费马定理、欧拉定理、威尔逊定理(讲稿)(优.选)

费马定理、欧拉定理、威尔逊定理(讲稿)(优.选)
费马定理、欧拉定理、威尔逊定理(讲稿)(优.选)

欧拉定理、费马定理、威尔逊定理

1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数.

①欧拉函数值的计算公式:若m =p 1α1p 2α2

…p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n

) 例如,30=2·3·5,则.8)51

1)(311)(211(30)30(=---=?

②若p 为素数,则1

()1,()(1),k k p p p p p ??-=-=-若p 为合数,则()2,p p ?≤-

③不超过n 且与n 互质的所有正整数的和为1

()2

n n ?;

④若(,)1()()(),a b ab a b ???=?= 若()()a b a b ???

⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()n

d

?, 同时

()()d n

d n

n d n d

??==∑∑;

例1、证明:φ(n )=1

4

n 不可能成立.

不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:

设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k k

k k k k k k k k k k 4

1

)4()

1()1)(1(4)

1()1)(1(22)1()1)(1(2241)(,,),2(,2|44

1

)4(4

1

)4(21212111

21121222112121212121212

1212

1=

∴∴∴---=---=---==

≥==

=----??α??αααααααααααααααααααα

例2、证明:数列{2n -3}中有一个无穷子数列,其中任意两项互质.

}

{}32{1,,,1),(mod 1321),(mod 12

2

)(3

2,,,,}32{}32{21211)()

((()

(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u k

i u k

i u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))-+∴≤≤-≡-∴≤≤≡-=--++++ ???????

例3、已知p 为质数,在1, 2, …, p α中有多少个数与p α互质?并求φ(p α). 直接用性质②

例4 将与105互素的所有正整数从小到大排成数列,求出这个数列的第2010项.

解:1~105的所有正整数中共有(105)(3)(5)(7)48????==个与105互素,他们从小到排列为:

12345481,2,4,8,11,,104a a a a a a ======. 对于任一的n a ,由带余除法存在唯一的q , r 使得

105,0,0105n a q r q r =+≥≤<,由(a n ,105)=1,可得(r ,105)=1,即1248{,,

,}r a a a ∈.

反之,对于任意固定非负整数q , 1248{,,

,}r a a a ∈有(105q +r ,105)=1,于是105q +r 都是数列的项,

从而存在正整数n ,使得105n a q r =+. 因此数列{}n a 仅由105(1,2,

,48)n q a n +=的数由小到大排列而成的.

因为2010=48*41+42,所以有2010424842201010541,104,89,4394a a a a a =?+===而由求得所以. 2、(欧拉定理) 若(a , m )=1,则a φ(m )≡1(mod m ).

证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系,又∵(a , m )=1,∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ),又∵(r 1·r 2·…·r φ(m ), m )=1,∴a φ(m )≡1(mod m ). 注:这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题. 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ).

2、(定义1) 设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ), 我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: ⑴ 设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡v (mod k ), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然.

必要性:设,u l u νν>=-,由(mod )u

a a m ν≡及(,)1a m =知1(mod )l

a m ≡. 用带余除法,,0,l kq r r k =+≤<故1(mod )kq

r

a a m ?≡,∴1(mod )r

a m ≡,

由k 的定义知,必须0r =,所以(mod ).u v k ≡

⑵ 设(a , m )=1,k 是a 模m 的阶,则数列a , a 2, …, a k , a k +

1,…是模m 的周期数列,最小正周期为k , 而k 个数a , a 2,…, a k 模m 互不同余.

⑶ 设(a , m )=1,k 是a 模m 的阶,则k |φ(m ),特别地,若m 是素数p ,则a 模p 的阶整除p -1. (4) 设(a , p )=1, 则d 0是a 对于模p 的阶?0d

a ≡1(mod p ), 且1, a , …, a do ?1对模p 两两不同余. 特别地, d o =φ(p )?1, a ,…, a φ(p )?1构成模p 的一个简化剩余系. 定理:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s

≡,则s 必为l 的倍数. 例5、设a 和m 都是正整数,a >1. 证明:).1(|-m

a m ?

证明:实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-m

a m ? 例6:设m , a ,

b 都是正整数,m >1,则(.1)1,1),(-=--b a b

a

m m m

证明:记).1,1(--=b

a

m m d 由于(a , b )|a 及(a , b )|b ,易知1|1)

,(--a b a m m

及1|1),(--b b a m m ,

故d m

b a |1)

,(-, 另一方面设m 模d 的阶是k ,则由)(m od 1),(m od 1d m d m b a ≡≡

推出,k |a 及k |b ,故k |(a ,b ). 因此.1|),(m od 1),()

,(-≡b a b a m d d m 即

综合两方面可知,.1)

,(-=b a m

d 证毕.

3、(费尔马小定理) 若p 是素数,则a p ≡a (mod p ) 若另上条件(a ,p )=1,则a p ?1≡1(mod p ) 证明:设p 为质数,若a 是p 的倍数,则)(m od 0p a a p

≡≡.若a 不是p 的倍数,则1),(=p a 由欧拉定理得:)(mod 1,1)()

(p a

p p p ≡-=??,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得.

4、(威尔逊定理) p 为质数 ? (p -1)!≡-1 (mod p )

证明:充分性:若p 为质数,当p =2,3时成立,当p >3时,

令x ∈{1, 2, 3, …, p ?1},则1),(=p x ,在x p x x )1(,,2,- 中,必然有一个数除以p 余1, 这是因为x p x x )1(,,2,- 则好是p 的一个剩余系去0. 从而对}1,,2,1{},1,2,1{-∈?-∈?p y p x ,使得)(mod 1p xy ≡;

若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,这不可能. 故对于不同的}1,,2,1{,21-∈p y y ,有1xy ≡/)(m od 2p xy .即对于不同的x 对应于不同的y , 即1,,2,1-p 中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12

p x ≡,即与它自己配对, 这时)(m od 012

p x ≡-,)(mod 0)1)(1(p x x ≡-+,∴1-=p x 或1=x .

除1,1-=p x 外,别的数可两两配对,积除以p 余1.故)(mod 11)1()!1(p p p -≡?-≡-.

必要性:若(p -1)!≡-1 (mod p ),假设p 不是质数,则p 有真约数d >1,故(p -1)!≡-1 (mod d ),

另一方面,d <p ,故d |(p -1)!,从而(p -1)!≡0 (mod d ),矛盾! ∴p 为质数.

5、算术基本定理:任何一个大于1的整数都可以分解成质数的乘积. 如果不考虑这些质因子的次序,

则这种分解法是唯一的. 即对任一整数n >1,有n =p 1α1p 2α2

…p k αk ,其中p 1<p 2<…<p k 均为素数, α1、α2、…、αk 都是正整数.

①正整数d 是n 的约数? d =p 1β1p 2β2

…p k βk ,(0≤βi ≤αi , i =1, 2, …, k )

② 由乘法原理可得:n 的正约数的个数为r (n )=(α1+1)(α2+1)…(αk +1) ③ n 的正约数的和为S (n )=(1+p 1+…+p 1α1

)(1+p 2+…+p 2α2)…(1+p k +…+p k αk )

④ n 的正约数的积为T (n )=1

()2

r n n

⑤ n 为平方数的充要条件是:r (n )为奇数.

(2) 判断质数的方法:设n 是大于2的整数,如果不大于n 的质数都不是n 的因子,则n 是质数. (3) n !的标准分解:设p 是不大于n 的质数,则n !中含质数p 的最高次幂为:

).]([][][][)!(132+<≤++++=m m m p n p p

n

p n p n p n n P 从而可以写出n !的标准分解式.

例7、证明:当质数p ≥7时,240|p 4-1.

1

|2401

|531653161

|51

|31

),5(,1),3(16422)1)(1)(1(1111,1,1)

1)(1)(1(1,72401744442242244-∴-??--∴==??++-=-+-++-++-=-∴≥-≥p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:和均为偶数,且又是奇数

素数证:整除;能被时,、证明当素数例

例8、求2005

2003被17除所得的余数.

解:()

2005

2005

20052003

171141414(mod17),=?+≡

因为(17,14)1,=所以由费马小定理得16

141(mod17),≡ 故()()()()()54

2005

200516125552003

1414143334312(mod17),?+≡≡≡≡-≡--≡--≡

所以2005

2003被17除所得的余数是14.

变式拓展:已知a 为正整数,a ≥2,且(a , 10)=1,求a 20的末两位数字.

解:∵(a , 10)=1,∴a 为奇数,∴a 20=a φ(25)≡1(mod 25),又∵a 2≡1(mod 4)? a 20≡1(mod 4), 又∵(25, 4)=1,∴a 20≡1(mod 100),∴a 20的末两位数字01.

例9、证明:方程3

25y x =+无整数解.

解:若y 是偶数,则8 |3

y ,x 2≡3(mod 8)不可能. 故必有y 一定是奇数,从而x 是偶数.

令x =2s ,y =2t +1得t t t s 364222

3

2

++=+, 知t 是偶数,令t =2j ,代入得s 2+1=j (16j 2+12j +3) 由(16j 2+12j +3)≡3(mod 4) 知存在4k +3型的奇素数p ,使得p |(16j 2+12j +3),从而p | s 2+1,

即s 2≡-1(mod p ),有(s ,p )=1, 2

1212

)1()

(---≡p p s (mod p ),于是 1

-p s ≡-1(mod p )与费尔马小定理矛盾.

例10、 试证:对于每一个素数p ,总存在无穷多个正整数n ,使得p |2n -n.. 证明:若p =2,则n 为偶数时结论成立.

若p >2,则(2,p )=1,由费尔马小定理2 p -

1≡1(mod p ),故对于任意m ,有2 m (p ?1)≡1(mod p ). ∴2 m (p ?1)-m (p -1)≡1+m (mod p ),令1+m ≡0(mod p ),即m =kp -1, 则对于n =m (p -1)=(kp -1)(p -1)(k ∈N *),均有2 n -n 被p 整除

例11、设a , b 为正整数,对任意的自然数n 有n n

a n

b n ++,则a =b . 证明:假设a 与b 不相等. 考虑n =1有11a b ++,则a <b .

设p 是一个大于b 的素数,设n 是满足条件的正整数:1(mod(1)),(mod ),n p n a p ≡-≡- 由孙子定理这样的n 是存在的,如 n =(a +1)(p -1)+1. 由费马定理(1)1

(mod ),n

k p a a

a p -+=≡所以0(mod ),n a n p +≡

也即

,(mod)

n n

p b n b n b a p

++≡-

再由费马定理,所以p b a

-,矛盾.

例12、设p是奇素数,证明:2 p-1的任一素因了具有形式x

px,1

2+是正整数.

证明:设q是2 p-1的任一素因子,则q≠2. 设2模q的阶是k,则由)

(m od

1

2q

p≡知k|p,故k=1或p (因p是素数,这是能确定阶k的主要因素).

显然k≠1,否则),

(m od

1

21q

≡这不可能,因此k=p.

由费马小定理)

(mod

1

21q

q≡

-推出.1

|

,1

|-

-q

p

q

k即因p、q都是奇数,故q-1=2px(x是个正整数). 例13、设p是大于5的素数, 求证:在数列1, 11, 111, …中有无穷多项是p的倍数.

证明:因5

p>是素数, 故(,10) 1.

p=由费马小定理1

101(mod),

p p

-≡

故对每一个正整数l有()1

1010(mod),

l p p

--≡而()

()()

1

1

1

1019999111,

l p

l p

l p

-

-

-

-==?

因()1

(,9)1,101,

l p

p p-

=-故

()1

11 1.

l p

p

-个

例14、证明:若0(mod),

p p

m n p

+≡则2

0(mod),

p p

m n p

+≡这里p是奇素数.

证明:因p是奇素数,故由费马定理得,(mod),(mod).

p p

m m p n n p

≡≡于是,(mod).

p p

m n m n p

+≡+

故可由已知条件0(mod)

p p

m n p

+≡得0(mod).

m n p

+≡故存在整数k使得,.

m n pk n pk m

+==-因此()()()()

()()()

12

122

1

112

10(mod).

p p p p

p p p

p p

r p r

r r p p

p p

m n m pk m pk C pk m C pk m

C pk m C pk m p

--

---

+=+-=-++

+-++≡

例15、(2004第36届加拿大奥林匹克) 设p是奇质数,试证:∑-

=

-

+

1

1

2

1

2)

(mod

2

)1

(

p

k

p p

p

p

k

例16、(第44届IMO) 设p是质数,试证:存在一个质数q,使对任意整数n,数n p?p不是q的倍数.

例17、已知p是给定的质数,求最大正整数m满足:⑴1≤m≤p?1;⑵∑-

=≡

1

1

) (mod

p

k

m p k.

例18、(2006国家集训队测试题) 求所有的正整数对(a, n),使得n|(a+1)n?a n

课外练习题:

1、①证明:f (x )=15x 5+13x 3+715x 是一个整值多项式. ②求证:f (n )=15n 5-32n 2+13

10

n -1被3除余2.

①则只需证=)(15x f x x x 7533

5++是15的倍数即可. 由3,5是素数及Fetmat 小定理得)5(mod 5

x x ≡,

)3(mod 3x x ≡,则)5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x

而(3,5)=1,故)15(mod 07533

5

≡++x x x ,即)(15x f 是15的倍数, 所以)(x f 是整数. 2、 证明:2730|n 13-n (n ∈N *)

)

(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()

1)(1)(1)(1)(1()

1)(1)(1()

1)(1(),

(|13),(,)(1375322730)

(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式都是故由于可知则由费马小定理,,若记=证明:【练习】证明:-=-=-=-=++-+++-=++-=+-=-∈-=????∈-

3、 已知有正整数b a b a a

b b

a b a ++++的最大公约数不超过与是整数,求证:使得11,.

证明:由于a +1b +b +1a =a 2

+b 2

+a +b ab

……①,设(a , b )=d ,则d 2|a 2+b 2,显然d 2|ab ,由①得,d 2|a +b

于是a +b ≥d 2,a +b ≥d ,即 (a , b )≤a +b .

4、求最小的正整数k ,使得存在非负整数m ,n 满足k =19m -5n

5、将与105互素的所有正整数从大到小排列,试求出这个数列的第1000项;

法一:由105=3×5×7;故不超过105而与105互质的正整数有105×(1-13)(1-15)(1-1

7

)=48个.

1000=48×20+48-8, 105×20=2100. 而在不超过105的与105互质的数中第40个数是86. ∴ 所求数为2186. 法二:

6.设n m ,为正整数,具有性质:等式(171,)(171,)k m k n -=-对所有的正整数k 成立. 证明:17r

m n =,其中r 是某个整数.

最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

费马小定理

费马小定理 费马小定理是数论中的一个定理:假如a是一个整数,p是一个质数,那么是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同余。) 证明 若n不能整除a - b,x>0,(x,n)=1,则n也不能整除x(a-b)。取整数集A为所有小于p的集(A构成p的完全剩余系,即A 中不存在两个数同余p),B是A中所有的元素乘以a组成的集合。因为A中的任何两个元素之差都不能被p整除,所以B 中的任何两个元素之差也不能被p整除。因此 即

在这里W=1·2·3·...·(p-1),且(W, p) = 1,因此将整个公式除以W即得到: 广义 费马小定理是欧拉定理的一个特殊情况:如果n和a的最大公约数是1,那么 这里φ(n)是欧拉商数。欧拉商数的值是所有小于n的自然数中与n没有公约数的数的个数。假如n是一个素数,则φ(n) = n-1,即费马小定理。 在费马小定理的基础上,费马提出了一种测试素数的算法; 尽管它是错误。 神奇的费马小定理(1) ——从实验、观察、发现到猜想和证明谢国芳(Roy Xie)Email: roixie@https://www.360docs.net/doc/d71023267.html, 章节目录 1. 费马的惊人断言——费马小定理的原始表述

2. 我们的探索之旅——从实验、观察、发现到猜想和证明 2.1 费马指数和最小费马指数 2.2 “普通版费马小定理”和“加强版费马小定理” 2.3 对最小费马指数更深入的探究 3. 费马小定理的证明 1.费马的惊人断言——费马小定理的原始表述 十七世纪的法国律师、历史上最伟大的业余数学家、近代数论的先驱费马(Pierre de Fermat,1601~1665)在 1640 年10 月 18 日给他的朋友、数迷小团体成员之一弗莱尼科·德·贝西(Frénicle de Bessy, c. 1605~1675)的信中,写下了这样一段话(原文是法语): ? Tout nombre premier mesure infailliblement une des puissances - 1 de quelque progression que ce soit, et l'exposant de la dite puissance est sous-multiple du nombre premier donné - 1 ? [拙译]“任何一个质数总能除尽任何几何级数中的某一项减1,且该项的指数是这个给定的质数减1的因子。”

欧拉定理

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 几何定理: 1)设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr. 2)三角形ABC的垂心H,九点圆圆心V,重心G,外心O共线,称为欧拉线 欧拉定理证明: 设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.

证明O、I分别为⊿ABC的外心与内心. 连AI并延长交⊙O于点D,由AI平分ETH;BAC,故D为弧BC的中点. 连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径. 由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明) 但DB=DI(可连BI,证明ETH;DBI=ETH;DIB得), 故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可. 而这个比例式可由⊿AFI∽⊿EBD证得.故得R^2-d^2=2Rr,即证.

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一? WILES证明费马大定理的成功时间为何其说不一? 他的证明是否又被发现“漏洞”? 在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人? 1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。 1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。 1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。 2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。 2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。 Wiles证明费尔马大定理成功的时间为何其说不一? 还有更加令人不解的: 一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。 二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。 为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”? 大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

欧拉定理及其应用(注解版)~~YT

欧拉定理及其应用 欧拉函数phi(m)表示小于等于|m|的自然数中,和m互质的数的个数。 phi(m)=mΠ(1-1/p)//《算法导论》第531页 p|m 证明:若m为一素数p,则phi(m)=p-1。 若m为合数,存在p,使m=pd。 1、若p整除d,对任意a,(a, d) = 1,//注意a属于[1,d)那么(a + d, d) = 1, (a + d, p) = 1, 所以(a + d, m) = 1,所以(a + kd, m) = 1,k = 0, 1, 2, ... , p - 1, 所以phi(m) = p phi(d)。//则有任意和d互质的数加上kd继续互质,所以共有p*phi(d)个 2、若p不能整除d,那么(p, d) = 1,在小于|m|的自然数里,和d互质的有p phi(d)个, 其中phi(d)个是p的倍数,所以phi(m) = (p - 1) phi(d)。//显然,除d、2d、3d……pd能整除外,其余都不能整除 由数学归纳法得到结论。 欧拉定理:如果(a, m) = 1,那么a ^ phi(m) = 1 (mod m)。//可以参考《算法导论》 证明:设R(m) = {r[1], r[2], ... , r[phi(m)]}为和m互质的数的等价类的集合。 那么有(ar[i], m) = 1,ar[i] = ar[j]当且仅当i = j。 所以aR(m) = {ar[i]} = R(m),a ^ phi(m) Πr[i] = Πar[i] = Πr[i] (mod m),a ^ phi(m) = 1 (mod m)。 欧拉定理的一个重要意义就是计算a ^ b mod m的时候,若b是一个很大的数时,可以化成a ^ (b mod phi(m)) mod m来计算,明显地,b mod phi(m)是一个比较小的数。 当(a, m)≠1时,设对m分解质因数得到m = Πpi ^ ri,d = (a, m),m = m1 * m2, 其中m1 = Πpi ^ri,那么(m1, m2) = 1,(a, m2) = 1, pi|d 所以a ^ phi(m2) = 1 (mod m2)。 由欧拉函数的计算公式可以得知phi(m2)|phi(m),所以a ^ phi(m) = 1 (mod m2)。对任意i,pi|d,都有phi(m) >= log m >= ri,所以m1|d ^ phi(m),m1|a ^ phi(m)。由于(m1, m2) = 1,所以存在整数r,0 < r < m,r = 1 (mod m2),r = 0 (mod m1), 有a ^ phi(m) = r (mod m)。 显然,a ^ 2phi(m) = 1 (mod m2),a ^ 2phi(m) = 0 (mod m1),

费马小定理及应用

费马小定理及应用 知识定位 费马小定理是初中数学竞赛数论中经常出现的一种。要熟练掌握费马小定理是数论中的一个定理,数学表达形式和应用。本节我们通过一些实例的求解,旨在介绍数学竞赛中不定方程相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。 知识梳理 1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数. ①欧拉函数值的计算公式:若m =p 1α1p 2α2 …p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n ) 例如,30=2·3·5,则.8)5 11)(311)(21 1(30)30(=---=? ②若p 为素数,则1 ()1,()(1),k k p p p p p ??-=-=-若p 为合数,则()2,p p ?≤- ③不超过n 且与n 互质的所有正整数的和为 1 ()2 n n ?; ④若(,)1()()(),a b ab a b ???=?= 若()()a b a b ??? ⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()n d ?, 同时 ()()d n d n n d n d ??==∑∑; 2、欧拉定理:若(a , m )=1,则a φ(m ) ≡1(mod m ). 证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系, 又∵(a , m )=1, ∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ), 又∵(r 1·r 2·…·r φ(m ), m )=1, ∴a φ(m ) ≡1(mod m ). 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ). 补充:设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ),我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: (1)设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡ v (mod k), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然. 必要性:设,u l u νν>=-,由(mod )u a a m ν ≡及(,)1a m =知1(mod )l a m ≡.

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

4 欧拉定理

§4 欧拉定理·费马定理及其对循环小数的应用 欧拉定理及费马定理是数论中非常重要的两个定理,它们在数论中的应用非常广泛。本节应用简化剩余系的理论,推出欧拉定理,再由欧拉定理,推出费马定理。最后还要把欧拉定理应用于循环小数。 定理1(欧拉定理) 设()1,,1m a m >=,则 ()()1mod .m a m ?≡ 证 设()12,, ,m r r r ?是模m 的一个简化剩余系, 因(),1a m =,故()12,, ,m ar ar ar ?也是模m 的一个简化剩余系. 于是, ()() ()()()()()()()()()()1212 12 12 mod , mod , 1mod . m m m m m m ar ar ar r r r m a r r r r r r m a m ??????≡≡≡ 推论(费马定理)若p 是质数,则对任意整数a ,总有 ()mod .p a a p ≡ 证 因p 为质数,故(),1a p =或.p a 若(),1,a p =则由()1p p ?=-及欧拉定理得 ()()1 1mod ,mod .p p a p a a p -≡≡ 若p a ,则显然有()mod .p a a p ≡ 以上两个定理对数论的应用是非常多的。下面仅说明欧拉定理对无限循环小数的应用。 任何一个有理数都可以表示为 a b ,这里,a b 都为整数,且0a >。由带余除法,存在整数(),0q r r b ≤<使得b aq r =+,故 ,0 1.a bq r r r b b b b b +==+≤< 故以下只讨论开区间()0,1中的分数与小数互化。 若对无限小数12 0.,n a a a (i a 是0,1, ,9中的一个数码,1,2,,i =并且从任何一 位以后不全是0)来说,存在非负整数s 及正整数t 使得,对任意正整数1n s ≥+,都有 n n t a a +=,则该无限小数可以写为

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

.12.15初等数论费马小定理与欧拉定理(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 第七讲 费马小定理与欧拉定理 2017.12.18 基础例题 1. 设n 是自然数,则n n n n 4321|5+++/ 2.设{x 1,x 2,x 3,…,()m x ?}为模m 的一个简化剩余系,则()()()mod 1321≡?m x x x x ? 3. 设a ,b ,c ,m 为自然数,m >1,(b ,m )=1,且()m b a mod 1≡, ()m b c mod 1≡,记()c a d ,=,则()m b d mod 1≡ 4. 设p 是素数,p |b n -1,n 为自然数,则下列两个结论中至少有一个成立: (1)p |b d -1对于某个因数d

6. 将612-1分解质因数 7. 若a ,b 是任意整数,p 为素数.证明:()()p b a b a p p p mod +≡+ 8. 设p 为奇素数,a ,n 都是正整数,且p n |a p -1. (1)证明:p n -1|a -1; (2)当p =2时,上述结论成立吗? 10. 求(1237156+34)28被111除的余数. 11. 设p 是一个大于5的素数,求证:240|p 4-1 12. 设p 为素数.证明:存在无穷多个正整数n 使得()p n n mod 2≡

13.(1)证明下列事实但不许用费马小定理:若p 是质数,h 1,h 2,…,h n 是整数,则(h 1+h 2+…+h n )p ≡h 1p +h 2p +…+h n p (mod p ) (2)由(1)证明费马定理,然后再由费马定理证明欧拉定理. 每周真题小练 1. (ELMO 2017)设H 为三角形ABC 的垂心,M 为边BC 的中点.以AH 为直径的圆上,有相异的两点P ,Q (P 、Q 两点均不与A 重合),满足M 位于直线PQ 上.证明:三角形APQ 的垂心位于三角形ABC 的外接圆上. 2.(命题人讲座) 设n 是一个大于1的奇数,数a 1,a 2,a 3,…,()n a ?是1,2,3,…,n 中与n 互素的所有正整数.证明()()n n k k n a ??π2 1cos 1=∏=

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

相关文档
最新文档