近世代数》作业参考答案 一.概念解释 1.代数运算:一个集合B A ?到集合D 的映射叫做一个B A ?到D 的代数运算。 2.群的第一定义:一个非空集合G 对乘法运算作成一个群,只要满足: 1)G 对乘法运算封闭; 2)结合律成立: )()(bc a bc a =对G 中任意三个元c b a ,,都成立。 3)对于G 的任意两个元b a ,来说,方程b ax =和b ya =都在G 中有解。 3.域的定义:一个交换除环叫做一个子域。 4.满射:若在集合A 到集合A 的映射Φ下,A 的每一个元至少是A 中的某一个元的象,则称Φ为A 到A 的满射。 5.群的第二定义:设G 为非空集合,G 有代数运算叫乘法,若:(1)G 对乘法封闭; (2)结合律成立; (3)单位元存在; (4)G 中任一元在G 中都有逆元,则称G 对乘法作成群。 6.理想:环R 的一个非空子集N 叫做一个理想子环,简称理想,假若: (1)N b a N b a ∈-?∈, (2)N ar N ra N r N a ∈∈?∈∈,, 7.单射:一个集合A 到A 的映射,a a →Φ: ,A a A a ∈∈,,叫做一个A 到A 的单射。 若:b a b a ≠?≠。 8. 换:一个有限集合的一个一一变换叫做一个置换。 9. 环:一个环R 若满足:(1)R 至少包含一个不等于零的元。 (2)R 有单位元。 (3)R 的每一个非零元有一个逆元,则称R 为除环。 10.一一映射:既是满射又是单射的映射,叫做一一映射。 11.群的指数:一个群G 的一个子群H 的右陪集(或左陪集)的个数,叫做群H 在G 里的指数。 12.环的单位元:设R 是一个环,R e ∈,若对任意的R a ∈,都有a ae ea ==,则称e 是R 的单位元。 二.判断题 1.×; 2.×;3. √;4.×;5.√;6.√ ;7.√; 8,√;9.√;10.√;11.×;12.√ 三.证明题 1. 证:G 显然非空,又任取A ,B G ∈,则1,1±=±=B A ,于是AB 是整数方阵,且1±=?=B A AB , 故G AB ∈,即G 对乘法封闭。结合律显然成立,且E 是G 单位元。 又设G A ∈,由于A 是整数方阵,故A 的伴随矩阵* A 也是整数方阵; 又,1±=A 故**-±== A A A A 11 ,即1 -A 也是整数方阵,即G 中每一个元在G 中都有逆元,从而证得G 作 成一个群。 2.证:设∞=a ,则当n m ≠时,n m a a ≠,于是映射Φ:m a m →就是G=(a )到整数加群Z 的一个一一 映射。又n m a a a n m n m +→=?+,故Φ是G 到Z 的同构映射。即G=(a )与整数加群Z 同构。

近世代数期末考试试卷及答案(正)

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集(C )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子的--交换环---称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于--25----。 4、a 的阶若是一个有限整数n ,那么G 与-模n 乘余类加群------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=--{2}---。 6、若映射?既是单射又是满射,则称?为----一一映射-------------。 7、α叫做域F 的一个代数元,如果存在F 的--不都等于零的元---n a a a ,,,10 使 得 010=+++n n a a a αα 。

相关文档
最新文档