每人写一份20页的遗传算法综述,包括如下内容

每人写一份20页的遗传算法综述,包括如下内容
每人写一份20页的遗传算法综述,包括如下内容

●每人写一份20页的遗传算法综述,包括如下内容:

–起源和发展分支

–重要人物和经典文章

–算法结构

–最新研究成果

–在自己的过去专业学科的应用以及代表性文章

●A4纸20页,小4号宋体、英文为12号Time New Roma, double space;做幻灯片PPT

遗传算法(Genetic Algorithm GA)综述

——张广网络工程05374038 遗传算法(Genetic Algorithm GA)是模拟达尔文的遗传选择和自然淘汰、适者生存的生物进化过程的计算模型,是由美国Michigan大学的J.Holland教授于1975年首先提出的,是搜索最优解的一种随机化的方法。其主要特点是群体搜索策略和群体中个体之间的信息交换,是近十多年来备受关注的一种算法。○1一,遗传算法的起源和发展分支。

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术之一。

1,遗传算法与自然选择

达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。这种学说认为,生物要生存下去,就必须进行生存斗争。生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强的。达尔文把这种在生存斗争中适者生存,不适者淘汰的过程叫做自然选择。它表明,遗传和变异是决定生物进化的内在因素。自然界中的多种生物之所以能够适应环境而得以生存进化,是和遗传和变异生命现象分不开的。正是生物的这种遗传特性,使生物界的物种能够保持相对的稳定;而生物的变异特性,使生物个体产生新的性状,以致于形成新的物种,推动了生物的进化和发展。

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显

著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。

2,遗传算法的特点

遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:

搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。

搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。

采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。

对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。

3,遗传算法的研究历史与现状

遗传算法研究的兴起是在80年代末和90年代初期,但它的历史起源可追溯至60年代

初期。早期的研究大多以对自然系统的计算机模拟为主。如Fraser的模拟研究,他提出了和现在的遗传算法十分相似的概念和思想。Holland和DeJong的创造性研究成果改变了早期遗传算法研究的无目标性和理论指导的缺乏。其中,Holland于1975年出版的著名著作<<自然系统和人工系统的适配>>系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论。这一理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。

同年,DeJong的重要论文<<遗传自适应系统到的行为分析>>将Holland的模式理论与他的计算实验结合起来,并提出了诸如代沟等新的遗传操作技术。可以认为,DeJong所作的研究工作是遗传算法发展过程中的一个里程碑。

进入80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用领域也不断扩大。

目前遗传算法所涉及的主要领域有自动控制、规划设计、组合优化、图象处理、信号处理、人工生命等。可见,遗传算法的应用研究已从初期的组合优化求解拓展到了许多更新。更工程化的应用方面。○2

4,遗传算法的分支和研究热点○4

·收敛性证明

·新型高效的遗传算子设计

·遗传算法与局部优化算法的结合

·遗传算法在各领域的应用研究

·软计算与计算智能中的遗传算法

二,重要人物和经典文章

当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显著特点。遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。制造机器智能一直是人类的梦想,人们为此付出了巨大的努力。人工智能技术的出现,就是人们得到的成果。但是,近年来,随着人工智能应用领域的不断拓广,

传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。

众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法就是在这种背景下产生并经实践证明特别有效的算法。

遗传算法(Genetic Algorithm, GA)是近年来迅速发展起来的一种全新的随机搜索与优化算法,其基本思想是基于Darw in的进化论和Mendel的遗传学说。该算法由密执安大学教授Holland及其学生于1975年创建。此后,遗传算法的研究引起了国内外学者的关注。自1985年以来.国际上已召开了多次遗传算法的学术会议和研讨会.国际遗传算法学会组织召开的

ICGA( International Conference on Genetic Algorithms)会议和FOGA( Workshop on Foundation of Genetic Algorithms)会议。为研究和应用遗传算法提供了国际交流的机会。

作为一种通用的问题求解方法,遗传算法采用简单的编码技术来表示各种复杂的结构并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

近年来,遗传算法已被成功地应用于下业、经济答理、交通运输、工业设计等不同领域.解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。本文将从遗传算法的理论和技术两方而概述目前的研究现状。描述遗传算法的主要特点、基木原理以及各种改进算法,介绍遗传算法的程序设计。

遗传程序设计是借鉴生物界的自然选择和遗传机制,在遗传算法的基础上发展起来的搜索算法,它己成为进化计算的一个新分支。在标准的遗传算法中,由定长字符串(问题的可行解)组成的群体借助于复制、交叉、变异等遗传操作不断进化找到问题的最优解或次优解。遗传程序设计运用遗传算法的思想,常采用树的结构来表示计算机程序,从而解决问题。对于许多问题,包括人工智能和机器学习上的问题都可看作是需要发现一个计算机程序,即对特定输入产生特定输出的程序,形式化为程序归纳,那么遗传程序设计提供了实现程序归纳的方法。

把遗传算法和计算机程序结合起来的思想出现在遗传算法中,Holland把产生式语言和遗传算法结合起来实现分类系统,还有一些遗传算法应用领域的研究者将类似于遗传算法的遗传操作施加于树结构的程序上。

近年来,遗传程序设计运用遗传算法的思想自动生成计算机程序解决了许多问题,如预测、分类、符号回归和图像处理等,作为一种新技术它己经与遗传算法并驾齐驱。1996年,举行了第1次遗传程序设计国际会议,该领域己引起越来越多的相关学者们的兴趣。

1967年,Holland的学生J.D.Bagley在博士论文中首次提出“遗传算法(Genetic Algorithms)”一词。此后,Holland指导学生完成了多篇有关遗传算法研究的论文。1971年,R.B.Hollstien在他的博士论文中首次把遗传算法用于函数优化。1975年是遗传算法研究历史上十分重要的一年。这一年Holland 出版了他的著名专著《自然系统和人工系统的自适应》

(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专著,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。同年,K.A.De Jong完成了他的博士论文《一类遗传自适应系统的行为分析》

(An Analysis of the Behavior of a Class of Genetic Adaptiv e System)。该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。尽管

De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。

进入八十年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。1985年,在美国召开了第一届遗传算法国际会议(International Conference on Genetic Algorithms ,ICGA),并且成立国际遗传算法学会(International Society of Genetic Algorithms ,ISGA),以后每两年举行一次。

1989年,Holland的学生D.E.Goldberg出版了专著《搜索、优化和机器学习中的遗传算法》

(Genetic Algorithms in Search , Optimization, and Machine Le arning)。该书总结了遗传算法研究的主要成果,对遗传算法及其应用作了全面而系统的论述。同年,美国斯坦福大学的Koza基于自然选择原则创造性地提出了用层次化的计算机程序来表达问题的遗传程序设计

( genetic programming, GP)方法,成功地解决了许多问题。

在欧洲,从1990年开始每隔一年举办一次

Parallel Problem Solving from Nature 学术会议,其中遗传算法是会议主要内容之一。此外,以遗传算法的理论基础为中心的学术会议还有Foundations of Genetic Algorithms,该会也是从1990年开始隔年召开一次。这些国际会议论文,集中反映了遗传算法近些年来的最新发展和动向。1991年,L.Davis编辑出版了《遗传算法手册》

(Handbook of Genetic Algorithms),其中包括了遗传算法在工程技术和社会生活中的大量应用实例。

1992年,Koza发表了他的专著《遗传程序设计:基于自然选择法则的计算机程序设计》”。1994年,他又出版了《遗传程序设计,第二册:可重用程序的自动发现》深化了遗传程序设计的研究,使程序设计自动化展现了新局面。有关遗传算法的学术论文也不断在《Artificial Intelligence》、《Machine Learning》、《Information science》、《Parallel Computing》、

《Genetic Programming and Evoluable Machines》\

《IEEE Transactions on Neural Networks》,

《IEEE Transactions on Signal Processing》等杂志上发表。1993年,MIT出版社创刊了新杂志《Evolutionary Computation》。1997年,IEEE又创刊了《Transactions on Evolutionary Computation》。

《Advanced Computational Intelligence》杂志即将发刊,由模糊集合创始

人L.A.Zadeh教授为名誉主编。目前,关于遗传算法研究的热潮仍在持续,越来越多的从事不同领域的研究人员已经或正在置身于有关遗传算法的研究或应用

之中。○3

遗传算法的主要著作一览:○5

1.陈国良等,遗传算法及其应用,国防出版社

2.J.H.Holland,Adaptation in Natural and Artificial Systems, Ann Arbor: Univ. of

Michigan Press, 1975

3.D.E.Goldberg,Genetic Algorithms in Search, Optimization and Machine Learning.

Reading, MA: Addison-Wesley, 1989

4.L.D.Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold

5.Z.Michalewicz, Genetic Algorithms + Data Structures=Evolution Programs, Spinger

Press,1996

6.M.Gen,R.Cheng,Genetic Algorithms & Engineering Design, 1997

7.Wiely,Genetic Algorithms in Engineering and Computer Science,1995

8.M.Mitchell,An Introducion to Genetic Algorithms,1996

9.Davis,Genetic Algorithms and Simulated Annealing,1987

10.Davidor,Genetic Algorithms and Robotics,1991

11.Koza,Genetic Programming,1992

12.Bauer,Genetic Algorithms and Investiment Strategies,1994

三,遗传算法的算法结构

遗传算法自从1965年提出以来,在国际上已经形成了一个比较活跃的研究领域,已召开了多次比较重要的国际会议和创办了很多相关的国际刊物。

遗传算法已用于求解带有应用前景的一些问题,例如遗传程序设计、函数优化、排序问题、人工神经网络、分类系统、计算机图像处理和机器人运动规划等。

遗传算法的结构

霍兰德(Holland)的遗传算法通常被称为"简单遗传算法"(简称SGA),我们以此作为讨论主要对象,加上适应的改进,分析遗传算法的结构和机理。

我们首先介绍主要的概念。我们在讲解中会结合如下的货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,城市i和城市j之间的距离为d(i,j) i, j=1,...,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短。

1.编码与译码

许多应用问题结构很复杂,但可以化为简单的位串形式编码表示,我们将问题结构变换为位串形式编码表示的过程叫编码;而相反将位串形式编码表示变换为原问题结构的过程叫译码。我们把位串形式编码表示叫染色体,有时也叫个体。

对TSP可以按一条回路城市的次序进行编码,比如码串134567829表示从

城市1 开始,依次是城市3,4,5,6,7,8,2,9,最后回到城市1。一般情况是从城市

w1开始,依次经过城市w2,……,w n,最后回到城市w1,我们就有如下编码表示:

w 1 w

2

…… w

n

由于是回路,记w n+1= w1。它其实是1,……,n的一个循环排列。要注意w1,w2,……,w n是互不相同的。

2.适应度函数

为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数。通过适应度函数来决定染色体的优、劣程度,它体现了自然进化中的优利劣汰原则。对优化问题,适应度函数就是目标函数。TSP的目标是路径总长度为最短,路径总长度的倒数就可以为TSP的适应度函数:

请注意其中w n+1= w1。适应度函数要有效反映每一个染色体与问题的最优解染色体之间的差距,一个染色体与问题的最优解染色体之间的差距小,则对应的适应度函数值之差就小,否则就大。适应度函数的取值大小与求解问题对象的意义有很大的关系。

3.遗传操作

简单遗传算法的遗传操作主要有三种:选择(selection)、交叉(crossover)、变异(mutation)。改进的遗传算法大量扩充了遗传操作,以达到更高的效率。

选择操作也叫复制操作,根据个体的适应度函数值所度量的优、劣程度决定它在下一代是被淘汰还是被遗传。一般地说,选择将使适应度较大(优良)个体有较大的存在机会,而适应度较小(低劣)的个体继续存在的机会也较小。简单遗传算法采用赌轮选择机制,令Σfi表示群体的适应度值之总和,fi表示种群中第i个染色体的适应度值,它产生后代的能力正好为其适应度值所占份额fi/Σfi。

交叉操作的简单方式是将被选择出的两个个体P1和P2作为父母个体,将两者的部分码值进行交换。假设有如下八位长的二个体:

产生一个在1到7之间的随机数c,假如现在产生的是3,将P1和P2的低三位交换:P1的高五位与P2的低三位组成数串10001001,这就是P1和P2的一个后代Q1个体;P2的高五位与P1的低三位组成数串11011110,这就是P1和P2的一个后代Q2个体。其交换过程如下图所示:

图3.21 交叉示意图

变异操作的简单方式是改变数码串的某个位置上的数码。我们先以最简单的二进制编码表示方式来说明,二进制编码表示的每一个位置的数码只有0与1这两个可能,比如有如下二进制编码表示:

其码长为8,随机产生一个1至8之间的数k,假如现在k=5,对从右往左

的第5位进行变异操作,将原来的0变为1,得到如下数码串(红色的数字1是被变异操作后出现的):

二进制编码表示时的简单变异操作是将0与1互换:0变异为1,1变异为0。

现在对TSP的变异操作作简单介绍,随机产生一个1至n之间的数k,决定对回路中的第k个城市的代码w k作变异操作,又产生一个1至n之间的数w,替代w k,并将w k加到尾部,得到:

w1 w2…… w k-1 w w k+1…… w n w k

你发现这个串有n+1个数码,注意数w其实在此串中出现重复了,必须删除与数w相重复的,得到合法的染色体。

4.控制参数

并不是所有被选择了的染色体都要进行交叉操作和变异操作,而是以一定的概率进行,一般在程序设计中交叉发生的概率要比变异发生的概率选取得大若干个数量级,交叉概率取0.6至0.95之间的值;变异概率取0.001至0.01之间的值。

种群的染色体总数叫种群规模,它对算法的效率有明显的影响,规模太小不得于进化,而规模太大将导致程序运行时间长。对不同的问题可能有各自适合的种群规模,通常种群规模为30至100。

另一个控制参数是个体的长度,有定长和变长两种。它对算法的性能也有影响。

遗传算法的基本原理

遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。

下面就是遗传算法思想:

(1) 初始化群体;

(2) 计算群体上每个个体的适应度值;

(3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体;

(4) 按概率Pc进行交叉操作;

(5) 按概率Pc进行突变操作;

(6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。

(7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。

程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。

根据遗传算法思想可以画出如右图所示的简单遗传算法框图:

图 3.22 简单遗传算法框图

应用举例○

8 我们将给出一个运用遗传算法求解函数优化问题的例子,并对每一步的计算机仿真过程进行详细的描述,希望能使有兴趣的读者更加深入的了解遗传算法。

例10.3: 求解()3sin(5)f x x x π=+?在区间[2,3]x ∈-内的最大值。

分析:()3sin(5)f x x x π=+?的函数图像如图10.1所示,在[2,3]x ∈-的区间内,它有多个极值点。我们的目标是运用遗传算法来求解它的最大值。 -2-10123

1

2

3

4

5

6

7

f (x )x

图10.1 ()3sin(5)f x x x π=+?函数图像

解:利用遗传算法求解例子10.4的最大值的过程与步骤如下所示。

步骤1:染色体编码及适应值函数构造

用12位的二进制数对染色体进行编码:把x 的取值在上下限内分成相应的1221-份,使得每一个二进制串对应一个十进制取值:

2123(2)2(010)21x decimal --=-+?-

其中,2()decimal string 表示染色体二进制串的十进制数值。这样,我们就建立起了染色体和实际x 取值的关系。

设定适应值函数()()3sin(5)i fit c f x x x π==+?,其中i c 代表染色体,x 是它所表示的十进制值。例如:对于染色体(000010100010),它所表示x 值为

123(2)2(000010100010) 1.802221x decimal --=-+?=--

所以(000010100010)的适应值为

(000010100010)( 1.8022)3( 1.8022)sin[5( 1.8022)] 2.9377fit f π=-=+-??-=

步骤2:生成初始种群并计算其适应值 设置种群的大小10size P =,也就是说每一代的种群都由10个染色体组成,我们首先生成10个染色体组成初始种群:

1(100101001000)

c =2(010*********)c =3(000111001010)c =4(110101000000)c =5(010*********)c =6(011101000010)

c =7(001010101010)c =8(110101101100)c =9(100100000101)c = 10(100101011010)c =

这10个染色体中的每一位都是随机初始化的。根据定义好的适应值函数,计算每一个染色体的适应值。

1()(100101001000)(0.9011) 3.9009fit c fit f ===

2()(010*********)(0.4188) 3.0480fit c fit f ==-=

3()(000111001010)( 1.4408) 3.1219fit c fit f ==-=

4()(110101000000)(2.1416) 4.7004fit c fit f ===

5()(010*********)(0.6227) 2.7825fit c fit f ==-=

6()(011101000010)(0.2686) 2.7634fit c fit f ===

7()(001010101010)( 1.1673) 2.4261fit c fit f ==-=

8()(110101101100)(2.1954) 3.1599fit c fit f ===

9()(100100000101)(0.8193) 3.2445fit c fit f ===

10()(100101011010)(0.9231) 3.8631fit c fit f ===

步骤3:选择

运用轮盘赌的选择方法来复制染色体到下一代,计算出总的适应值为

10

1()33.0107total i i fit fit c ===∑ 则对应每个染色体被选择的概率为 1:3.9009/33.01070.118171c = 2:3.0480/33.01070.092334

c = 3:3.1219/33.01070.094572c = 4:4.7004/33.01070.142390

c = 5:2.7825/33.01070.084291c = 6:2.7634/33.01070.083712

c = 7:2.4261/33.01070.073494c = 8:3.1599/33.01070.095724

c = 9:3.2445/33.01070.098286c = 10:3.8631/33.01070.117026c =

运用计算累积概率的方法来构造一个轮盘,每个染色体的累积概率为 1:0.118171c 2:0.210505c 3:0.305077c 4:0.447467

c 5:0.531758c 6:0.615470c 7:0.688964c 8:0.784688c 9:0.882974c 10:1.000000c

用计算机产生一个[0,1]的随机数,如果它介于i c 和1i c +的累积概率之间,就选择1i c +复制到下一代。这一过程相当于轮盘选择,我们随机转动轮盘10次,产生10个随机数以及和它对应的染色体

100.983886c → 60.589007c → 50.493576c → 100.890866c → 10.0530412c → 80.743354c → 40.324808c → 100.974120c → 30.293100c → 10.0916471c →

这些被选择的染色体组成了新的一代种群

1(100101011010)c '=2(011101000010)c '=3(010*********)c '=4(100101011010)

c '=5(100101001000)c '=6(110101101100)c '=7(110101000000)c '=8(100101011010)

c '=9(000111001010)c '= 10(100101001000)c '=

可以看到,适应值较高的染色体在新的一代中可能被多次复制,例如1c 和10c 分别被复制了两次,它们的优良性状得以更好地传播。在另一方面,适应值较低的个体,如7c 则被淘汰。由于选择过程的随机性,也有一些适应值较低的染色体被复制,如6c ,而适应值比它高的染色体9c 却没有被选择。

步骤4:交叉

接着对新的染色体进行交叉操作。值得注意的是,在一代中并不是所有的个体都需要参与交叉配对,相反地算法往往只选择其中的一部分进行遗传学上的改变。决定染色体进行交叉与否的概率x p 称为交叉概率。设0.6x p =,我们分别为10个染色体产生对应的10个[0,1]的随机数,如果随机数小于0.6,则选择该染色体进行交叉

1:0.256722(c '参与) 2:0.6949

98(c '不参与) 3:0.172430(c '参与) 4:0.5522

63(c '参与) 5:0.909299(c '不参与) 6:0.0495926(c '参与)

7:0.392285(c '参与) 8:0.3794

06(c '参与) 9:0.954192(c '不参与) 10:0.776782(c '不参与)

将选中的染色体两两配对,并给每一对染色体随机生成一个[012],

的整数,以选择一个交叉点进行交叉操作。

13(1001|01011010)(0100|01101000)c c ?'=??'=??13(100101101000)(010*********)c c ?'=??'=?

? 46(1001010|11010)(1101011|01100)

c c ?'=??'=??46(100101001100)(110101111010)c c ?'=??'=?

? 78(110101|000000)(100101|011010)

c c ?'=??'?=?78(110101011010)(100101000000)c c ?'=??'?=

?

经过交叉操作后的种群为

1(100101101000)c '=2(011101000010)c '=3(010*********)c '=4(100101001100)

c '=5(100101001000)c '=6(110101111010)c '=7(110101011010)c '=8(100101000000)

c '=9(000111001010)c '= 10(100101001000)c '=

步骤5:变异

对这一种群执行变异操作。具体方法是为每个染色体的每一位产生一个[0,1]的随机数,如果这个数小于变异概率m p ,则对应位发生变异。在本例中,设置变异概率0.05m p =。由于空间原因,我们不把所有随机数列出,只是简单地给出变异的过程,其中2c ',3c ',5c '和9c '

经历了变异。

1(100101101000)c '=

22(011101000010)(011100000010)c c ''=?=

33(010*********)(010*********)c c ''=?=

4(100101001100)c '=

55(100101001000)(110101001100)c c ''=?=

6(110101111010)c '=

7(110101011010)c '=

8(100101000000)c '=

99(000111001010)(100111001010)c c ''=?= 10(100101001000)c '=

步骤6:循环

至此,我们已经完成了遗传算法中的一代,初始种群通过选择,交叉和变异算子的作用产生了下一代的种群。我们再计算一次种群中所有染色体的适应值

1()(100101101000)(0.9402) 3.759151fit c fit f '===

2()(011100000010)(0.1905) 3.028393fit c fit f '===

3()(010*********)(0.6349) 2.669116fit c fit f '==-=

4()(100101001100)(0.9060) 3.901979fit c fit f '===

5()(110101001100)(2.1563) 4.366943fit c fit f '===

6()(110101111010)(2.2125) 2.569923fit c fit f '===

7()(110101011010)(2.1734) 3.882478fit c fit f '===

8()(100101000000)(0.8913) 3.883049fit c fit f '===

9()(100111001010)(1.0598) 2.144280fit c fit f '===

10()(100101001000)(0.9011) 3.900966fit c fit f '===

种群总的适应值为

101()34.106278total i i fit fit c ='==∑ 可以看到,第二代种群的适应值在总体上而言要比第一代好,这也验证了在

遗传算子的作用下,种群存在着进化。继续根据此适应值进行选择、交叉和变异,可以产生第三代种群。遗传算法不断循环这一过程,在第115代时出现了最优的染色体(111110101110),()3sin(5)f x x x π=+?在区间[2,3]x ∈-的最大值就是它的适应值5.900667。

遗传算法的收敛性

一些研究人员对进化算法的运行机理进行过研究,Radolph 在文献[1]中证明了一般的遗传算法不一定收敛,只有每代保存了最优个体时才收敛。在实际应用中,使用了上述结论来保证收敛性。采用优秀个体保护法就是将每代中的最优个体,直接进入子代,相应淘汰其子代中适应度最差的个体,使种群规模不变。 对保存最优个体时遗传算法是收敛的结论的证明是通过对遗传算法构造马尔柯夫(markov)链,因为遗传算法的进行过程是一个马尔柯夫过程。

当遗传算法收敛时,求到的解通常只是所要解决问题的最优解的一个近似解,或者叫满意解。从数学分析的角度看,收敛过程是一个无限逼近过程,而计算过程是一个有限自动机,因此通过遗传算法程序求得的解总是一个近似解。近似解与问题真正的最优解的差是一个统计意义下的量,也就是说每次程序运行得

到的解的质量可能是有较大的差别的。○

6 适用的问题

遗传算法擅长解决的问题是全局最优化问题,例如,解决时间表安排问题就是它的一个特长,很多安排时间表的软件都使用遗传算法,遗传算法还经常被用于解决实际工程问题。

跟传统的爬山算法相比,遗传算法能够跳出局部最优而找到全局最优点。而且遗传算法允许使用非常复杂的适应度函数(或者叫做目标函数),并对变量的变化范围可以加以限制。而如果是传统的爬山算法,对变量范围进行限制意味着复杂的多的解决过程,这方面的介绍可以参看受限优化问题和非受限优化问题。

应用领域

汽车设计,包括材料选择、多目标汽车组件设计、减轻重量等。

机电系统设计。

分布计算机网络的拓扑结构。

电路设计,此类用途的遗传算法叫做进化电路。

电子游戏设计,例如计算平衡解决方案。

机器智能设计和机器人学习。

模糊控制系统的训练。

移动通讯优化结构。

时间表安排,例如为一个大学安排不冲突的课程时间表。

旅行推销员问题.

神经网络的训练,也叫做神经进化。○7

四,最新研究成果

在许多实际问题的求解当中,人们往往并不知道或者不能通过简单的解法得到最优结果,这时遗传算法就体现出它的优势了。正因如此,遗传算法得到了越来越广泛的关注和运用,并且成功用于求解:

旅行商问题(Traveling salesman problems)错误!未找到引用源。

自适应控制(adaptive control)错误!未找到引用源。

电磁场优化(electromagnetic optimization)错误!未找到引用源。

认知模型(cognitive modeling)错误!未找到引用源。

电路优化(circuit optimization)错误!未找到引用源。

函数优化(function optimization)错误!未找到引用源。

等等复杂问题中。

如:

《神经网络和遗传算法在水科学领域的应用》作者:苑希民

出版社:中国水利水电出版社

出版日期:2002年8月版次:1

本书较全面系统地介绍了应用人工神经网络和遗传算法解决水科学问题的最新研究成果。在理论方面:将人工神经网络技术应用于解决复杂、模糊、高度非线性洪水、水沙的预测预报问题,提出了基于人工神经网络的峰值识别理论,采用遗传算法优化神经网络的初始权重,实现了人工神经网络与遗传算法的有机结合。在应用方面:研制了基于人工神经网络与遗传算法理论的洪水预报系统和多泥沙洪水预报系统。

《神经模糊系统及其应用》作者:王士同

这是一本反映最新的模糊逻辑系统、模糊神经网络研究成果的专著。作者结合国内外最新资料及自己的研究成果,在简要介绍了模糊集合理论与神经网络理论的基础上,深入且重点地介绍了模糊逻辑系统、模糊神经网络与模糊遗传算法这三个热点研究领域的建论与技术。

《Calculation in genetics and that in image-number school of Yi》

LI Shu-qing

本文认为,《周易·系辞传》“天地之大德曰生”;“生生之谓易”等以生命为本并强调生命演化的思想都与西方新兴起的遗传算法(基因算法)精神一致。文章在介绍了已故著名科学易学家潘雨廷先生对遗传密码的理解后,进而介绍了西方遗传算法的内容和结构,并把DNA本体看作计算硬件,把易数看作软件。最后比较了象数思维与遗传算法的思维,并提出了八卦空间。

GATEST:使用遗传算法自动生成模拟矢量的验证平台

五,在计算机专业及网络专业的应用以及代表性文章

《利用遗传算法实现CMOS组合电路静态功耗优化》

作者:赵晓莺; 易江芳; 佟冬; 程旭

面向基于标准单元的CMOS组合电路,利用输入向量控制技术,采用遗传算法作为求解手段,建立了CMOS组合电路静态功耗优化环境。在遗传算法中利用电路状态差异度作为适应度函数,求解使电路静态功耗最小的输入向量。实验结果表明,

使用该方法能明显优化静态功耗,运行时间合理,不需要进行HSpice模拟,摆脱了对目标工艺的依赖。

《基于遗传算法的Kriging元模型及其在模拟集成电路优化设计中的应用》

作者:游海龙; 贾新章; 王少熙

提出了建立电路Kriging元模型,并与遗传算法相结合确定电路参数,优化电路的方法.相对传统多项式回归模型,Kriging模型更适合电路仿真的实验类型;利用遗传算法,解决了基于Kriging元模型电路系统的全局优化问题.最后将该方法应用于带隙基准电路设计,取得令人满意的结果.

○1,https://www.360docs.net/doc/d71094264.html,/shumo/jiaoxue/yichuanshuanfa.txt

○2,https://www.360docs.net/doc/d71094264.html,/ask7/ask138958.htm

○3,https://www.360docs.net/doc/d71094264.html,/showtopic.asp?TOPIC_ID=416&Forum_ID=46

○4,https://www.360docs.net/doc/d71094264.html,/7176069_d.html

○5,https://www.360docs.net/doc/d71094264.html,/7176069_d.html

○6,https://www.360docs.net/doc/d71094264.html,/courseware/yj_rengongzhineng/Ai/chapter3/341.htm ○7,https://www.360docs.net/doc/d71094264.html,/Article/ShowArticle.asp?ArticleID=1816

○8,现代智能计算方法简介

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

遗传算法的流程图

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法的参数整定报告

基于遗传算法的PID控制器参数整定报告 一、遗传算法。 遗传算法(GAs)是基于自然界生物进化机制的搜索寻优技术。用遗传算法来整定PID参数,可以提高优化性能,对控制系统有良好的控制精度、动态性能和鲁棒性。 一般的,Gas包括三个基本要素:复制、交叉和突变。 二、PID Optimal-Tuning PID控制:对偏差信号e(t)进行比例、积分和微分运算变换后形成的一种控制规律。 (1) 可调参数:比例度δ(P)、积分时间Ti(I)、微分时间Td(D)。 通常,PID控制准则可以写成下面传递函数的形式: ) 1( ) (s T T s K s G d i p + + =(2) Kp、Ti和Td分别是比例放大率、积分时间常量和微分时间常量。 1)比例控制(P):是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误 差(Steady state error),比例度减小,稳态误差减小; 2)积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 3)微分(D)控制:在微分控制中,控制器的输出与输入误差信号()()()()? ? ? ? ? ? + + =?t e dt d T d e T t e K t u d t i p0 1 τ τ

的微分(即误差的变化率)成正比关系。 文中,性能指标是误差平方的时间加权积分,表示为: ),,1,0(,0 2n k dt e t J i t k ==? (3) 其中n 是非负整数,i t 是积分周期。此外,其他标准项如超调量、上升时间和稳定时间也被一个合成性能指标选择: ))(1(s s r r c t c t c os J ++= (4) s r os t t 、、分别代表超调量、上升时间和稳定时间。s r c 、c 两个系数有用户定义或决定。预期的性能指标的最下化可以认为是小的超调量、短的上升时间和稳定时间。 三个PID 参数的编码方式如下: 10101011:S 1010100011100111 p K i K d K p K 、i K 和d K 都是八位二进制字符格式。 自适应函数的选择关系到性能指标,如: 101)(J J F F == (5) 实际上,)(J F 可以是任何一个能切实表达F 和J 关系的非线性函数。 遗传操作是模拟生物基因遗传的操作,从优化搜索的角度而言,遗传操作可使问题的解一代一代地优化,并逼近最优解,主要包括三个遗传算子:选择、交叉和变异。关于他们的具体方法这里不在赘述。 三、 计算机实现 作者编程使用的事TURBO C 。程序包括两个部分:一个是仿真PID 控制系统的闭环阶跃响应;另一个是实施对一代所有成员的遗传算法的仿真,这里遗传算法将一代作为一个整体。在第一代生物的二进制代码随机产生之后,这个过程重复直至迭代次数达到预选的次数。 步长、PID 参数X 围、性能指标、自适应函数和方法得时间延迟都是从一个文件中读取。而遗传算法的的参数,诸如世代数、交叉概率、变异概率、选择概率等通过菜单选择。 整个闭环系统仿真的完成可以用四阶龙格库塔法或直接时域计算。在程序中,复制的实现是通过轮盘赌博法的线性搜索,面积加权于上一代成员的适应值。交叉发生在每一对复制产生的成员。 交叉操作是将一个随机产生的一个在0到1之间数与交叉概率比较决定是否需要交叉。如果需要交叉,则在1到47之间随机产生一个交叉位置代码。变异,对新一代所有成员都随机产生一个0到1之间的数与变异概率比较,然后再决定是否改变代码的一位。同理,反转也是这样判定和操作的。另一需要说明的事,两个反转位置代码是在1~48之间随机选择的。同样,

遗传算法综述

遗传算法综述 太原理工大学刘晶学号:s2******* 摘要:遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获得和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优的方案。遗传算法作为一种实用、高效、鲁棒性强的优化技术,有着广泛的应用前景。 关键词:遗传算法数学模型优点流程 一,概述。遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。美国Michigan 大学的Holland 教授及其学生受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适应于复杂系统优化的自适应概率优化技术———遗传算法。 二,基本遗传算法的数学模型。基本遗传算法可表示为:SGA=(C,E,P0,M,Φ,Γ,Ψ,T)式中,C为个体的编码方法;E 为个体适应度评价函数;P0 为初始种群;M为种群大小;Φ为选择算子;Γ为交叉算子;Ψ为变异算子;T为遗传运算终止条件。 三,遗传算法的优点。 3.1 对可行解的广泛性表示。遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。次编码操作

使得遗传算法可以直接对结构对象进行操作。 (1)通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化。 (2)通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的。 (3)通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树。 (4)通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造的顺序控制系统。 3.2 群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点,相反,遗传算法采用的是同时处理群体中多个个体的方法。 3.3 不需要辅助信息。遗传算法仅用适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且某定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。 3.4 内在启发式随机搜索特性。遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

最新最全的遗传算法工具箱及说明

最新最全的遗传算法工具箱Gaot_v5及说明 Gaot_v5下载地址:https://www.360docs.net/doc/d71094264.html,/mirage/GAToolBox/gaot/gaotv5.zip 添加遗传算法路径: 1、 matlab的file下面的set path把它加上,把路径加进去后在 2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了

遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。这些函数按照功能可以分成以下几类:

主程序 ga.m提供了 GAOT 与外部的接口。它的函数格式如下: [x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 输出参数及其定义如表 1 所示。输入参数及其定义如表 2 所示。 表1 ga.m的输出参数 输出参数 定义 x 求得的最好的解,包括染色体和适应度 endPop 最后一代染色体(可选择的) bPop 最好染色体的轨迹(可选择的) traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数 表3 GAOT核心函数及其它函数

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】

遗传算法综述

遗传算法综述 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、 一、起源和发展分支 尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。但当时的研究进展缓慢,收效甚微。原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。 遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural and Artificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法概述

第一章 遗传算法概述 2.1 遗传算法的原理 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种概率搜索算法。遗传算法是通过模拟生物在自然界中的进化过程而形成的一种优化算法。它的基本过程是:先随机生成规模为m 的初始群体,对连续优化问题即为n R 中的m 个点},,,{,},,,,{21112111m n m m m n x x x x x x x x ==的集合, },,,{21k sn k s k s x x x 称为个体或者染色体,通过对该群体使用遗传操作(包括选择、 交叉、变异遗传算子),得到m 个新的个体,这称作是群体的一代进化,相当于通常优化算法的一次迭代。不断重复这一过程,可看作是群体的逐代演化,直到得到满足给出条件的问题解。 可以看出,遗传算法的关键是进化过程中使用的遗传操作即选择、交叉和变异等算子,这些算子决定了下一代个体的具体位置。 选择策略对算法性能的影响有举足轻重的作用。常用的是轮盘选择和精英选择。 a. 轮盘选择(roulette wheel selection ) 选择的基本依据是个体的适应值,对于最小化问题,个体适应值取为)()(x f K x f -=',其中K 为一足够大的正数。定义第i 个体的选择概率为 ∑=''=n i i i i x f x f p 1)() ( (3) 其意义是个体适应值在群体总适应值中所占的比例。生成一个[0,1]内的随机数r ,若i i p p p r p p p +++≤<+++- 21110,假设00=p ,则选择个体i 。 b. 精英选择(elitist selection ) 当下一代群体的最佳个体适应值小于当前群体最佳个体的适应值,则将当前群体最佳个体或者适应值大于下一代最佳个体适应值的多个个体直接复制到下一代,随机替代或替代最差的下一代群体中的相应数量的个体。 交叉与变异算子的选取与编码方式有关,最初Holland[5] 提出的遗传算法是采用二进制编码来表现个体,后来发现对连续优化问题采用浮点编码可以达到更好的效果,因此越来越多地使用浮点编码,下述的交叉、变异算子针对浮点编码。

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

相关文档
最新文档