复变函数--幅角原理

复变函数--幅角原理
复变函数--幅角原理

§3 辐角原理及其应用

一、教学目标或要求:

掌握幅角原理的准确叙述及其应用

二、教学内容(包括基本内容、重点、难点): 基本内容:对数留数 幅角原理 例题 重点:幅角原理 例题 难点: 幅角原理 例题 三、教学手段与方法: 讲授、练习

思考题、讨论题、作业与练习: 11-14

§3 辐角原理及其应用

1.对数留数

留数定理的另一个应用的考虑形如 的复变函数在极点处的留数,以之

导出辐角原理,提供确定解析函数零点个数的一个有效工具。积分dz

z f z f i C ?)

()

('21π称为)(z f 的对数留数。

引理 6.4(1)设为的级零点,则必为的一级极

点,且 ;

(2)设为的级极点,则必为的一级极点,且 。

证 (1)若设

级零点,则在

的邻域内,

,其中在的邻域内解析,且,于是

, 从而。由于在是邻域内解析,故可在的邻域内展开成Taylor级数,必定不含的

负幂项,因此必为的一级极点,且。

(2)设为的级极点,则必为的级零点,由(1)的结论,必

为的一级极点,且。

定理6.9设为一条围线,满足条件:

(1)在的内部除可能有极点外是解析的;

(2)在上解析且不为零,

则,其中与分别表示在

内部的零点与极点的个数(一个级零点算作个零点,一个级极点算作个极点)。

证由第五章(二)习题14知,在内部至多只有有限个零点和极点。设

为在内部的不同零点,其级相应地为,为

在内部的不同极点,其级相应为。根据引理 6.4,、

都是的一级极点,于是,在内部及上除去

、,外均解析,故由留数定理

2. 辐角原理

辐角原理 在定理6.9的条件下,函数)(z f 在C 内部的零点个数与极点个数之差,等于当z 沿C 之正向绕行一周后的改变量)(arg z f C ?除以π2,即

π

2)

(arg ),(),(z f C f P C f N C ?=

- (6.27)

特别地,如果在围线C 上及C 之内部均解析,且在C 上不为零,则

π

2)

(arg ),(z f C f N C ?=

(6.28)

证(大意)根据定理6.9,

注 定理6.9(2)可减弱为“连续到边界

,且沿

,

”,围线

可以是复围线。

例 ,试验证辐角原理。

故辐角原理成立。

角规测树原理及应用

角规测树基本原理(重点:同心圆原理)及应用 [提要]在介绍角规测定林分每公顷胸高断面积原理的基础上,还介绍了利用角规控制检尺测定林分每公顷株数、每公顷蓄积量及其生长量的原理和方法,最后简要地介绍了其他的角规测树方法。 角规(angle gauge)是以一定视角构成的林分测定工具。应用时,按照既定视角在林分中有选择地计测为数不多的林木就可以高效率地测定出有关林分调查因子。 奥地利林学家毕特利希(Bitterlich W.,1947)首先创立了用角规测定林分单位面积胸高断面积的理论和方法,突破了100多年来在一定面积(标准地或样地)上进行每木检尺的传统方法,大大提高了工效。在测树学理论和方法上的这一重要新发现引起了全世界测树学家们的广泛重视和极大兴趣。50多年来,经过世界各国的广泛应用和进一步研究,角规测树的原理、方法和仪器、工具不断地有所发展和完善,现在已形成了角规测树的一套独立系统,并得到广泛应用。 我国自1957年开始引入这一方法,并逐步得到推广和普遍采用,已设计制造了一些具有良好使用性能的角规测器。 “角规测树”是我国对这类方法的通用名称。最初曾把角规叫做疏密度测定器。国际上较为常用的名称有:角计数调查(angle—count cruising)法、角计数样地(angle count plot)法、无样地抽样(plotless sampling)、可变样地(Variable plot)法、点抽样(point sampling)、线抽样(1ine sampling)等。这些名称是以不同角度反映角规测树的某一特征,通过下面有关内容的介绍就可以理解这些名称的具体含义。 角规测树理论严谨,方法简便易行,只要严格按照技术要求操作,便能取得满意的调查结果。因此,角规测树是一种高效、准确的测定技术。 一、基本原理 角规是为测定林分单位面积胸高总断面积而设计的,因此,林分胸高总断面积(简称断面积)是角规测树最早,也是迄今最主要的测定因子,应用也最广泛。其它角规测定因子都是由它衍生而来。角规测定林分每公顷胸高总断面积原理是整个角规测树理论体系的基础,所以,必须对其基本原理有透彻的理解。 1、同心圆简单原理 常规圆形样地(或标准地)的面积和半径是固定的,因而在一个样地内包含了直径

控制理论与控制工程专业解析

控制理论与控制工程专业解析 一、专业介绍 控制理论与控制工程隶属于控制科学与工程一级学科 1、研究方向 目前,各大院校与控制理论与控制工程专业相关的研究方向都略有不同的侧重点。以哈尔滨工程大学为例,该学科当前的主要研究方向: 01先进控制理论及应用 02船舶运动控制 03船海工程动力定位 04机器人与智能控制 05自主水下航行器控制 06核动力工程与控制 2、培养目标 控制理论与控制工程专业的硕士学位获得者必须掌握控制科学与工程学科的坚实的基础理论和系统的专业知识,了解自动控制领域的最新发展动向,能创造性地研究和解决与本学科有关的理论和实际问题,具有一定的独立从事科学研究和管理工作的能力,至少掌握一门外国语,能熟练地阅读专业文献资料,并具有一定的外语写作能力和进行国际学术交流的能力。 3、专业特色 本专业最突出的特点是控制理论与工程实际的紧密结合,培养的研究生既具有较高的控制理论水平,又具有很强的工程综合和计算机应用能力。学科以工程领域内的控制系统为主要研究对象,采用现代数学方法和计算机技术、电子与通讯技术、测量技术等,研究系统的建模、分析、控制、设计和实现的理论、方法和技术。 4、考试科目 ①101思想政治理论 ②201英语一、202俄语、203日语任选其一 ③301数学一 ④809自动控制原理 (注:以上以哈尔滨工程大学为例,各院校在考试科目中有所不同) 二、推荐院校 控制理论与控制工程硕士全国招生较强的单位有清华大学、浙江大学、上海交通大学、东北大学、东南大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工业大学、北京航空航天大学、华南理工大学、华东理工大学、哈尔滨工程大学、中南大学、西安交通大学、燕山大学、大连理工大学、上海大学、广东工业大学、山东大学、中国科学技术大学、吉林大学、大连海事大学、同济大学、北京科技大学、湖南大学、郑州大学、天津大学、重庆大学、浙江工业大学、南开大学、北京大学 三、就业方向 本专业培养的研究生可胜任本专业或相邻专业的教学、科研以及相关的技术、管理及研究工作。有些方向的毕业生在西门子、霍尼韦尔、和利时等自动化企业工作。控制理论与控制工程是个典型的工科专业,对动手能力的要求很高,毕业后从事科研技术工作的人员很多。

角规测树

实验四 角规测树 一、角规绕测林分断面积的方法 角规是以一定视角构成的林分测树工具,根据该视角,有选择地计数为数不多的林木来测算林分调查因子。 角规种类较多,可测定的林分因子亦较多。通常林业调查工作中使用较为普遍是水平杆式角规绕测林分断面积及控制检尺测定林分蓄积量。使用时,将确定的视角正对被测树木树干胸高处,可能出现树干胸高横断面分别与缺口呈现相割、相切或相余的三种不同情况,对应计数规则是相割计1株,相切计0.5株,相余不计数。可调节角规视角大小,以适应被测林分直径与密度不同的需要,但计数规則不变。 二、角规控制检尺测定林分蓄积量的方法 1.角规绕测林分断面积的常用公式为: 在文末的表格中,Fg=1, G=33 ha m /2 2.角规控制检尺测定林分蓄积量的常用公式为: ∑=j j j g g v F M δ(单位:ha m /3) (2) 式中:j v 为第j 株树的树干材积(检尺株数较多时,可查相应地区与树种的一元材积表。否则,需实测),i g 为第j 株树的胸高断面积。 角规测树理论严谨,应用简便易行。但技术操作须熟练从严,才能获得满意结果,应注意的技术问题有以下几点。

一、基本绕测操作规范 ①观测时要对准胸高位置; ②被测树干被遮挡而不得不临时移动位置时,要保持移动后的点位到被测树干中心距离与未移动前相等,测完被遮挡树干后仍返回原点位; ③要记住绕测起点树,以免漏测与重测,必要时可正反绕测两次以相互检查或求平均数; ④对难于判断是否属于相切的树木(也称这样的树为临界树),要实测其胸径和距离,按 (3)式进行计算后确定是否计数。设S 为角规点至临界树胸高处树干中心的量测距离,若S =R 则为相切,SR 则相余; g F d R 3.150=…………………………………………………………………………………(3) 式中3.1d 为被测树木胸径 ⑤绕测过程中始终保持角规视角(即角规断面积系数)与所选择的角规断面积系数一致。 二、断面积系数的选择 用小Fg 的角规绕测,计数较多,错计1株影响较小,伹其最大观测距离较远,不易看清,疑难与被遮挡树增加,影响工效和容易出错。如采用较大的Fg ,其优缺点与上相反,一般根据林分的林木粗细与密度情况选择不同的Fg ,下表1可供参考。 林 分 特 征 可选用的Fg 平均直径8-16cm 的中龄林,和任何平均直径而林分疏密度为0.3-0.5的林分 0.5 平均直径17-28cm 。疏密度0.8-1.0的中、近熟林 1 疏密度0.8以上,平均直径28cm 以上的成、过熟林 2或4 三、坡度改正 在坡地上,尤其起伏度较大时,宜采用能自动改正坡度的角规。否则,须手工加以改正,不然会产生负向误差,对应于(1)式和(2)式的改正公式分别为: )()(θδSec F G j g ∑=.............................................(4) )()(θδSec g v F M j j j g ∑= (5) 式中θ为平均坡度 (4)式与(5)式仅适用于坡度较一致情况下。 四、林缘误差的消除

控制科学与工程专业介绍

控制科学与工程专业介绍 控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立

于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 本学科下设五个二级学科:控制理论与控制工程,检测技术与自动化装置,系统工程,模式识别与智能系统,导航、制导与控制。各二级学科的主要研究范畴及相互联系如下。 “控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。 “检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。

变分原理在物理学中的应用

变分原理在物理学中的应用 [摘要]从变分法出发,简述了变分原理的建立和发展;并就变分原理在各个学科的应用予以列举,为变分原理的初学者作以引导。 [关键字] 变分法;变分原理;发展历程;应用。 引言 变分原理愈来愈引起重视。固体力学变分原理的发展最为成熟,流体力学变分原理近年来也获得突破, 电磁学、传热学等领域变分原理在不断应用和发展。这是因为变分原理与有限元结合起来使古典的变分原理焕发青春[1]。本文就变分原理的发展历程和变分原理在物理学中的应用予以概括, 以形成一个了解变分原理的脉络,为更好的应用变分原理打下基础。 1.变分原理发展简史 年份历史事件 1696年约翰·伯努利提出最速曲线问题开始出现 1733年欧拉首先详尽的阐述了这个问题. 他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。 1786年拉格朗日确定了变分法, 但在对极大和极小的区别不完全令人满意。 1810~1831年Vincenzo Brunacci, Carl Friedrich Gauss, Simeon Poisson,Mikhail Ostrogradsky和Carl Jacobi对于这两者的区别都曾做出过贡献。 1842年柯西Cauchy浓缩和修改了变分法,建立了一套严格的理论。 1849~1885年Strauch, Jellett, Otto Hesse, Alfred Clebsch和Carll写了一些其他有价值的论文和研究报告。 1872年Weierstrass系统建立了实分析和复分析的基础,基本上完成了分析的算术化。他关于这个理论的著名教材是划时代的, 并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。 1900年希尔伯特(Hilbert)发表的第20和23个数学问题促进了变分思想更深远的发展。 20世纪初David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue和Jacques Hadamard 等人做出重要贡献。 20世纪30年代Marston Morse 将变分法应用在Morse理论中。

2021年工程造价控制原理

工程造价控制原理 工程项目建设一般可分为前期准备、项目实施和竣工结算三个阶段。由于建设周期长、环境复杂、工作量大,加上难以预料的国家政策性变化,以及材料市场价格波动等诸多因素,要合理地控制造价,难度确实很大。因此,进一步规范建设市场行为,完善市场机制,合理控制工程造价,是摆在建设单位、施工单位、造价咨询中介机构面前需要共同解决的问题。 一、工程造价控制原理 控制就是指行为主体为保证在变化的条件下实现其目标,按照事先拟定的计划和标准,通过采用各种方法,对被控对象实施过程中发生的各种实际值与计划值进行对比、检查、监督、引导和纠正的过程。它包括三个步骤:即确定目标标准、检查实施状态、纠正偏差。全过程控制分为三个阶段:即事前控制、事中控制、事后控制。三个阶段应以事前控制为主,即在项目投入阶段就开始,这样可以起到事半功倍的效果。控制的状态是动态的,工程造价在整个施工过程中处于不确定状态。工程造价的有效控制,是以合理确定为基础,有效控制为核心。工程造价的控制是贯穿于项目建设全过程的控制,就是在投资决策阶段、设计阶段、招投标阶段、施工阶段和竣工结算阶段,把建设工程造价控制在批准的造价限额以内,随时纠正发生的偏差,以保证项目管理目标的实现,以求在各个建设项目中能合理使用人力、物力、财力,取得较好的投资效益和社会效益。 二、影响工程造价的原因

1、工程前期准备阶段。 (1)建设工程项目用地问题。工程项目大多需要占地建设。但目前,边占地建设边办理规划用地手续现象还时有发生。由此,可能会带来极大的建设风险,从而蒙受巨大的经济损失。 (2)建设立项和报建报监问题。有的建设工程直至竣工验收也未办理建设立项和报建报监手续,也有的边建设边办理手续。工程完工了,却往往办理不出竣工验收报告,建设产权不明,以致不能出售转让或用作银行抵押贷款凭证,影响了建设资金的周转和使用效益。(3)勘察和设计问题。有些建设工程基于种种原因,致使地质状况不甚明了。而在施工过程中,又出现重复勘探的情况,既延误了工期,又增加了原勘察数据以外的内容和工程量,工程计价也更复杂。勘察不充分,又造成设计达不到应有深度。有的设计不考虑现场的地质地貌实情,充其量只是一种理想状态下的公式化设计。实际施工时,不得不搞变更,办现场签证,工程造价心中无数。 (4)招标和投标问题。国家对建设工程项目必须实行公开招标投标三令五申,但具体实施中问题很多,许多情况不尽人意。出于地方保护主义搞假招标,联手暗箱操作,不乏所闻。这样出来的所谓中标造价没有什么实际意义。 2、工程建设实施阶段。 (1)施工组织设计方案问题。施工组织设计方案是由施工单位编制,经建设单位审定的。它是项目实施的纲领性文件,不仅关系到质量和工期,还将直接影响工程计价的合理性。

角规测树

角规测树 角规测树 enumeration with angle gauge 用角规观测抽取样木的测树方法。又称无样地抽样,可变样地抽样。其特点是每株林木被抽中的概率与其某个测树因子(直径、树高、断面积)的大小成正比,不需量测样地边界、面积和样木大小就能估计林分单位面积上的断面积。 1947年奥地利的W.毕特利希提出在样点上用角规测定林分断面积的方法,打破了 100多年来在一定面积样地上量测林木的传统,开辟了森林资源调查中使用可变面积样地和不等概率抽样的方便途径。20世纪50年代以来,由于陆续出现新的角规观测法,以及美国L.R.格罗森堡在理论上阐明了使用角规抽取样木的原理,进一步丰富了角规测树的内容和理论,使角规测树成为测树学的重要组成部分。中国于1956年引入角规测树方法,已在森林资源调查中广泛使用。 角规任何一种能够产生固定大小视角的器具均可用作角规,产生水平视角的称水平角规,产生垂直视角的称垂直角规。角规的形式,最初使用的是杆式,以后逐渐发展为各种形式的角规和角规测树仪。 杆式角规定长直尺的前端安上带有定宽缺口的薄片,即构成杆式角规(图1)。由尺端通过缺口向前观望,由于缺口宽度的限制,构成了一个固定视角。视角α的大小由直尺长l和缺口宽度ω确定: 角规构造的基本要求是使视角α等于某个规定角度,这可以通过调整ω/l来达到。

棱镜角规它是一个顶角φ很小的三棱镜片。视线通过棱镜产生偏折,形成偏向角α。偏向角即角规视角。制造棱镜角规时,根据所要求的视角,按公式φ=α/(η-1)计算顶角φ的大小。式中η为棱镜材料的折射率。 林分速测镜杆式角规和棱镜角规虽然容易制作,但功能单一,不便在坡地上使用。1952年按毕特利希设计制造的速测镜是具有代表性的角规测树仪。它有4种不同大小视角的角规功能,可自动调整坡度,并可作测高、测距、测径和测斜仪使用。60年代毕特利希把构成视角的带条改宽,后又在速测镜上增加了光学望远系统,制成了望远速测镜。中国于1963年制成林分速测镜,1982年还研制了林分望远速测镜,即DQW-2型望远测树镜(见测树工具)。 测树方法角规测树的基本方法有4种:毕特利希的水平点抽样,日本平田种男的垂直点抽样,挪威L.斯特兰的水平线抽样及垂直线抽样。 水平点抽样主要用于测定林分单位面积上的胸高断面积。在林地内随机设置一个样点,观测者以样点为中心,用水平角规依次绕测周围林木的胸高部位一周。当林木胸高断面与水平视角相割时,即为抽中的样木,并予以计数(图2)。在一个样点上若计数样木株数为n,则林分单位面积上的胸高断面积估计值(弿) n 为:弿=F g 是水平角规常数,它与视角大小有关。为了计算方便,在制造角规时调整视角F g 成为整数。例如杆式角规的ω/l=1/50小时,即角规缺口宽 1厘米,大小,使F g =1。 直尺长50厘米,则水平角规常数F g 在角规观测过程中,由于林地条件、工具和视力等限制,会遇到难以决定是否应选作样木的情况。这时需实测林木中心到样点的距离S 和胸径d,按条件:

变分原理

§9 变分原理 9.1 弹性变形体的功能原理 学习要点: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使 得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状 .................... 态,二者彼此独立而且无任何关系。 ................ 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 9.1.1 静力可能的应力: 假设弹性变形体的体积为V,包围此体积的表面积为S。 表面积为S 可以分为两部分所组成:一部分是表面积的位移给定,称为Su;另外一部分是表面积的面力给定,称为Sσ。 +Sσ 显然S=S u 假设有一组应力分量σij在弹性体内部满足平衡微分方程

在面力已知的边界Sσ,满足面力边界条件 这一组应力分量称为静力可能的应力。静力可能的应力未必是真实的应力, ................ 因为真实的应力还 ....................必须满足应力表达的变形协调方程 ...............,但是真实的应力分量必然 是静力可能的应力。 ......... 为了区别于真实的应力分量,我们用表示静力可能的应力分量。 9.1.2 几何可能的位移: 假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程 在位移已知的边界S u上,满足位移边界条件 这一组位移称为几何可能的位移。几何可能的位移未必是真实的位移,因 为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程 .... ......;在面力已知 的边界 ..................。但是,真实的位移必然是...S.σ.上,必须满足以位移表示的面力边界条件 几何可能的。 为了区别于真实的位移,用表示几何可能的位移。 几何可能的位移产生的应变分量记作。

控制科学与工程的二级学科以及排名

控制科学与工程 是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 相关学科关系 本学科在本科阶段叫自动化,研究生阶段叫控制科学与工程,本学科下设的六个二级学科:“控制理论与控制工程”、“检测技术与自动装置”、“系统工程”、“模式识别与智能系统”、“导航、制导与控制”和“企业信息化系统与工程”。各二级学科的主要研究范畴及相互联系如下。

控制理论与控制工程简介

控制理论与控制工程 081101 学科专业简介 “控制理论与控制工程”专业前身为工业自动化专业,1997年按照国务院学位委员会和原国家教育委员会颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》改为现名,是“控制科学和工程”所属的二级学科。该专业于1979年开始培养硕士研究生,1986年获得硕士学位授予权,1995年获得博士学位授予权,1997年设立“控制科学和工程”博士后流动站,2003年被教育部确定为“长江学者奖励计划”特聘教授设岗学科。 本学科是市教委的重点建设学科。目前已组成了一支以中青年高层次科技人员为主体的科研骨干队伍。截至2003年12月,该专业有长江学者特聘教授1名,教授19名、副教授5名。此外,本学科还聘任了包括四名科学院院士和一批国务院学科评审专家在的知名学者担任顾问和兼职教授。近5年来,该专业已培养了博士27名,硕士179名,出站博士后10名。该学科在相关研究领域承担了大量的国家科技攻关项目、"863"计划项目、国家自然基金项目以及其他类型的国家、部委、省市及企业科研项目,获得了一大批科研成果和国家或省部级科技进步奖,出版了一批有影响的著作和教材,发表了大量的高水平学术论文。其中,1995年以来,共取得了2项国家级获奖成果,23项省部级获奖成果,已完成和正在进行的国家自然科学基金及863项目有16项,在相关学术会议和专业学术刊物上发表论文500余篇,出版教材、译著和专著数十部。 一、培养目标 1、较好地掌握马克思主义基本原理、思想、理论和“三个代表”重要思想, 树立正确的世界观、人生现和价值观,坚持四项基本原则,热爱祖国, 遵纪守法,品德优良,乐于奉献,积极为社会主义现代化建设服务。 2、在本学科领域,较好地掌握坚实宽广的基础理论和系统深入的专门知

4角规测树原理及应用

角规测树基本原理(重点:同心圆原理)及应用 [ 提要] 在介绍角规测定林分每公顷胸高断面积原理的基础上,还介绍了利用角规控制检尺测定林分每公顷株数、每公顷蓄积量及其生长量的原理和方法,最后简要地介绍了其他的角规测树方法。 角规(angle gauge)是以一定视角构成的林分测定工具。应用时,按照既定视角在林分中有选择地计测为数不多的林木就可以高效率地测定出有关林分调查因子。 奥地利林学家毕特利希(Bitterlich W .,1947)首先创立了用角规测定林分单位面积胸高断面积的理论和方法,突破了100多年来在一定面积(标准地或样地)上进行每木检尺的传统方法,大大提高了工效。在测树学理论和方法上的这一重要新发现引起了全世界测树学家们的广泛重视和极大兴趣。50多年来,经过世界各国的广泛应用和进一步研究,角规测树的原理、方法和仪器、工具不断地有所发展和完善,现在已形成了角规测树的一套独立系统,并得到广泛应用。 我国自1957年开始引入这一方法,并逐步得到推广和普遍采用,已设计制造了一些具有良好使用性能的角规测器。 “角规测树”是我国对这类方法的通用名称。最初曾把角规叫做疏密度测定器。国际上较为常用的名称有:角计数调查(angle —count cruising) 法、角计数样地(angle count plot) 法、无样地抽样(plotless sampling) 、可变样地(Variable plot) 法、点抽样(point sampling)、线抽样(1ine sampling)等。这些名称是以不同角度反映角规测树的某一特征,通过下面有关内容的介绍就可以理解这些名称的具体含义。 角规测树理论严谨,方法简便易行,只要严格按照技术要求操作,便能取得满意的调查结果。因此,角规测树是一种高效、准确的测定技术。 一、基本原理 角规是为测定林分单位面积胸高总断面积而设计的,因此,林分胸高总断面积(简称断面积)是角规测树最早,也是迄今最主要的测定因子,应用也最广泛。其它角规测定因子都是由它衍生而来。角规测定林分每公顷胸高总断面积原理是整个角规测树理论体系的基础,所以,必须对其基本原理有透彻的理解。 1 、同心圆简单原理 常规圆形样地(或标准地)的面积和半径是固定的,因而在一个样地内包含了直径

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

控制科学与工程

控制科学与工程[自动化]招生单位专业课类比本表所统计专业课的仅是“0811 控制科学与工程”一级学科下属的几个专业(二级学科)。双控=控制理论与控制工程;检测=检测技术与自动化装置;系统=系统工程;模式=模式识别与智能系统;导航=导航、制导与控制;复试——指的是复试笔试科目。 此仅为部分重点院校或重点专业;部分学校的同一名称的专业分布在不同的学院,也一并列出。 北京工业大学 421自动控制原理 复试:1、电子技术2、计算机原理 北京航空航天大学 [双控] 432控制理论综合或433控制工程综合 [检测] 433控制工程综合或436检测技术综合 [系统] 431自动控制原理或451材料力学或841概率与数理统计 [模式] (自动化学院)433控制工程综合或436检测技术综合、(宇航学院)423信息类专业综合或431自动控制原理或461计算机专业综合 [导航] (自动化学院)432控制理论综合或433控制工程综合、(宇航学院)431自动控制原理 复试:无笔试。1) 外语口语与听力考核;2) 专业基础理论与知识考核;3) 大学阶段学习成绩、科研活动以及工作业绩考核;4) 综合素质与能力考核 北京化工大学 440电路原理 复试:综合1(含自动控制原理和过程控制系统及工程)、综合2(含自动检测技术装置和传感器原理及应用)、综合3(含信号与系统和数字信号处理) 注:数学可选择301数学一或666数学(单) 北京交通大学 [双控/检测]404控制理论 [模式]405通信系统原理或409数字信号处理 复试: [电子信息工程学院双控]常微分方程 [机械与电子控制工程学院检测]综合复试(单片机、自动控制原理) [计算机与信息技术学院模式] 信号与系统或操作系统 北京科技大学 415电路及数字电子技术(电路70%,数字电子技术30%) 复试: 1.数字信号处理 2.自动控制原理 3.自动检测技术三选一 北京理工大学 410自动控制理论或411电子技术(含模拟数字部分)

角规测树实用方法

角规测树 一、角规知识 角规是1947年由奥地利林学家毕特利希发明的一种测树工具,它是一种利用固定视角,设臵可变半径的圆形样地来测定每公顷立木断面积的仪器。角规测树的理论严谨,而构造简单,使用方便,若运用得法精度很好。用角规测定林分单位面积的胸高断面积总和时,无需进行面积测定的每木检尺,打破了在一定面积的标准地上测算林分胸高断面积和林分蓄积的传统方法。 常用的角规实际上是夹角为1°8′45″的定角器,即杆长为觇板缺口的50倍,若杆长1m,则觇板缺口为2cm;杆长50cm,觇板缺口为1cm。 最简便的角规测器是在一根长度为L的直尺一端安装一个有缺口的金属片,缺口的宽度为l,l/L要根据预定要求设计为某一特定值,一般为1/50,即尺长L为50cm,缺口宽l应为1cm尺长L为100cm,缺口宽l应为2cm 。这样,每有一株树与其相切割,则每公顷就有1m2胸高断面积;每有一株树与其相切,则每公顷就有0.5m2胸高断面积。 二、角规用法 使用时将角规杆的尾端紧贴于眼下,测者通过缺口照准

胸高1.3m处,凡树木大于缺口宽度者,按一株记数;若树木等于缺口宽度者按半株记数;若树木小于缺口宽度者,不记数。这样绕测一周,共记数的株数n,即为角规样地测得单位胸高断面积为n㎡/ha。 三、角规测树技术 角规测树的特点是:工效高,速度快,施测方便,但如不能保证其精度则毫无意义,因此如何确保角规测树的精度是其中心问题。 角规测树的主要误差来源有:角规常数的选定,角规绕测技术,坡度改正,林缘误差和样点数量的确定等问题㈠角规常数的选定 角规常数F大,视角也大,视角越大,则被计数株数少,距离也近,可仔细观差,但如果搞错一株对结果影响很大;视角越小则观测距离越远,距离越远则肉眼观测的误差也大,漏测和错测的机会增多,也可能降低精度。 ⑴平均直径8-16cm,或任意平均直径但疏密度为0.3-0.5的林分。Fg=0.5 ⑵平均直径17-28cm,或疏密度为0.6-1.0的中近熟林分。Fg=1 ⑶平均直径28cm以上,或疏密度为0.8的成过熟林分。Fg=2或4

控制理论与控制工程概述

学科介绍 该学科为交叉学科,不同的大学该学科均有不同的侧重点: 控制理论与控制工程学科是以工程系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的理论、方法和技术。控制理论是学科的重要基础和核心内容,控制工程是学科的背景动力和发展目标。本学科的智能控制方向主要包括模糊控制、专家系统、神经元网络、遗传算法等方面的研究,特别强调的是上述方法的交叉及其在工业过程控制方面的应用。故障诊断方向主要研究当控制系统一旦发生故障时,仍能保证闭环系统稳定,且满足规定的性能指标。利用获得的实时数据对生产过程进行在线监测及故障诊断,根据系统的运行状态制定相应的控制策略,使系统工作在最佳状态。鲁棒控制方向主要研究被控对象参数变化后,控制系统仍能稳定可靠的工作,并在某种意义下保证系统的最优性。信号处理方向主要研究控制系统中的信号处理问题,包括非线性系统的鲁棒滤波器的设计,自适应滤波器、噪声抵消器、小波分析等。 控制理论与控制工程是研究运动系统的行为、受控后的运动状态以及达到预期动静态性能的一门综合性学科。在理论方面,利用各种数学工具描述系统的动静态特性,以建模、预测、优化决策及控制为主要研究内容。在应用方面,将理论上的研究成果与计算机技术、网络技术和现代检测技术相结合,形成各种新型的控制器或控制系统。研究内容涵盖从基础理论到工程设计与实现技术的多个层次,应用遍及从工业生产过程到航空航天系统以及社会经济系统等极其广泛的领域。 研究方向 复杂系统控制理论与应用:采用结构分散化方法研究复杂系统的建模与控制问题,以结构分散化模型为基础,研究新的系统辨识理论和新的控制方法。 智能控制理论研究与应用:在对模糊控制、神经网络、专家系统和遗传算法等理论进行分析和研究的基础上,重点研究多种智能方法综合应用的集成智能控制算法。 计算机控制系统:针对不同的生产过程和控制对象,研究采用DCS、PLC、工业控制计算机等控制设备,构成低成本、高性能、多功能的计算机控制系统。 网络控制理论及其应用:通过对网络拓扑结构及网络环境下先进控制理论与方法的研究,充分利用网络资源,实现从决策到控制的全过程优化。 开设学校

南工程 自动控制原理试卷0807

共6页 第1页 南京工程学院试卷( A 卷) 2007 /2008 学年 第一学期 课程所属部门: 自动化学院 课程名称: 自动控制原理 考试方式: 闭卷 使用班级: 自动化051/052、数控051/052/053 命 题 人: 课程组 教研室主任审核: 主管领导批准: 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 一、单项选择题(本题16题 ,每空1题,共16分 ) 1. 传递函数的定义为:在 初始条件下,线性定常系统输出量的拉氏变换,与系统的 的拉氏变换之比。 2.若系统特征方程系数均大于 ,且劳斯表中第一列元素均为 ,则相应的系统是稳定的。 3.系统的频率特性可分为 和相频特性。 4.由系统的给定值至被控量的通道称为 。 5.开环对数幅频特性曲线的 频段反应了系统的稳定性和 。 6.一般将ξ=0.707时的二阶系统称为 二阶系统。 7.开环对数幅频特性曲线的低频段主要由 和 来确定。 8.经典控制理论中分析系统性能的方法主要有 分析法、跟轨迹分析法和 分析法。 9.相位裕量是指在 频率处,使系统达到临界稳定状态尚可附加的 滞后量。 10.如果控制系统闭环特征方程的根都在s 平面的 半平面,则该系统稳定。 本题 得分 班级 学号 姓名

二、图解题(本题2小题,共20分)本题得分 1.已知系统的动态结构图,用梅森公式求系统的传递函数 () ()s s R C , () ()s s R E 。(10分) 2.已知系统的动态结构图,用梅森公式求系统的传递函数 () ()s s R C , () ()s s R E 。(10分) 南京工程学院试卷共页第 2 页

4角规测树原理及应用

4角规测树原理及应用

角规测树基本原理(重点:同心圆原理)及应用 [提要]在介绍角规测定林分每公顷胸高断面积原理的基础上,还介绍了利用角规控制检尺测定林分每公顷株数、每公顷蓄积量及其生长量的原理和方法,最后简要地介绍了其他的角规测树方法。 角规(angle gauge)是以一定视角构成的林分测定工具。应用时,按照既定视角在林分中有选择地计测为数不多的林木就可以高效率地测定出有关林分调查因子。 奥地利林学家毕特利希(Bitterlich W.,1947)首先创立了用角规测定林分单位面积胸高断面积的理论和方法,突破了100多年来在一定面积(标准地或样地)上进行每木检尺的传统方法,大大提高了工效。在测树学理论和方法上的这一重要新发现引起了全世界测树学家们的广泛重视和极大兴趣。50多年来,经过世界各国的广泛应用和进一步研究,角规测树的原理、方法和仪器、工具不断地有所发展和完善,现在已形成了角规测树的一套独立系统,并得到广泛应用。 我国自1957年开始引入这一方法,并逐步得到推广和普遍采用,已设计制造了一些具有良好使用性能的角规测器。 “角规测树”是我国对这类方法的通用名称。最初曾把角规叫做疏密度测定器。国际上较为常用的名称有:角计数调查(angle—count cruising)法、角计数样地(angle count plot)法、无样地抽样(plotless sampling)、可变样地(Variable plot)法、点抽样(point sampling)、线抽样(1ine sampling)等。这些名称是以不同角度反映角规测树的某一特征,通过下面有关内容的介绍就可以理解这些名称的具体含义。 角规测树理论严谨,方法简便易行,只要严格按照技术要求操作,便能取得满意的调查结果。因此,角规测树是一种高效、准确的测定技术。 一、基本原理 角规是为测定林分单位面积胸高总断面积而设计的,因此,林分胸高总断面积(简称断面积)是角规测树最早,也是迄今最主要的测定因子,应用也最广泛。其它角规测定因子都是由它衍生而来。角规测定林分每公顷胸高总断面积原理是整个角规测树理论体系的基础,所以,必须对其基本原理有透彻的理解。 1、同心圆简单原理 常规圆形样地(或标准地)的面积和半径是固定的,因而在一个样地内包含了直径

施工项目进度控制原理修订稿

施工项目进度控制原理 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

施工项目进度控制原理 摘要:本文通过分析影响施工项目进度的五大因素,从而得出施工项目进度控制的六方面原理。施工项目进度控制与投资控制和质量控制一样,是项目施工申的重点控制之一。它是保证施工项目按期完成,合理安排资源供应、节约工程成本的重要措施。关键词:施工项目进度控制原理 一、施工项目进度控制概述 (一)施工项目进度控制的概念 施工项目进度控制与投资控制和质量控制一样,是项目施工申的重点控制之一。它是保证施工项目按期完成,合理安排资源供应、节约工程成本的重要措施。 施工项目进度控制是指在既定的工期内,编制出最优的施工进度计划,在执行该计划的施工中,经常检查施工实际进度情况,并将其与计划进度相比较,若出现偏差,便分析产生的原因和对工期的影响程度,找出必要的调整措施,修改原计划,不断地如此循环,直至工程竣工验收。施工项目进度控制的总目标是确保施工项目的既定目标工期的实现,或者在保证施工质量和不因此而增加施工实际成本的条件下,适当缩短施工工期。 (二)施工项目进度控制方法、措施和主要任务

1.施工项目进度控制方法 施工项目进度控制方法主要是规划、控制和协调。规划是指确定施工项目总进度控制目标和分进度控制目标,并编制其进度计划。控制是指在施工项目实施的全过程中,进行施工实际进度与施工计划进度的比较,出现偏差及时采取措施调整。协调是指协调与施工进度有关的单位、部门和工作队组之间的进度关系。 2.施工项目进度控制的措施 工项目进度控制采取的主要措施有组织措施、技术措施、合同措施·经济措施和信息管理措施等。 组织措施主要是指落实各层次的进度控制的人员,具体任务和工作员任;建立进度控制的组织系统;按着施工项目的结构、进展的阶段或合同结构等进行项目分解,确定其进度目标,建立控制目标体系;确定进度控制工作制度,如检查时间、方法、协调会议时间、参加人等;对影响进度的因素分析和预测。技术措施主要是采取加快施工进度的技术方法。合同措施是指对分包单位签定施工合同的合同工期与有关进度计划目标相协调。经济措施是指实现进度计划的资金保证措施。信息管理措施是指不断地收集施工实际进度的有关资料进行整理统计与计划进度比较,定期地向建设单位提供比较报告。 3.施工项目进度控制的任务 施工项目进度控制的主要任务是编制施工总进度计划并控制其执行,按期完成整个施工项目的任务;编制单位工程施工进度计划并控制其执行,按期完成单位工程的施工任务;编制分部分项工程施工进

控制科学与工程专业介绍

控制科学 控制科学与工程一级学科 控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 “控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。 “检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。 “系统工程”是为了解决日益复杂的社会实践问题而形成的从整体出发合理组织、控制和管理各类系统的综合性的工程技术学科。系统工程以工业、农业、交通、军事、资源。环境、经济、社会等领域中的各种复杂系统为主要对象,以系统科学、控制科学、信息科学和应用数学为理论基础,以计算机技术为基本工具,以优化为主要目的,采用定量分析为主、定性定量相结合的综合集成方法,研究解决带有一般性的系统分析、设计、控制和管理问题。 “模式识别与智能系统”主要研究信息的采集、处理与特征提取,模式识别与分析,人工智能以及智能系统的设计。它的研究领域包括信号处理与分析,模式识别,图象处理与计算机视觉,智能控制与智能机器人,智能信息处理,以及认知、自组织与学习理论等。 “导航、制导与控制”是以数学、力学、控制理论与工程、信息科学与技术、系统科学、计算机技术、传感与测量技术、建模与仿真技术为基础的综合性应用技术学科。该学科研究航空、航天、航海、陆行各类运动体的位置。方向、轨迹、姿态的检测、控制及其仿真,是国防武器系统和民用运输系统的重要核心技术之一。 推荐学校:北京航空航天大学、华中科技大学、清华大学、东北大学、浙江大学、西安交通大学、哈工大、上交、东南大学、北京理工大学、南京理工大学、中科大、山大(22) 电气工程及其自动化

相关文档
最新文档