常微分方程解的存在唯一性定理的推广

常微分方程解的存在唯一性定理的推广
常微分方程解的存在唯一性定理的推广

常微分方程解的存在唯一性定理的推广

作者:李华

作者单位:济南大学理学院,250022,济南

刊名:

山东师范大学学报(自然科学版)

英文刊名:JOURNAL OF SHANDONG NORMAL UNIVERSITY(NATURAL SCIENCE)

年,卷(期):2010,25(z2)

参考文献(6条)

1.Vladimir I.Arnol'd Ordinary Differential Equations 1992

2.Earl A.Coddington;Norman Levinson Theory of Ordinary Differential Equations 1984

3.丁同仁;李承治常微分方程教程 2004

4.王高雄常微分方程 2006

5.C.Henry Edwards;David E.Penney Elementary Differential Equations 2004

6.Wolfgang Walter Ordinary Differential Equations 1998

本文读者也读过(6条)

1.鲜大权常微分方程解的存在唯一性定理教学研究[期刊论文]-大学数学2009,25(6)

2.崔亚琼.宋海竟.CUI Ya-qiong.SONG Hai-jing二阶微分方程解的存在唯一性及解的性质[期刊论文]-山西大同大学学报(自然科学版)2009,25(5)

3.靳绍礼.李体云.宋玉成.JIN Shao-li.LI Ti-yun.SONG Yu-cheng一种求解常微分方程初值问题的单步法[期刊论文]-科学技术与工程2010,10(31)

4.石霞.任涛对一阶微分方程解的存在唯一性定理证明的一点注记[期刊论文]-内蒙古科技与经济2001(4)

5.邓海荣.马兆丰.DENG Hai-rong.MA Zhao-feng Banach空间中常微分方程解的存在唯一性定理的注[期刊论文]-扬州大学学报(自然科学版)2007,10(1)

6.房琦贵关于常微分方程解的存在唯一问题的讨论[期刊论文]-科技信息2010(15)

本文链接:https://www.360docs.net/doc/d71061380.html,/Periodical_sdsdxb-zrkx2010z2015.aspx

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

解的存在唯一性

解的存在唯一性定理证明及其研究 专业名称:数学与数学应用 组长:赵亚平 组员:刘粉娟、王蓓、孙翠莲 指导老师:岳宗敏

解的存在唯一性定理证明及其研究 摘要 线性微分方程是常微分课本中的重要组成部分,线性微分方程组解的存在唯一性是最重要,也是不可或缺的一部分,通过课本所学知识运用逐步逼近法以及压缩映射原理分别对一阶,高阶线性微分方程组解的存在唯一性进行的详细的论述证明。对于线性方程组解的情况,主要是通过对增广矩阵进行初等行变换,了解其秩的情况,在运用克莱默法则,从而得出其解的存在唯一性的情况。 关键词:解的存在唯一性 线性微分方程组 线性方程组 (一)一阶微分方程的解的存在唯一性定理与逐步逼近法 存在唯一性定理 考虑初值问题 ),(y x f dx dy = 00)(y x y = (1) 其中f(x,y)在矩形区域R : b y y a x x ≤-≤-||,||00 (2) 上连续,并且对y 满足Lipschits 条件:即存在常数L>0(L 为利普

希茨常数),使不等式 |||),(),(|2121y y L y x f y x f -≤- 对所有R y x y x ∈),(),,(21都成立,则初值问题(1)在区间h x x ≤-||0上解存在且唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路: 1.初值问题(1)的解存在等价于求积分方程 ?+=x x dy y x f y y 0),(0 (3) 的连续解。 2.构造(3)所得解函数序列{)(x n ?},任取一连续函数)(0x ?, b y x ≤-|)(|00?代入(3)右端的y ,得 …… 2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为 )(x n ?=dx x x f y n x x n ))(,(lim 1-00 ??∞ →+ dx x x f y x x f y x x x x n ??+ =+=∞ →0 ))(,()) (,(lim 01-n 0?? 4.)(x ?为(3)的连续解且唯一。首先在区间],[00h x x +是讨论,在错误!未找到引用源。上类似。 证明过程: 命题1 :初值问题(1)等价于积分方程

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

4微分方程的解及解的稳定性

第四讲 微分方程解的稳定性 上一讲,我们利用最大值原理讨论了新古典经济增长模型,得到了两个方程,一个是状态变量的转移方程,另一个是欧拉方程。这两个方程构成了包含状态变量和控制变量的二元一次方程组。 []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 这个方程组是一个非线性微分方程组,一般情况下,非线性方程组不存在解析解,即方程组的解不能用初等函数来表示。因此,他们的性质需要借助其他方法来了解。 微分方程:变量为导数的方程叫做微分方程。 常微分方程:只有一个自变量的微分方程叫做常微分方程。 偏微分方程:有两个或两个以上自变量的方程叫做偏微分方程。 微分方程的阶:微分方程中变量的导数最高阶叫做方程的阶。 线性方程:方程的形式是线性的。 例如,方程0)()()()(321=+++t x t y a t y a t y a 是一个二阶线性常微分方程。 又如,索洛-斯旺模型的基本方程是一个非线性方程: ())()()(t k t k s t k ?-=δα 再如,拉姆齐模型的动态是下列微分方程组的解: []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 一、 一阶微分方程 一阶微分方程可以用下面的方程表示 ),(y x f dx dy = (1.1) 其中,函数R R R f →?:是连续可微函数。 最简单的微分方程是

)(x f dx dy = (1.2) 它的解可表示为不定积分: ?+=c dx x f y )( (1.3) 其中,?dx x f x F )()(=表示任意一个被被积函数,c 为任意常数。当然,我们也可以确定任意一个被积函数,例如,令??x dt t f dx x f x F 0)()()(==, 则(2.2)的不定 积分可表示为 ?+x c dt t f y 0)(= 这时,不定积分仍然代表无穷多条曲线,如果给出初始条件0)0(y y =, 则,上面微分方程的解就是 ?+x y dt t f y 00)(= (1.4) 二、 常见的一阶微分方程解法 1. 一阶线性微分方程 一阶线性微分方程的一般形式为 )()(x g y x p dx dy =+ (2.1) 边界条件(即初始条件)0)0(y y =。 为求解线性微分方程,在方程的两边同乘以?x dt t p 0)(ex p , 则方程的左边为 dx dt t p y d y dt t p x p dt t p dx dy x x x ??? ???= ?+???0 00)(exp )(exp )()(exp 所以 ??? ??=??? ?????x x dt t p x g dx dt t p y d 00)(exp )()(exp (2.2) 方程(2.2)的解为 ?? ????+? ?? ????? ??-=???c dt t p x g dt t p y x x x 000)(exp )()(exp (2.3) 2. 可分离变量的微分方程

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

最新常微分方程解的稳定性(修改)

常微分方程解的稳定 性(修改)

常微分方程解的稳定性 摘要本文简要介绍了常微分方程解的稳定性理论的相关概念及其在解决微分方程相关问题的重要意义。最后,介绍用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。 关键字:常微分方程稳定性李雅普诺夫函数 V函数构造方法

引言 常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法 ,开创了常微分方程定性理论 , 同时在分析中引入几何方法 ,搭建起分析与几何之间的沟通桥梁 ,带来了微分方程研究的新突破。李雅普诺夫则在庞加莱定性分析的基础上 ,转而进入了新的稳定性研究。 如今 ,李雅普诺夫稳定性理论被普遍认为是微分方程定性理论的基本成就之一。不仅有精确的定义 ,更有严格的分析证明 ,将微分方程及稳定性理论的研究推向了新的高度。 本文论述常微分方程解的稳定性的定义及其研究常微分方程相关问题的重要思想,并用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。

1、常微分方程稳定性 微分方程自诞生以来就一直以微分方程解的求法为研究中心。数学家在微分方程求解过程中进行了不懈的努力 ,但始终没有从根本上摆脱求确定解的桎梏 ,致使研究的道路越来越窄。 此时单纯的定量分析已不能解决问题 ,必须用一种综合化、整体化的思想加以考虑. 避开微分方程求精确解的定量方法 ,转向运用稳定性方法探求解的性质 ,从而解决常微分方程(组)的解的问题. 考虑微分方程组 (2.1) 其中函数对和连续,对 满足局部利普希茨条件。 设方程(2.1)对初值存在唯一解 , 而其他解记作 . 本文中向量的范数取 . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生的李雅普诺夫意义下的稳定性概念。 如果对于任意给定的和都存在 , 使得只要 就有 对一切成立,则称(2.1)的解是稳定的,否则是不稳定的。 假设是稳定的,而且存在, 使得只要

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx dy +=解的存在唯一性定理的证明 摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数. 函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为 利普希兹常数 下面我们给出一阶线形微分方程)()(x q y x p dx dy +=(1)解的存在唯一性定理: 如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹 条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件: 00)(y x =? 这里 ), min(M b a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见, 只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样. 现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程 []?++=x x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替 代,因此也就等价于求积分方程 ?+=x x dx y x f y y 0 ),(0 的连续解,然后 去证明积分方程的解的存在唯一性. 任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得 到函数 dx x x f y x x x ))(,()(0 001?+≡?? 显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方 程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到 dx x x f y x x x ))(,()(0 102?+≡?? 如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继 续这个步骤.一般地做函数 dx x x f y x x x n n ))(,()(0 10?-+≡?? (2) 这样就得到连续函数序列 )(0x ? ,)(1x ?…)(x n ?… 如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即 )()(lim x x n n ??=∞ → 存在因此对(2)取极限就得到 dx x x f y x x x n n n n ))(,(lim )(lim 0 10?-∞→∞ →+=?? =dx x x f y x x n n ))(,(lim 0 10?-∞ →+? =dx x x f y x x ))(,(0 0?+? 即 dx x x f y x x x ))(,()(0 0?+≡??

唯一性定理

唯一性定理 蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。 证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。 如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面 1 S 、2S 上各自的面电荷分布为 σ 和 σe 。壳内外的场是这四 部分电荷共同激发的。 根据定理,首先写出壳内空间电势应满足的条件: (一) 2 ρ?ε ?=- ,ρ 为壳内电荷分布。 (二)壳内表面1S 上的边界条件是:2S 上的总电量 1 s dS q σ=-? (1) 其中 V q dV ρ=? 是壳内的总电量,V 是壳内区域的体积。在壳层 内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1) 成立。 因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - , 和导体壳本身是有电势还是用总电量给定无关。 根据唯一性定理,满足(一)、(二)的 ? 就是解。由于(一) e

和(二)与壳外的 ρe 和 σρ 的电势并不唯一,可以差一个常数。当然当壳用电势 0φ 给定时,1S 上的边界条件就是 1 0|S ?φ= 。所以壳内不但电场唯一,而且电势也是唯一。 2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。试用唯一性定理: (一)判断0 R φ是否球壳外空间的电势分布。 (二)求球壳内空间的电势分布 解:(一)首先必须找出球内外电势应满足的条件,他们是: (a )2 0??= (b )球壳外表面1S 上的边界条件,1 0s ?=φ (c )无穷远边界条件,0R →∞?→ 若R φ 是解,根据唯一性定理,它必须满足以上三个条件。下面来 检验: 2 2 0010R R φ? =φ?= (0),R ≠ 方程已满足。 0,0,R R φ→∞→ 满足(c )。 S1的半径是R1代入 0R φ 后, 00 R φ≠φ 所以它不满足1S 上的边界条 件,它不是球壳外空间的界,下面求正确的解。由上述可知,函数 A R 同时满足方程和无穷远边界条件。A 为待定常数,可由(b )定出。在面1S 上 0,A R φ=

常微分方程解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。 [教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步

推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 4.2 简单的单步法及基本概念 4.2.1 Euler法、后退Euler法与梯形法 求初值问题(4.1.1)的一种最简单方法是将节点的导数用差商 代替,于是(4.1.1)的方程可近似写成 (4.2.1) 从出发,由(4.2.1)求得再将 代入(4.2.1)右端,得到的近似,一般写成 (4.2.2) 称为解初值问题的Euler法. Euler法的几何意义如图4-1所示.初值问题(4.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有 ,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是 求一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

常微分方程 稳定性理论

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的. 李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数 dt x dV ) (的符号性质,就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法. 为了便于理解,我们只考虑自治系统 )(x F dt dx =n R x ∈ (6.11) 假设T n x F x F x F ))(,),(()(1 =在{} K x R x G n ≤∈=上连续,满足局部利普希茨条件,且 O O F =)(. 为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数 R G x V →:)( 满足0)(=O V ,)(x V 和 i x V ??),,2,1(n i =都连续,且若存在K H ≤<0,使在{} H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有 )0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数. 通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2 22 1x x V +=在),(21x x 平面上为正定的; 函数 )(2 22 1x x V +-=在),(21x x 平面上为负定的; 函数222 1x x V -=在),(21x x 平面上为变号函数;

函数 2 1x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =. 在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面 C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且 0)0,0(=V ,故在021==x x 的充分小的邻域中, ),(21x x V 可以任意小.即在这些邻域中 存在C 值可任意小的闭曲线C V =. 对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方. 对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点. 定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定; (2) )(1 ) 11.5(x F x V dt dV i n i i ∑ =??=常负, (a) (b)

一阶线性微分方程组第一讲一阶微分方程组与解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v = 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求 一阶微分方程组 的满足初始条件

的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12)()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可 以把它化成等价的一阶微分方程组 注意,这是一个含n 个未知函数11,, ,n y y y - 的一阶微分 方程组. 含有n 个未知函数12,, ,n y y y 的一阶微分方程组的一般形式为: 11122112112(,,,,) (,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=???=?????=? ? (3.1) 如果方程组(3.1)右端函数不显含x , 则相应的方程称为是自治的. 方程组(3.1)在[,]a b 上的一个解,是这样的一组函数 使得在[,]a b 上有恒等式 含有n 个任意常数12,,,n C C C 的解 称为(3.1)的通解. 如果通解满足方程组 则称后者为(3.1)的通积分.

相关文档
最新文档