2007东南大学高等代数

2007东南大学高等代数
2007东南大学高等代数

一 (20%) 已知3维列向量12123101110121112a b c ααβββ-?????????? ? ? ? ? ?===== ? ? ? ? ? ? ? ? ? ???????????

,,,,,且123βββ,,与12αα,等价.

1. 求参数a b c ,,的值;

2. 记矩阵12A αα=(,),123B βββ=(,,).求矩阵X ,使得AX B =.

二 (20%) 假设2n n n C n n ?≥?,是复矩阵在通常的运算下构成的复数域上的线性空间.若

,(){|}n n n n A C V A X C AX XA ??∈=∈=记.

1.证明:()n n V A C ?是的子空间;

2.假设1,()1n n a a J C V J a ??? ? ?=∈ ? ???

求的一组基; 3.证明:对任意矩阵,dim ()n n A C V A n ?∈≥.

三 (15%) 假设,A B 都是22?的实矩阵,并且22,A B E AB BA O ==+=,证明:存在可逆矩

阵P ,使得111001,0110P AP P BP --????== ? ?-????

. 四 (20%) 假设A 是n n ?矩阵. 1.若A 是可逆矩阵,证明:存在多项式1(),()f A f A λ-=使得;

2.矩阵1005610470130002A ?? ? ?= ? ???

,求次数最低的多项式1(),()f A f A λ-=使得. 五 (15%) 假设实对称矩阵1200230100010

11A λ?? ? ?= ? ???,其中λ是参数.试确定λ的取值范围,使得A 的4个特征值中,有两个特征值大于零,两个特征值小于零.

六 (15%) 假设矩阵112013013,002002000A B ???? ? ?== ? ? ? ?????

.证明:矩阵方程2X A =有解,而2X B =没有解.试将本题结果推广到一般情形(只需给出结果,不必证明).

七 (45%) 证明下述命题.

1.假设A 是秩为r n n ?的矩阵,证明:存在秩为n r n n -?的矩阵B ,使得A B +是可逆矩阵.

2.假设W 是欧几里德空间V 的子空间,0,V W ηη∈∈.证明:0min W

ξηηηξ∈-=-当且仅当0W ηη⊥-∈.

3.假设(),()f x g x 是数域F 上互素的多项式,σ是数域F 上线性空间V 上的线性变换.如果()g σ是零变换,证明:()f σ是可逆线性变换.

4.假设V 是数域F 上n 维线性空间,σ是V 上的线性变换,12,,...,n n λλλσ是的个互不相同的特征值,12,,...,n ηηη是相应的特征向量,W 是关于σ的不变子空间.记12...n ηηηη=+++.若W η∈,证明:W V =.

5.假设n n ?实对称矩阵,A B 以及A B -均是正定矩阵,证明:11B A ---也是正定矩阵.

东南大学高数a下实验报告

高数实验报告 学号: 姓名: 数学实验一 一、实验题目:(实验习题7-3) 观察二次曲面族kxy y x z ++=22的图形。特别注意确定k 的这样一些值,当k 经过这些值时,曲面从一种类型变成了另一种类型。 二、实验目的和意义 1. 学会利用Mathematica 软件绘制三维图形来观察空间曲线和空间曲线图形的特点。 2. 学会通过表达式辨别不同类型的曲线。 三、程序设计 这里为了更好地分辨出曲线的类型,我们采用题目中曲线的参数方程来画图,即t t kr r z sin cos 22+= 输入代码: ParametricPlot3D [{r*Cos[t],r*Sin[t],r^2+ k*r^2*Cos[t]*Sin[t]}, {t, 0, 2*Pi}, {r, 0, 1},PlotPoints -> 30] 式中k 选择不同的值:-4到4的整数带入。 四、程序运行结果

k=4: k=3: k=2:

k=1: k=0:

k=-1: k=-2:

k=-3: k=-4: 五、结果的讨论和分析 k取不同值,得到不同的图形。我们发现,当|k|<2时,曲面为椭圆抛物面;当|k|=2时,曲面为抛物柱面;当|k|>2时,曲面为双曲抛物面。

数学实验二 一、实验题目 一种合金在某种添加剂的不同浓度下进行实验,得到如下数据: 2 + y+ = cx a bx 法确定系数a,b,c,并求出拟合曲线 二、实验目的和意义 1.练习使用mathematic进行最小二乘法的计算 2.使用计算机模拟,进行函数的逼近 三、程序设计 x={,,,,}; y={,,,,}; xy=Table[{x[[i]],y[[i]]},{i,1,5}]; q[a_,b_,c_]:=Sum[(a+b*x[[i]]+c*x[[i]]*x[[i]]-y[[i]])^2,{i,1 ,5}]; Solve[{D[q[a,b,c],a]?0,D[q[a,b,c],b]?0,D[q[a,b,c],c]?0},{a, b,c}] A={a,b,c}/.%; a=A[[1,1]]; b=A[[1,2]];

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

东南大学往年高数期末考试试题及答案-8篇整合

东南大学往年高数期末考试试题及答案-8篇 整合 https://www.360docs.net/doc/d810423660.html,work Information Technology Company.2020YEAR

2 东 南 大 学 考 试 卷( A 卷) 一.填空题(本题共5小题,每小题4分,满分20分) 1.2 2lim sin 1 x x x x →∞ =+ 2 ; 2.当0x →时 ,()x α=2()x kx β=是等价无穷小,则 k = 3 4 ; 3.设()1sin x y x =+,则d x y π == d x π- ; 4.函数()e x f x x =在1x =处带有Peano 余项的二阶Taylor 公式为 ()223e e 2e(1)(1)(1)2 x x x ο+-+ -+- ; 5.已知函数3 2e sin , 0()2(1)9arctan ,0 x a x x f x b x x x ?+

高等代数(北大版)第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

北京大学高等代数7

北京大学数学学院期中试题 考试科目 高等代数I 考试时间 2012年11月8日 姓 名 学 号 一.(30分)填空题. 1.设 当λ = 时, α1 , α2 , α3不能表出β ; 当λ = 时, 表出方式不唯一. 2. 设α1 , α2是矩阵A = 的行向量, 则 α1 α1T + α2 α2 T = __ , α1T α1 + α2T α2 = ___ ; A T A =__ , A T A 的秩 =__ , A A T = __ . 3.设 若矩阵 能写成 k 1 α1 α1T + k 2 α1 α2T + k 3 α2 α1T + k 4 α2 α2T , 则 [ k 1 , k 2 , k 3 , k 4 ] =__. 4. 已知 B 是3?4矩阵, [ 2 0 1 3 ] T 是齐次线性方程组B X = 0 的一个解. 设A 是将行向量 [ 2 0 1 3 ] 添加到B 下面 得到的方阵. 若A 的 (4,1) 元的余子式为6, 则 | A | =___. 5. 对矩阵做初等行变换, 矩阵的_____ 不变(多选). A 秩 B 行空间 C 列空间 D 解空间 6. 设α = [ 1 1 2 ] T 与 β = [ 3 0 2 ] T 是3维几何空间里的向量. 则 α , β之间夹角的余弦值是__, α , β张成的三角形的面积是__, 与α , β都正交的单位向量是___. 二.(12分)已知 .11α,11α21??????-=??????=?? ????31021121.,,2320202 1211010===b b a a t b b a a b b a a ?? ????d c b a ,???? ??????-=??????????+--=??????????-+=??????????-+=1λ21β,5λ42α,45λ2α,222λα321

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

2002年东南大学考研高等代数试题

东南大学二○○二年攻读硕士学位研究生入学考试试卷(高等代数) 一、以下结论是否成立,如成立,试证明。否则举实例。(每题4分,共24分) 1、若α为()f x '的k 重根,则α为)(x f 的1+k 重根。这里)(x f '表示多项式)(x f 的微商(或导数)。 2、设A 为n m ?阵,B 为m n ?阵,且,n m >则0AB =。 3、若,A B 均为n 阶实对称阵,具有相同的特征多项式,则A 与B 相似。 4、设4321,,,αααα线性无关,则12233441,,,αααααααα++++秩为3。 5、设21,v v 均为线性空间v 的子空间,满足{}021=?v v ,则21v v v ⊕=。 6、设A 为n 阶正定矩阵,则一定存在正定阵B ,使2 B A =。 二、(10分)以知线性方程组21ββ+=k Ax ,其中,=A ????? ??-----111121111,???? ? ??=3121β,????? ??-=1312β,求 k 使方程组有解,并求有解时的通解。 三、(10分)已知A 是n 阶实对矩阵,n λλ,,1 是A 的特征阵,相对应的标准正交特征向量为1,,n εε。求 证:T n n n T A εελεελ++= 111。这里“T ”表示转置。 四、(12分)设线性变换A 在线性空间V 的基123,,ααα下矩阵为101210,113?? ?- ? ??? 1、求值域AV ,核1(0)A -的基。 2、问1(0)V AV A -=+吗?为什么? 五、(12分)设(),ij n n A a ?=如果10,1, ,n ij j a i n ===∑。求证:11221n A A A ===。 (这里ij A 为1j a 的代数余子式) 六、(12分)设A 为n 阶矩阵,试证:2A A =的充要条件为()()r A r I A n +-=。 (这里I 为n 阶单位阵,()r A 表示A 的秩) 七、(10分)设A 为4阶矩阵,且存在正整数k ,使0k A =,又A 的秩为3,分别求A 与2A 的若当()Jordan 标准形。 八、(12分)证明,若()f x 与()g x 互素,并且(),()f x g x 次数都大于零,那么可以选取(),()u x v x 使(())(()),(())(()),u x g x v x f x ?

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

[高等代数(下)课外习题-第六章-向量空间]

第六章 向量空间 一、判断题 1. 121{(,,,)|1,}n n i i i x x x x x R ==∈∑L 为n R 的子空间. ( ). 2、所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ). 3、n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ). 4、设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s αααL 线性表出,则维(W )=s . 5、 子空间12(,,,)r L αααL 的维数等于向量组12,,,r αααL 的秩 ( ) 6、s ααα,,,21Λ为V 的基,s βββ,,,21Λ为V 中向量,且 A s s ),,,(),,,(2121αααβββΛΛ=,则s βββ,,,21Λ为V 的基当且仅当A 可逆。( ) 7、有限维线性空间同构的充要条件是维数相同. ( ) 8. 设12,,,n αααL 是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()n f f f αααL . 9、.如果向量空间V 是3维的,那么V 中任意4个向量必是线性相关的( )。 10.、非齐次线性方程组的解集不构成一个向量空间( )。 11、线性空间的一组基所含向量的个数是该空间的维数. 12、设1V ,2V 均为线性空间V 的子空间,满足 12{0}V V =I ,则12V V V =⊕。 ( ). 14.若21V V V ⊕=,r ααα,,,21Λ是1 V 的基,s r r ααα,,,21Λ++是2V 的基,则s ααα,,,21Λ是V 的基. 二、填空题 1、 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______. 2、在4P 中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的 取值范围是____________.

北京大学高等代数基础习题答案八

第八章 λ-矩阵[自测题解答] §1 λ-矩阵 一、 填空 1 、???? ??-------131313322 λλλλλλλ; 2、λλλλλλλλλλ21, 211,122--, 2 ; 3、λ. 二、 解答题 1.0112≠=+λλλλ, 所以矩阵???? ? ?+11λλλ的秩为2. 0 10012 1232≠--=----λλλλλλ,所以矩阵???? ? ??-+--222211λλλλλλλλλ的秩为3. 2.因为141212--=--λλλλλ,所以 ???? ??--121λλλ不可逆. 110012121-=-----λλλλ,所以矩阵 ????? ??-----=10012121)(λλλλλA 可逆. 3. 答:设)(λA 为n 级λ-矩阵,)(λA 可逆时一定满秩,因为这是)(λA 的行列式为非零常数,为非零多项式;满秩时不一定可逆,因为满秩只说明行列式不是零多项式,但不一定是零次多项式(非零常数). 4.证明 因为A E -λ是一个n 次多项式,不是零次多项式.所以A E -λ不可逆. §2 λ-矩阵在初等变换下的标准形 一、 问答题 1. 数字矩阵的初等变换是λ-矩阵的初等变换,但λ-矩阵的初等变换不一定是数字矩阵的初等变换. 2. 初等λ-矩阵都是可逆的. 3. 可逆的λ-矩阵标准型都是单位矩阵,因此等价,反之如果两个λ-矩阵等价,且其中一个可逆,那么另一个一定可逆.

4. 一致. 二、 解答题 1.(),(),()A D H λλλ是标准形,而 2100()010001B λλλ?? ??+ ? ?-??,100()00000C λλ?? ?= ? ???,2 00()00000G λλλ?? ?? ? ???. 2. 100100100100()0000000100010100100B λλλλλλλλ???????? ? ? ? ?=??? ? ? ? ? ? ? ? ?++???????? §3 不变因子解答 一、填空 1.都是1,都是1;2.1,λ,2λλ-;3. 1,λ,2λλ+;4.,r r ;5.无穷 二、解答题 解 ???? ??++=1002)(λλλA 的行列式因子为1,(1)(2)λλ++,故不变因子为1,(1)(2)λλ++,所以标准形为100(1)(2)λλ?? ?++??; ??????? ??=λλλλλ111)(B 的行列式因子44()D λλ=,而有一个三级子式等于1, 故行列式因子321()1,()()1D D D λλλ===,所以不变因子为41,1,1,λ,所以标 准形是4111λ?? ? ? ? ?? ? ????? ??-+++=10030011)(λλλλλλC 的行列式因子为1,1,(1)(1)(3)λλλ-+-,故不变因 子为1,1,(1)(1)(3)λλλ-+-,所以标准形为10001000(1)(1)(3)λλλ?? ? ? ?-++??.

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数II-试题01

高等代数(Ⅱ)试题一 1. 单项选择题 (2分5=10分) 1.设V是实数域上n阶矩阵构成的向量空间, 则V的维数是 ( ) A. n B. n2 C. D. 2.下列变换中, 哪一个是向量空间R3(R是实数域)的线性变换( ) A. (x1 , x2 , x3 ) (x, x2 , x3 ) B. (x1 , x2 , x3 ) (x, x , x3 ) C. (x1 , x2 , x3 ) (x, x , x ) D. (x1 , x2 , x3 ) (x1+x2 , x2+x3 , x3+x1) 3. 四个三维向量构成的向量组 () A. 秩为3 B. 秩为4 C. 线性无关 D. 线性相关. 4. 若n阶矩阵A的行列式不为零, 下列数中哪一个一定不是A的特征值( ) A. 0 B. 1 C. 2 D. 3 5. 向量组()线性相关的充分必要条件是() A. 至少有一个零向量 B. 中至少有两个向量成比例 C. 中至少有一个向量可由其余向量线性表示 D. 中任一个部分组都线性相关. 二.多项选择题 (3分4=12分) 1.设A是n(n>1)阶可逆矩阵, 下列结论中正确的是 ( ) A. |A|≠0 B. 秩A = n C. 秩A < n D. A的行向量线性无关 E . A的列向量线性无关 2.下列变换哪些是向量空间R3的线性变换. ( ) A. (x1 , x2 , x3 ) (0, 0, 0) B. (x1 , x2 , x3 ) (x1 , x2 , 0)

C. (x1 , x2 , x3 ) (x1 , x2 , x) D. (x1 , x2 , x3 ) (x3 , x2 , x1) E. (x1 , x2 , x3 ) (x , x, x) 3.设A是n阶正交矩阵, 下列结论中正确的是 ( ) A. | A | 0 B. | A | >0 C. | A | = 1 D. | A | = 一1 E. | A | = 1或一1 4.设是向量空间V的可逆线性变换, {1 , 2 ,…,n }是V的基,A是关于 这个基的 矩阵, 下列结论中正确的是 ( ) A. {(1) , (2) ,…,(n) }也是V的基 B. {(1) , (2) ,…,(n) }不一定是V的基 C. A是可逆矩阵 D. A-1是-1关于基{1 , 2 ,…,n }的矩阵 E. A T是-1关于基{1 , 2 ,…,n }的矩阵 三、判断题(你认为命题正确时,在题干后的括号内画“√”, 否则 画“×”, 2分5=10分) 1. 设V是有限维向量空间, 则V的基不唯一. ( ) 2. 设是向量空间V的线性变换, 则(V)一定是V的平凡子空间. ( ) 3. 设R3[x] (R是实数域)是次数不超过三的多项式连同零多项式构成的 向量空间, 则{x, x2, x3}是R3[x]的一个基. ( ) 4. 若两个n阶矩阵A与B有完全相同的特征根, 则A与B相似. ( ) 5. 任一n (n>1) 维欧氏空间一定有标准正交基. ( ) 四、计算题(7分4=28分) 1. 求向量组1 = (1, 2, 1), 2 = (2, 1, 3),3 = (3, 0, 4), 4= (5, 1, 6) 的一

东南大学高数上期末往年试题

2003级高等数学(A )(上)期末试卷 一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程 ? +-=y x t x dt e 1 2 确定,则 ==0 x dx dy ( ) .e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A 2.曲线41 ln 2+-+ =x x x y 的渐近线的条数为( ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A 3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y '=的图形为( ) 4.微分方程x y y 2cos 34=+''的特解形式为( ) . 2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )( * * **x A D x Bx x Ax C x Ax B x A A =+=== 二、填空题(每小题3分,共18分) 1._____________________ )(lim 2 1 =-→x x x x e 2.若)(cos 21arctan x f e x y +=,其中f 可导,则_______________=dx dy 3.设,0,00 ,1sin )(?????=≠=α x x x x x f 若导函数)(x f '在0=x 处连续,则α的取值范围是__________。 4.若dt t t x f x ?+-=2032 4 )(,则)(x f 的单增区间为__________,单减区间为__________. 5.曲线x xe y -=的拐点是__________ 6.微分方程044='+''+'''y y y 的通解为__________________________=y

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

习题与复习题详解(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R + + ?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R + 对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2) ()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

高等代数北大版第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ?????=-=+=3 32122 11y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 22333142y y y y ++--=, 再作非退化线性替换 ??? ????==+=3 3223 1121 21z y z y z z y (2) 则原二次型的标准形为 ()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为

???? ?????=+-=++=333212321121212121z x z z z x z z z x (3) 于是相应的替换矩阵为 ???????? ? ?-=??????? ??????? ??-=10021121210 2110001021021100011011T , 且有 ???? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 23322221214422x x x x x x x ++++, 由配方法可得 ()()() 233222222121321442,,x x x x x x x x x x x f +++++= ()()2 322212x x x x +++=, 于是可令 ?????=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2221321,,y y x x x f +=, 且非退化线性替换为 ?????=-=+-=33 322321122y x y y x y y y x , 相应的替换矩阵为 ???? ? ??--=100210211T ,

高等代数北大版教案-第6章线性空间知识讲解

高等代数北大版教案-第6章线性空间

收集于网络,如有侵权请联系管理员删除 第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和 号与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到 B 的一个映射,记为 ).(,:a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数(北大版)第7章习题参考答案75840

第七章 线性变换 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ; 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

相关文档
最新文档