土壤检测方案

土壤检测方案
土壤检测方案

土壤检测方案

This model paper was revised by the Standardization Office on December 10, 2020

土壤检测方案

用作苗圃的土地,在进行土壤检测时,最好选择有代表性的地块,进行分块进行选取,以便保证测量结果的准确性。

一、土壤检测前的准备

1、检测仪器的准备

(1)土壤取样器

(2)土壤筛

二、土壤检测基本方法及样本制备

1、土壤布点方法

(1)简单随机

将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号。随后利用不同的方法随机获取。

(2)分块随机

根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监测单元,在每个监测单元内再随机布点。

(3)系统随机

将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点。如果区域内土壤污染物含量变化较大,系统随机布点比简单随机布点所采样品的代表性要好。

2、布点数量

土壤监测的布点数量要满足样本容量的基本要求,在实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。(一般要求每个监测单元最少设 3 个点。)

区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。

3、样品采集

样品采集一般按三个阶段进行:

(1)前期采样:根据背景资料与现场考察结果,采集一定数量的样品分析测定,(2)正式采样:按照监测方案,实施现场采样。

(3)补充采样:正式采样测试后,发现布设的样点没有满足总体设计需要,则要进行增设采样点补充采样。

面积较小的土壤污染调查和突发性土壤污染事故调查可直接采样。

4、样品流转

由专人将土壤样品送到实验室,送样者和接样者双方同时清点核实样品,并在样品交接单上签字确认,样品交接单由双方各存一份备查。

5、样品保存

按样品名称、编号和粒径分类保存。在转交给专业检测中心进行检测。

6、预留样品

分析取用后的剩余样品一般保留半年,有利于苗圃同类状况可进行有效分析。特殊、珍稀、仲裁、有争议样品一般要永久保存。

三、土壤环境质量评价报告

土壤环境质量评价涉及评价因子、评价标准和评价模式。且根据检测中心反馈的数据报告进行有效分析土壤的含水量,酸碱度及有机质等存在状况,从而采取针对性的措施以保证苗木正常生长。

绿化土壤检测取样方法检测项目及质量指标

绿化土壤检测取样方法检测项目及质量指标 Final approval draft on November 22, 2020

绿化土壤检测取样方法、检测项目及质量指标 一、地形主体构筑所用土壤(40cm地表种植土以下部分) 1、取样方法: 外购土壤的,每个检验批不得超过1000m3,且同一检验批应位于同一地点、同一地层(80c m)内。 土壤取样原则上应在现场进行,如确实需在场外改良后再进场施工的,可征得建设单位和质量监督机构同意后,在监理公司的见证下在土源所在地取样,且土壤的装运应经监理单位签认。 外购土壤取样应随机在土壤的5个部位各取100g,经均匀混合后组成一组试样。 绿化施工场内倒运土壤,按土壤分布范围每个检验批不得超过1000m2,且应位于同一地点、同一地层(80c m)内。 每组试样至少取样5处混合后组成,且每个取样处在顶部、中部及底部3个不同部位各取100g,经均匀混合后组成一组试样。 2、检测项目及质量指标: 序号性状项目指标要求 1pH值~85 2含盐量<% 3密实度>85% 二、栽植普通地被植物的绿化地表土(地表至40cm深范围内) 1、取样方法:

普通地被植物的绿化地表土每个检验批不得超过1000m2,在绿化工程现场取样,且应位于同一地点内。 每组试样至少取样5处,且每个取样处在顶部、中部及底部3个不同部位各取100g,经均匀混合后组成一组试样。每个取样处在取样时应除去表面浮土。 2、检测项目及质量指标: 序号性状项目指标要求 1容重g/cm3~cm3 2总孔隙度>10% 3pH值~ 4含盐量<% 5有机质含量>10g/㎏ 6全氮量>㎏ 7全磷量>㎏ 8全钾量>17g/㎏ 9土壤渗透系数≥10-4cm/s 三、草坪坪床土(地表至25cm深范围内) 1、取样方法: 在绿化工程现场取样,同一地点同一时段施工的土壤为同一检验批,不同地点或不同时段施工的土壤为不同检验批。每个检验批按土壤分布范围每1000m2随机取样5处。每个取样处在除去表面浮土后采样100g,经均匀混合后组成一组试样 2、检测项目及质量指标: 序号性状项目指标要求 1容重g/cm3~cm3 2总孔隙度≥50%

土壤检测方法

土壤有机质的测定 称取通过孔径筛的风干试样,(一般为,精确到),放入硬质试管中,然后从滴定管准确加入 l重铬酸钾-硫酸溶液,摇匀并在每个试管口插入一玻璃漏斗。将试管逐个插入铁丝笼中,沉入加热至185℃-190℃的油浴锅内,试管液面低于油面,要求放入后油浴温度下降至170-180℃,待试管内溶液开始沸腾开始计时,此刻必须控制电炉温度,不使溶液沸腾,其间可轻轻提起铁丝笼在油浴锅中晃动几次,以使液温均匀,并维持在170-180℃,5min±后取出,冷却片刻,擦去试管外壁的油液。把试管内的消煮液及土壤残渣无损的转入250ml三角瓶中,用水冲洗试管及小漏斗,洗液并入三角瓶中,使三角瓶内溶液控制在50-60ml。加3滴邻菲罗啉指示剂,用硫酸亚铁铵标准溶液滴定剩余的K2Cr2O7,变色过程是橙黄-蓝绿-棕红。 空白试验:称取石英砂,其他步骤相同。 如果试样滴定所用硫酸亚铁铵标准溶液的体积不到空白的1/3,则有氧化不完全的可能,应减少称样量重测。 结果计算: 有机质(%)=c×(V0-V)××××100/m V0:空白试验消耗硫酸亚铁铵标准溶液体积,ml V:试样测定消耗硫酸亚铁铵标准溶液体积,ml

c: 硫酸亚铁铵标准溶液的浓度,mol/l m:风干试样的质量,g 土壤全氮的测定方法 称取通过孔径筛的风干试样(含氮约1mg,精确到)。 1.不包括硝态氮和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入加速剂,加水约2ml湿润试样,再加8ml浓硫酸,摇匀,将消化管置于控温消煮炉上,用小火加热,待管反应缓和时,(约10~15min),加强火力至375℃,待消煮液和土粒全部变为灰白稍带绿色后(白烟消失),再继续消煮1h,冷却,待蒸馏。在消煮试样的同时,做两份空白测定。 2.包括硝态氮和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入1ml高锰酸钾溶液,轻轻摇动消煮管,缓缓加入2ml 1:1硫酸溶液,不断转动消化管,放置5min后,再加入1滴辛醇。通过长颈漏斗加(±)还原铁粉送入消化管底部,瓶口盖上弯颈漏斗,转动消化管,使铁粉与酸接触,待剧烈反应停止时(约5min),将消化管置于控温消煮炉上缓缓加热45min(管内土液应保持微沸,以不引起大量水分丢失为宜)。停止加热,待消化管冷却后,加加速剂和5ml 浓硫酸,摇匀,待蒸馏。在消煮试样的同时,做两份空白测定。 蒸馏前先按仪器使用说明检查定氮仪,并空蒸洗净管道。待消煮

土壤墒情监测系统的操作方法及注意事项

土壤墒情监测系统的操作方法及注意事项 农业发展一直是我国的重点之一,如今农业发展的方向是现代化农业,现代化农业的主要特点是农业信息化,而农业信息化主要体现在农业物联网。 托普云农物联网推出的物联网技术全面打造土壤墒情监测系统,将最前沿的信息技术武装到了延续几千年的劳动生产上。 在系统应用过程中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集信息,可以帮助农民及时发现问题,并且准确地捕捉发生问题的位置。如此一来,农业逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备,促进了农业发展方式的转变。 相关数据显示,农业灌溉是我国的用水大户,长期以来,由于技术、管理水平落后,导致灌溉用水浪费十分严重,农业灌溉用水的利用率仅40%。如果根据监测土壤墒情信息,实时控制灌溉时机和水量,可以有效提高用水效率。而人工定时测量墒情,不但耗费大量人力,而且做不到实时监控。 托普云农物联网结合土壤墒情监测平台和物联网控制技术的应用,使农业种植中的监控管理不再受到时空局限,根据大棚或其他种植区微传感器采集的详实数据,点击手机屏幕便可以有针对性的遥控节水灌溉、施肥、二氧化碳、水泵、风机等田间设施。 总而言之,实现土壤墒情的连续在线监测,农田节水灌溉的自动化控制,既

提高灌溉用水利用率,缓解我国水资源日趋紧张的矛盾,也能为作物生长提供良好的生长环境。 根据规划,托普云农物联网应用中的管理平台分为墒情信息监测、苗情信息监测、气象数据分析、短信发布、灾情信息发布、图形预警几个部分。未来,围绕系统建立起来的"绿色产业链"将让现代农业朝着绿色可持续的方向迈进。 土壤墒情监测是实施农田有效管理措施的基础,为此,托普云农结合国内外同类产品的优势研发了一种土壤墒情监测系统,它可以实现农田土壤墒情的准确测定和管理,对农业展开合理的生产措施有重要的意义。 TZS-GPRS-I土壤墒情监测系统又可称为墒情与旱情信息管理系统,土壤墒情与旱情管理系统,无线墒情与旱情管理系统,土壤墒情实时监测系统。该系统拥有自己的数据平台(数据无须上传至国家系统)及监测网络,数据可直接发送到管理者的服务器,下级所有被管理站点均可查看。该土壤墒情与旱情监测系统用户可以根据需要选择网络GPRS模式或短信GSM模式两种通讯方式传输。 TZS-GPRS-I与TZS-GPRS的区别在于: TZS-GPRS-I是自有网络平台,即不上传到国家墒情监测网,自己有一套墒情监测网络,数据直接发送到管理者的服务器,下级所有被管理站点均可查看。 托普云农土壤墒情监测系统其他选配的气象要素: 空气温度、空气相对湿度、太阳辐射、风向、风速、降水量、大气压力、光照度、露点、直接辐射、日照、光合有效辐射、紫外辐射、蒸发、二氧化碳等传感器。

土壤检测标准

土壤检测标准标准化管理部编码-[99968T-6889628-J68568-1689N]

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定

绿化种植土壤检测,检测项目有什么

绿化种植土壤检测,检测项目有什么 土壤是指地球表面的一层疏松的物质,由各种颗粒状矿物质、有机物质、水分、空气、微生物等组成,能生长植物。 “万物土中生”,土壤是生命之基,土壤为植物提供生存所需的物质,让植物茁壮成长。 绿化指的是栽植防护林、路旁树木、农作物以及居民区和公园内的各种植物等。 对绿化种植土壤有什么要求呢? 依据《绿化种植土壤》CJ/T 340-2016规定,绿化种植土壤一般要求为: 1、绿化种植土壤应具备常规土壤的外观,有一定疏松度、无明显可视杂物、常规土色、无明显异味。 2、绿化种植土壤有效土层应符合CJJ 82-2012中表4.1.1规定的相关土层厚度要求。 3、除有地下空间、屋顶绿化等特殊地带,绿化种植土壤有效土层下应无大面积的不透水层,否则应打碎或钻孔,使土壤种植层和地下水能有效贯通。 4、污泥、淤泥等不应直接作为绿化种植土壤,应清除建筑垃圾。 5、花坛用土或用于种植对土壤病虫害敏感植物的绿化土壤宜先将其进行消毒处理后再使用。 通用要求为: 一般绿化种植土壤pH、含盐量、有机质、质地和入渗率5个主控指标是必测指标,应100%符合技术要求,若有一项指标不符合技术要求则该土壤视为不合格。 广东精美检测,拥有CMA认可资质实验室,坚持“科学、严谨、快捷、公平”的理念,严格按照相关标准,为客户提供专业的土壤检测,认真完成每一次检测委托,出具认可的第三方检测报告! 参照CJ/T 340-2016,绿化种植土壤检测项目有: 外观、有效土层、pH值、含氧量、有机质、质地、土壤入渗率、阳离子交换量、水解性氮、有效磷、速效钾、有效硫、有效镁、有效钙、有效铁、有效锰、有效铜、有效锌、有效钼、可溶性氯、密度、非毛管孔隙度、石砾含量、田间持水量、稳定调萎含水量、最大湿密度、发芽指数、交换性钠、钠吸附比、可溶性硼、总镉、总汞、总铅、总铬、总砷、总镍、总铜、总锌等。 文章部分内容来源网络,如有侵权,请告知我们删除!还有,内容仅供参考,如有错误,请联系我们修改!

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量0.5000g样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标 样),用少量去离子水润湿; 2)缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5)加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶 液中硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.

全国土壤墒情监测工作方案解析

全国土壤墒情监测工作方案 随着全球气候变化加剧,我国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。通过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表达的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。 (二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、 按时上报。

(三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20 、20~40 、40~60 、60~100 四个层次监测土壤含水量,其中,0~20 、20~40 为必测层。播种出苗期时,加测0~10 土层。特殊作物根据其需水特性和根系分布深度确定监测层次和深度。同时调查观测气象、作物表象、干土层厚度、田面开裂、灌溉、农事操作等相关数据。水田淹水时监测淹水深度、排水状况等。 2、采集方法。固定监测:埋设固定式自动监测设备,传感器分别埋入土层 深度10 、30 、50 、80 处进行监测,采用无线通讯方式将监测数据实时上传到“全国土壤墒情监测系统”,并做好定期校正和维护保养。流动监测:配备便携式监测仪器和交通工具,在监测点地块,以仪定位点为中心,长方形地块采用“S ”

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定 NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定 NY/T 889-2004 土壤速效钾和缓效钾

常规土壤检测项目及方法 土壤检测机构

常规土壤检测项目及方法土壤检测机构 1.水解性氮(碱解氮)LY/T1229-1999《森林土壤水解性氮的测定》。碱解-扩散法。如果测定值>200mg/kg,允许绝对偏差<10mg/kg;测定值200mg/kg~50mg/kg,允许绝对偏差10mg/kg~ 2.5mg/kg;测定值<50mg/kg,允许绝对偏差<2.5mg/kg。用1.8mol/L氢氧化钠处理土壤,土壤于碱性条件下水解,使易水解态氮转化为氨态氮,由硼酸吸收,用标准酸滴定计算碱解氮的含量。 2.全氮NY/T53-1987《土壤全氮测定法》。半微量凯氏法。平行测定结果的允许差:土壤含氮量>0.1%时,不得>0.005%,含氮0.1-0.06%时,不得>0.004%,含氮<0.06%时,不得>0.003%。土壤中的全氮在硫酸铜、硫酸钾与硒粉的存在下,用浓硫酸消煮,各种含氮有机化合物经过高温分解转化为铵态氮,然后用氢氧化钠碱化,加热蒸馏出氨,经硼酸吸收,用标准酸滴定其含量。 3.全磷LY/T1232-1999《森林土壤全磷的测定》。酸溶-钼锑抗比色法。测定值>2g/kg,绝对偏差>1016g/kg;测定值2g/kg~1g/kg,绝对偏差0.06~0.03g/kg;测定值<1,绝对偏差<0.03。以硫酸-高氯酸溶解土壤中的磷,用钼锑抗比色法测定。 4.有效磷L Y/T1233-1999《森林土壤有效磷的测定》。 4.1盐酸-硫酸浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差 1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。盐酸和硫酸溶液浸提法:用盐酸和硫酸的混合溶液浸提溶解出土壤中的磷酸铁、铝盐,再用钼锑抗比色法可以测定出浸提液中的磷。 4.20.5mol/L碳酸氢钠浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。碳酸氢钠浸提土壤,可以抑制溶液中的钙离子活度,使某些活性较大的碳酸钙被浸提出来,同时也可使活性磷酸铁、铝盐水解被浸出,浸出液中的磷不会次生沉淀,可用钼锑抗比色法定量。 5.有效磷NY/T149-1990《石灰性土壤有效磷测定方法》。碳酸氢钠浸提-钼锑抗比色法。平行测定结果的允许差:测定值<10mg/kg P时,绝对差值<0.5mg/kg P;测定值为10-20mg/kg P时,绝对差值<1.0mg/kg P;测定值>20mg/kg P时,相对差<5%。用0.5mol/L碳酸氢钠浸提土壤有效磷。碳酸氢钠可以抑制溶液中Ca2+离子的活度,使某些活性较大的磷酸钙盐被浸提出来;同时液可以使活性磷酸铁、铝盐水解二被浸出。浸出液中的磷不致次生沉淀;可

土壤墒情在线监测系统概述

土壤墒情在线监测系统概述 灌溉在农业生产中是非常重要的一项农事工作,而节水灌溉则是近年来国家所倡导的一种灌溉方式。经实践证明,在田间作物增产灌溉和适时适量节水技术应用与研究中,都离不开田间墒情的监测和预报。通过应用土壤墒情在线监测系统对田间墒情的监测和预报,种植者可以根据土壤墒情在线监测系统提供的数据发现某块田地缺水了,然后及时进行灌溉,而当土壤水分达到过多时,就能提醒种植者进行排水,严格的按照墒情浇关键水,使得灌溉水得到有效利用,从而达到节水高产的目的。 那么,土壤墒情在线监测系统是什么?该系统怎样呢? 土壤墒情在线监测系统就是专业用来监测田间土壤墒情的设备,它可以利用其数据采集、传输和存储技术来实时获取田间的墒情旱情等信息,而工作人员通过这些数据信息,就可以分析出当前田间土壤的墒情情况。土壤墒情在线监测系统和传统土壤监测仪器相比具有很大优势,它可以实现全天24小时对土壤墒情的实时监测,做到每分每秒关注土壤墒情的变化情况,而且不需要工作人员看守,同时还能够将数据传输至平台,实现多点墒情监测,而这些都是过去的土壤墒情监测仪器所不具备的。 不仅如此,土壤墒情在线监测系统的好处远远不止只有这一点,农业种植人人都想作物增产,而作物要想增产,合理的灌溉措施是少不了的,而合理的灌溉离不开田间墒情的监测和预报,即离不开土壤墒情在线监测系统的应用,还有在农业种植过程中,农户也经常会遇到灌溉的问题,比如什么时候灌溉合适,灌溉多少合适,如果灌溉把控不好时间或者灌溉不及时,很容易影响农作物的正常生长,影响农作物的产量。所以如何使农作物得到适时、适量的灌溉,提高灌水效率,是非常重要的事情。而托普云农TZS-GPRS-I土壤墒情在线监测系统是专业用于监测与管理土壤墒情的专业系统。该系统可以通过实时监测,为作物灌溉提供可靠的数据支撑,提高水资源的利用率,提高种植效率。

土壤检测项目和要求

土壤检测项目和要求 为了提升园林绿化施工及绿地养护管理的质量水平,满足施工及绿地养护中对绿化种植土壤的质量要求,针对土壤特点、园林植物种类和绿地养护管理不同要求,依据CJ/T 340—2011,制定本标准。 一、术语和定义 1、园林绿化种植土壤 用于园林中种植一、二年生花卉、多年生花卉(宿根和球根花卉)、草坪植物、竹类、灌木、乔木等植物的绿化用土壤。 2、土壤pH值 土壤溶液的酸碱性强弱程度,用土壤溶液中氢离子浓度的负对数表示。 3、土壤全盐量 土壤中可溶性盐的总量。以质量百分数(%)表示。 4、土壤有机质 土壤中所有含碳的有机物质,包括土壤中各种动、植物残体、微生物体及其分解和合成的各种有机物质。 5、水解性氮 亦称“土壤碱解氮”,包括无机的矿物态氮和部分有机物质中易分解的、比较简单的有机态氮,它是铵态氮、硝态氮、氨基酸、酰胺和易水解的蛋白质氮的总和。 6、有效磷 土壤中可被植物吸收的磷,一般包括土壤溶液中的离子态磷酸根,以及一些易溶的无机磷化合物和吸附态磷。 7、速效钾 易被植物吸收利用的钾,包括交换性钾和水溶性钾。 8、土壤容重 单位体积自然状态下土壤(包括土壤孔隙的体积)的干重。 9、通气孔隙度 土壤中直径大于0.1 mm的孔隙占总空隙的比例,用百分率(%)表示。这类孔隙没有毛管作用,充满空气,也称非毛管孔隙。 10、石砾 有效粒径大于2 mm的石粒。 11、土壤改良 根据土壤障碍因素及其危害性状,采取相应措施,改善土壤性状。 12、检测单元 根据土壤类型、植被、地貌、质地、成土母质等情况划分的检测区域范围。 13、土壤取样点 检测单元绿地内实施检测取样的地点。 14、土壤混合样 在每个检测单元的种植层根据需要布置5~20个土壤取样点,然后进行等量的取样并混合均匀后的土壤样品。 15、客土 非当地原生的、由别处移来的外地土壤。 16、侵入体 由外力(主要是人为活动)加入到土壤中的物体。包括碎石、砾石、瓦片、碎砖块、陶片、玻璃、金属遗物、三七灰土、沥青混凝土、石灰粉煤灰混合料等。

全国土壤墒情监测工作方案

全国土壤墒情监测 工作方案

全国土壤墒情监测工作方案 随着全球气候变化加剧,中国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。经过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表示的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。

(二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、按时上报。 (三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20cm、20~40cm、40~60cm、60~100cm四个层次监测土壤含水量,其中,0~20cm、20~

绿化土壤检测取样方法 检测项目及质量指标

绿化土壤检测取样方法、检测项目及质量指标 一、地形主体构筑所用土壤(40cm地表种植土以下部分) 1、取样方法: 外购土壤的,每个检验批不得超过1000m3,且同一检验批应位于同一地点、同一地层(80c m)内。 土壤取样原则上应在现场进行,如确实需在场外改良后再进场施工的,可征得建设单位和质量监督机构同意后,在监理公司的见证下在土源所在地取样,且土壤的装运应经监理单位签认。 外购土壤取样应随机在土壤的5个部位各取100g,经均匀混合后组成一组试样。 绿化施工场内倒运土壤,按土壤分布范围每个检验批不得超过1000 m2,且应位于同一地点、同一地层(80c m)内。 每组试样至少取样5处混合后组成,且每个取样处在顶部、中部及底部3个不同部位各取100g,经均匀混合后组成一组试样。 2、检测项目及质量指标: 序号性状项目指标要求 1 pH值6.5~85 2 含盐量<0.12% 3 密实度>85% 二、栽植普通地被植物的绿化地表土(地表至40cm深范围内) 1、取样方法:

普通地被植物的绿化地表土每个检验批不得超过1000 m2,在绿化工程现场取样,且应位于同一地点内。 每组试样至少取样5处,且每个取样处在顶部、中部及底部3个不同部位各取100g,经均匀混合后组成一组试样。每个取样处在取样时应除去表面浮土。 2、检测项目及质量指标: 序号性状项目指标要求 1 容重 0.450 g/cm3~1.3g/cm3 2 总孔隙度>10% 3 pH值 6.5~8.5 4 含盐量<0.12% 5 有机质含量>10g/㎏ 6 全氮量>1.0g/㎏ 7 全磷量>0.6g/㎏ 8 全钾量>17g/㎏ 9 土壤渗透系数≥10-4cm/s 三、草坪坪床土(地表至25cm深范围内) 1、取样方法: 在绿化工程现场取样,同一地点同一时段施工的土壤为同一检验批,不同地点或不同时段施工的土壤为不同检验批。每个检验批按土壤分布范围每1000 m2随机取样5处。每个取样处在除去表面浮土后

土壤实验测定方法

测土配方施肥测试项目 1、有机质 2、速效磷 3、速效钾 4、碱解氮 5、缓效钾 6、全氮 7、电导和pH 8、植物氮磷钾 9、植物微量元素的测定(Fe、Mn、Cu、Zn、Ca、Mg) 10、土壤中的微量元素(Fe、Mn、Cu、Zn)11、水中铵态氮的测定(靛酚蓝比色法) 12、土壤有效S的测定 13、硝态氮的测定 一、有机质的测定(重铬酸钾外加热法) 试剂: 1、L的FeSO 4 溶液:(化学纯)溶于1L水,再加5ml浓硫酸。 2、重铬酸钾-浓硫酸混合液:称(通常可直接称40g),加1L水溶解,在加1L浓硫酸。 (为防止结晶,经验是400ml水溶解重铬酸钾,用600ml水稀释浓硫酸,在混合)。 3、邻啡啰啉指示剂:邻啡啰啉+溶于100ml水里,储存在棕色瓶中。 4、Ag 2SO 4 :防止氧化物(Cl-)的干扰,约加左右。(石灰土壤一般不用) 5、重铬酸钾标准液的配制:重铬酸钾(分析纯)加400ml水,加热溶解,定容1L。 设备: 消煮炉、消煮管、万分之一天平、2L大烧杯、大储存瓶、瓶口分液器(10ml)、酸式滴定管、三角瓶、洗瓶 实验步骤: 1、称()土样至消煮管,加入10ml重铬酸钾-浓硫酸混合液,摇匀。 2、放入消煮炉(190℃)沸5min。 3、完全转移至三角瓶中,加入指示剂,用硫酸亚铁滴定。(橙黄→蓝绿→转红) 注意:滴至快终点时用洗瓶洗壁,减少误差。

每批样3空白。 每天对FeSO 4 标定一次。(标定方法2:重铬酸钾溶于50—70ml水+5ml浓硫酸+邻啡啰啉指示剂) 计算公式:方法1:CFeSO 4=(标准重铬酸钾质量/M重铬酸钾)*6*5/消耗FeSO 4 体积 5表示每次吸重铬酸钾标准液5ml 方法2:CFeSO 4=(消耗FeSO 4 体积*)ppm 有机质(g/Kg)={CFeSO 4*(V -V)*10-3*3***1000}/样重 加Ag 2SO 4 时,校正系数变为。(为氧化校正系数) 有机质(g/Kg)={CFeSO 4 *(V -V)*10-3*3***1000}/样重 2重铬酸钾+3C→ 重铬酸钾+6FeSO 4 → 滴定平行误差kg 二、速效磷(碳酸氢钠浸提—硫酸钼锑抗比色法) 试剂: 1、4mol/LNaOH:4gNaOH+25ml水 2、LNaHCO 3浸提剂:42gNaHCO 3 +1L水,用4mol/LNaOH调pH≈ 3、稀硫酸溶液:153ml浓硫酸+400ml水,待其冷却 4、5g/L酒石酸锑钾溶液:酒石酸锑钾+100ml水 5、L钼锑抗存储液:10g钼酸铵+300ml水,水浴加热到60℃使其溶解,冷却后将配好 的稀硫酸溶液缓缓到入钼酸铵溶液,在冷却后,加入100ml5g/L的酒石酸锑钾溶液,总体积定容1L,存储于棕色瓶中,可以长期保存。 6、钼锑抗显色剂:称抗坏血酸+100ml钼锑抗存储液。(现配现用,24h以内) 7、二硝基酚指示剂:,6—二硝基酚溶于100ml水中 8、无磷活性炭:用1:1的盐酸(1L水+1L浓盐酸)浸泡活性炭24h,用NaHCO 3 淋洗5 次,再用水淋洗5次,检查至无磷为止。(AgNO 3 检查) 9、1000ppmP标准储存液:取105℃烘干4h的纯磷酸二氢钾(优级纯)+水200ml+5ml 浓硫酸,定容1L 10、P标准液:取磷标准储存液准确稀释20倍,其浓度为5mg/L,不易长期保存。 设备: 液枪(1ml、5ml、10ml)、小试管、分光光度计、混匀器、瓶口分液器(50ml)、细口瓶、振荡器、万分之一、百分之一天平、滤纸、烘箱 实验步骤: 1、称(1mm)土样至细口瓶(必要时小半勺无磷活性炭)+50mlNaHCO 3 ,振荡30min 2、过滤,吸2ml待测液至小试管+1ml显色剂,摇匀(除CO 2 )+7ml水,摇匀,30min后在660nm下比色(预热30min左右)。722分光光度计是880nm,721是700nm。 标准曲线的制作: Y——对应浓度(在Excel中第二列) 计算公式: 根据标准曲线算出对应P的浓度

土壤墒情监测调研报告

土壤墒情监测调研报告 一、降水情况 我市入冬以来,气温偏高,较历史同期偏高2℃左右,为近10年来最高温,降水量也较往年同期偏少2成以上,虽然近期有三次降水,但降水量都不大,对农田土壤增墒没有效果。 二、全市墒情分析 去年封冻前土壤墒情好于历年同期,但不及去年同期,封冻时全市一类、二类墒占总播面积的24%,三类墒占76%。入冬以来气温明显偏高,全市没有座冬雪,且降水明显偏少,土壤失墒严重,对春耕生产非常不利。 为了获得准确、可靠的墒情数据,为指导农业生产、抗旱减灾提供依据,市土肥站3月2日进行了墒情监测与调研,对全市50个墒情监测点中41个旱地进行了土壤含水量测定,每个监测点重复取样5个,分为两层,即0-20厘米、20-40厘米进行取土,共取样品410个,用目前最准确的烘干法获取土壤含水量,最终汇总结果如下:全市农田耕作层0-20厘米平均含水量为31%,较去年封冻前平均含水量%下降23个百分点,20-40厘米层平均含水量为%,较去年封冻前平均含水量54%下降11个百分点。目前全市墒情以三类墒为主,总体评价为重旱,前山地区稍好于后山,平均含水量43%,为中旱;后山平均含水量%,为重旱。全市农田干

土层厚度前山地区8厘米以上,后山地区12厘米以上。 三、预测 据气象部门提供的信息,2016年春季(3-5月),我市降水量较常年少2成以上,大部地区平均气温略高2℃左右。 根据农田土壤封冻前底墒、近期降水情况以及气象部门降水预测分析,我市春播期间可能会出现气温偏高且干旱的现象,随着气温回升、大风日逐渐增多,土壤失墒将会更加严重,对我市春耕生产造成很大影响。 四、建议 目前我市农田土壤墒情差,旱情凸显,对春耕备播非常不利,为了提前做好抗旱准备工作,针对目前情况,提出以下几点建议: 1、利用深松深耕技术,打破犁底层,增强储水、保水能力,减少蒸发。 2、调整种植结构,改变种植习惯,选用抗旱作物和品种,提高抗旱能力;马铃薯选择小整薯播种方式,可以最大限度地保证出苗率。大力推广坐水播种、全膜覆盖等技术,达到增墒、保墒的作用。 3、积极推广膜下滴灌、小型微灌等技术,以现有的水利设施为基础,提高水资源利用率,扩大灌溉面积。

土壤检测方案

土壤检测方案 用作苗圃的土地,在进行土壤检测时,最好选择有代表性的地块,进行分块进行选取,以便保证测量结果的准确性。 一、土壤检测前的准备 1、检测仪器的准备 (1)土壤取样器 (2)土壤筛 二、土壤检测基本方法及样本制备 1、土壤布点方法 (1)简单随机 将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号。随后利用不同的方法随机获取。 (2)分块随机 根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监测单元,在每个监测单元内再随机布点。 (3)系统随机 将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点。如果区域内土壤污染物含量变化较大,系统随机布点比简单随机布点所采样品的代表性要好。 2、布点数量 土壤监测的布点数量要满足样本容量的基本要求,在实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。(一般要求每个监测单元最少设 3 个点。) 区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。 3、样品采集 样品采集一般按三个阶段进行:

(1)前期采样:根据背景资料与现场考察结果,采集一定数量的样品分析测定, (2)正式采样:按照监测方案,实施现场采样。 (3)补充采样:正式采样测试后,发现布设的样点没有满足总体设计需要,则要进行增设采样点补充采样。 面积较小的土壤污染调查和突发性土壤污染事故调查可直接采样。 4、样品流转 由专人将土壤样品送到实验室,送样者和接样者双方同时清点核实样品,并在样品交接单上签字确认,样品交接单由双方各存一份备查。 5、样品保存 按样品名称、编号和粒径分类保存。在转交给专业检测中心进行检测。 6、预留样品 分析取用后的剩余样品一般保留半年,有利于苗圃同类状况可进行有效分析。特殊、珍稀、仲裁、有争议样品一般要永久保存。 三、土壤环境质量评价报告 土壤环境质量评价涉及评价因子、评价标准和评价模式。且根据检测中心反馈的数据报告进行有效分析土壤的含水量,酸碱度及有机质等存在状况,从而采取针对性的措施以保证苗木正常生长。

土壤墒情监测系统的设计与实现_刘欣伟

2013年第7期 福建电脑支持基金:吉林省世行贷款农产品质量安全项目“基于物联网的设施蔬菜安全生产技术研究与应用”,编号:2011-Z 20 1、引言 我国是农业大国,在农业逐步迈入现代化生产的时期,利用计算机相关技术,对农业的生产进行预测与指导是十分必要的。近些年来旱情的发展严重地制约了我国的经济发展,这对农业灌溉产生了巨大的影响,我们需要长期考虑的课题就是如何提高灌溉水的利用效率。传统灌溉方式会大量的浪费水资源,并且不能针对不同地块和农作物实行不同的灌溉方案,不能使农作物达到最适宜的生长环境。这些问题可以通过发展土壤墒情监测技术,建立墒情监测数据数据库和土壤墒情监测系统,实现土壤的适时适量灌溉,达到节约水资源,提高作物产量和提高效益的目的。本文应用计算机技术,信息技术,人工智能,网络技术与地理信息系统等技术,建立土壤墒情监测系统,从而解决水资源配置与高效利用等常见问题。 2、土壤墒情 土壤墒情是农田耕作层土壤含水率的俗称,是影响农作物生长的重要因素。土壤墒情是不断变化的,所以需要对其进行实时监控,这样采集的信息才有利用价值。土壤水分的变化不仅与土壤特性有关,还受降水、灌溉、蒸发、根系层下边界水分能量等因素影响,而且其动态变化也是一个复杂的系统问题[1]。 3、GIS在土壤墒情中的应用 在全国第三次农业气候区划会议上,土壤水分委员会提出了GIS 技术应用于监测土壤水分的原因。地理信息系统在农业气候区划,主要经济作物适宜种植区划,天气和其他业务领域,提供了土壤水分研究的新工具[2]。 在布置数据采集点的同时布置GPS 装置,利用全 球卫星定位采集监测点的经度和纬度,再结合GIS 软件就可以实现大面积的土壤墒情实时监测。 4、系统总体设计 本系统共有四个模块组成,分别是数据采集模块,数据传输模块,人机交互模块和数据库模块。 数据采集模块利用传感器采集土壤温度、湿度等土壤墒情数据,GPS 装置采集监测点经度、纬度等数据,通过zigbee 网络实现单个监测区域内数据的相互传递。再利用GPRS 技术,实现zigbee 网络之间与zigbee 网络和智能终端之间数据的远距离传送。在智能终端,采用浏览器的形式结合GIS 技术,将数据以不同形式展示给用户,后台数据库则对数据进行加工、 存储和数据的分析,查询与统计。4.1土壤墒情数据采集模块: 土壤墒情数据采集模块是利用土壤温湿度传感器对土壤温度和湿度等数据进行采集。利用GPS 装置对监测点经度、纬度等地理信息数据进行采集。 监测区土壤墒情监测点设置的主要依据包括:地理位置;土壤质地类型及土壤物理特性;所属行政区划、 周边地形地貌;作物种植的种类及范围;水文地质条件:地下水埋深;灌溉条件。土壤含水量监测点布在地块中央平整的地方,避开低洼易积水的地点[3]。监测土壤墒情效果的好坏,取决于监测点的数量。监测点过多虽然会提高监测效果,但会使系统的投资过大。所以合理的选取监测点数量是十分必要的。在布设土壤墒情监测点时,每二十平方米放置一个节点,采样点之间保持一定的距离,采样点的位置一经确定,应保持其相对的稳定。传感器可以埋入土中的不同深度,结合GIS 软件, 就可以全方位立体的对土壤墒情土壤墒情监测系统的设计与实现 刘欣伟,司秀丽,蒋小琴 (吉林农业大学吉林长春130118) 【摘要】:本文阐述了信息技术在农业方面应用的必要性,介绍了土壤墒情概念和G I S 技术,对土壤墒情监测系统进行了综合分析与设计。本文结合了G I S 技术来构建土壤墒情监测系统,其中包括几大主要模块:土壤墒情数据采集模块,数据传输模块,人机交互模块和数据库模块。 【关键词】:土壤墒情;监测;系统设计33··

土壤检测相关项目

土壤检测相关项目 土壤是我们赖于生存的基础,肥料是植物的粮食,两者都在农业生产中起重要的作用。目前,由土壤污染引发的农产品质量安全问题和群体性事件逐年增多,成为影响群众身体健康和社会稳定的重要因素。科标检测拥有国际先进的检测仪器和雄厚的技术力量,可以依据多种检测标准,提供土壤相关检测服务。 检测范围: 全国区域土壤背景、农田土壤环境、建设项目土壤环境评价、土壤污染事故、海洋沉积物等 检测项目: 1、常规指标:pH、全盐量、氯离子、硫酸根、硝态氮、铵态氮、亚硝态氮等。 2、重金属污染:铅、砷、镉、铬、汞、镍、铜、锌等。 3、微量元素:有效态铁、有效态锰、有效态铜、有效态锌、有效硅、有效硫、交换性钙、交换性镁、交换性钾、交换性钠等。 4、肥力指标:有机质、有机碳、全氮、全磷、全钾、水解性氮、有效磷、速效钾等。 5、有机污染物:矿物油、挥发酚、苯并(a)芘、总石油烃、多氯联苯、挥发性有机物(VOCs)、半挥发性有机物(SVOCs)、二噁英。 6、农药残留:六六六、滴滴涕、草甘膦、敌敌畏、速灭磷,甲拌磷、阿特拉津、西玛津、六氯苯、七氯、艾氏剂、环氧七氯、硫丹I、狄氏剂、异狄氏剂等。 7、适用于农田、蔬菜地、茶园、果园、牧场、林地、自然保护区等地的土壤分析:养分分析、土壤污染分析。 检测标准: CJ/T 340-2011 绿化种植土壤

CJ/T 486-2015 土壤固化外加剂 DB11/T 1184-2015 城市绿地土壤施肥技术规程 DB11/T 1281-2015 污染场地修复后土壤再利用环境评估导则 DB11/T 810-2011 重金属污染土壤填埋场建设与运行技术规范 DB11/T 811-2011 场地土壤环境风险评价筛选值 DB11/T 864-2012 园林绿化种植土壤 DB11/T 927-2012 森林土壤调查技术规程 DB12/T 457-2012 保护性耕作土壤机械化深松作业技术规范 DB12/T 512-2014 土壤样品中硝态氮的测定方法 DB13/ 2206-2015 河北省农田土壤重金属污染修复技术规范 DB13/T 1418-2011 高温闷棚土壤消毒技术规程 DB13/T 2206-2015 河北省农田土壤重金属污染修复技术规范 DB13/T 2217-2015 冬小麦-夏玉米一年两熟制高产田土壤耕作技术规程DB14/T 914-2014 土壤中铅、铬的测定电感耦合等离子体发射光谱法DB14/T 915-2014 土壤中铜、锌的测定电感耦合等离子体发射光谱法DB14/T 921-2014 采煤沉陷区新复垦土壤微生物肥料施用技术规程DB14/T 922-2014 采煤沉陷区新复垦土壤快速培肥技术规程 DB14/T 926-2014 土壤中总砷的快速测定方法 DB14/T 927-2014 水浇地春播玉米高产土壤培肥技术规程 DB15/T 510-2012 内蒙古农田、草地土壤相对湿度等级指标 DB15/T 835-2015 磷石膏改良碱化土壤技术规程 DB21/T 1675-2008 土壤中阿特拉津残留量的测定(高效液相色谱法)

相关文档
最新文档