函数的极值(教案)-函数教案

函数的极值(教案)-函数教案
函数的极值(教案)-函数教案

1.3.2函数极值点

教学目标:

(1)知识技能目标:

①了解函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平; ②掌握利用导数求可导函数的极值的一般方法; ③了解可导函数极值点0x 与)(0x f '=0的逻辑关系;

④培养学生运用导数的基本思想去分析和解决实际问题的能力. (2)过程与方法目标:

培养学生观察→分析→探究→归纳得出数学概念和规律的学习能力。 (3)情感与态度目标:

培养学生层层深入、一丝不苟研究事物的科学精神; 体会数学中的局部与整体的辨证关系. 教学重点、难点:

(1) 重点:掌握求可导函数的极值的一般方法.

(2)难点:0x 为函数极值点与)(0x f '=0的逻辑关系. 教学过程: 一、问题情境

利用学生们熟悉的海边体育运动—冲浪,直观形象地引入函数极值的定义.

观察下图中P 点附近图像从左到右的变化趋势、P 点的函数值以及点P 位置的特点

函数图像在P 点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递

减),在P 点附近,P 点的位置最高,函数值最大 二、学生活动

学生感性认识运动员的运动过程,体会函数极值的定义. 三、数学建构

极值点的定义:

观察右图可以看出,函数在x =0的函数值比它附近所有 各点的函数值都大,我们说f (0)是函数的一个极大值;函数在x

点的函数值都小,我们说f (2)是函数的一个极小值。

一般地,设函数)(x f y =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各

x

点的函数值都大,我们说f (0x )是函数)(x f y =的一个极大值;如果)(0x f 的值比0

x 附近所有各点的函数值都小,我们说f (0x )是函数)(x f y =

的一个极小值。极大值

与极小值统称极值。

取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

请注意以下几点:(让同学讨论)

(ⅰ)极值是一个局部概念。由定义可知极值只是某个点的函数值与它附近点的函数值

比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。

(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以

不止一个。

(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,

如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f 。

(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取

得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

极值点与导数的关系:

复习可导函数在定义域上的单调性与导函数值的相互关系,引导学生寻找函数极值点与导数之间的关系.

由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有0)(='x f 。但反过来不一定。若寻找函数极值点,可否只由)(x f '=0求得即可?

探索:x =0是否是函数)(x f =x 3

的极值点?(展示此函数的图形)

在0=x 处,曲线的切线是水平的,即)(x f '=0,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小,故不是极值点。如果0x 使0)(0='x f ,那么0x 在什么情况下是的极值点呢?

观察下左图所示,若0x 是)(x f 的极大值点,则0x 两侧附近点的函数值必须小于)(0x f 。因此,0x 的左侧附近)(x f 只能是增函数,即0)(>'x f ,0x 的右侧附近)(x f 只能是减函数,即

0)(<'x f ,同理,如下右图所示,若0x 是极小值点,则在0x 的左侧附近

)(x f 只能是减函数,

即0)(<'x f ,在0x 的右侧附近)(x f 只能是增函数,即0)(>'x f ,

从而我们得出结论(给出寻找和判断可导函数的极值点的方法,同时巩固导数与函数单调性之间的关系):

若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”

,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值。

结论:0x 左右侧导数异号

0 是函数f(x)的极值点)(0x f '=0

反过来是否成立?各是什么条件?

点是极值点的充分不必要条件是在这点两侧的导数异号;点是极值点的必要不充分条件是在这点的导数为0.

学生活动

函数y =f (x )的导数y /与函数值和极值之间的关系为(D )

A 、导数y /由负变正,则函数y 由减变为增,且有极大值

B 、导数y /由负变正,则函数y 由增变为减,且有极大值

C 、导数y /由正变负,则函数y 由增变为减,且有极小值

D 、导数y /由正变负,则函数y 由增变为减,且有极大值 四、数学应用 例题1:求函数443

13

+-=

x x y 的极值。 解:求导数得42/-=x y 令 2 04212/==-=x x x y ,解得,0 //=y y 在的根的左右的符号如下表所示:

因此,当2-=x 时,函数有极大值,把2-=x 代入函数式,得这个极大值为3

1

9;

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

论文函数的极值问题在实际中的应用.

函数的极值问题在实际中的应用 一、函数求极值方法的介绍 利用函数求极值问题,是微积分学中基本且重要的内容之一,函数求极值的方法很多,但主要可分为初等方法和微积分中的导数方法等。用初等方法求最值问题,主要是利用二次函数的最值性质,二次函数非负的性质,算术平均数不小于几何平均数。正弦,余弦函数的最值性质讨论问题。一般而言,他需要较强技巧,在解决某些问题时,其解法让人赏心悦目,但这些方法通用性较差,利用高等数学的导数等工具求解极值问题,通用性较强,应用也较强,应用也较广泛,下面给出用导数求极值最值得一些定理和方法。 1、一元函数极值的判定及求法 定理1(必要条件)设函数在点处可导,且在处取得极值,那么。 使导数为零的点,即为函数的驻点,可导函数的极值点必定是它的驻点,但反过来,函数的驻点却不一定是极值点。当求出驻点后,还需进一步判定求得驻点是不是极值点,下面给出判断极值点的两个充分性条件。 定理2(极值的第一充分条件)设在连续,在某领域内可导。 (1)若当时,当时,则在点取得最小值。 (2)若当时,当时,则在点取得最大值。 定理3(极值的第二充分条件)设在连续,在某领域内可导,在 处二阶可导,在处二阶可导,且,。 (1)若,则在取得极大值。 (2)若,则在取得极小值。 由连续函数在上的性质,若函数在上一定有最大、最小值。这就为我们求连续函数的最大、最小值提供了理论保证,本段将讨论怎样求出最大(小)值。在一个区间上,一个函数的最值可能在不可导点取得,也可能在区间的端点取得,除去这两种情况之外,必然在区间内部的可导点取得,根据上面的必要条件,

在这些点的导数为0,即为驻点。因此,我们如果要求一个函数在一个区间的最值,只要列举出不可导的点,区间端点以及驻点,然后比较函数在这些点的最值,即可求出最值。

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

函数极值最值的求法及其应用

函数极值最值的求法及其应用 学习目标:会用导数求函数的极值与最值并利用其解决相关的数学问题. 学习重点:利用导数求函数单调区间和极值最值,并能利用他们解决相恒成立问题、方程的根和函数的零点问题. 学习难点:含参函数的分类讨论和数形结合的思想方法. 学习方法:指导学习法. 课前五分钟展示:求函数)0()(>+=a x a Inx x f 在区间[]1,e 上的最小值. 基础知识回顾: 1、 单调区间: 在某个区间(a,b)内,如果()0f x '> ,那么函数()y f x =在这个区间内单调 如果()0f x '<,那么函数()y f x =在这个区间内单调 注意:求参数范围时,若函数单调递增,则'()0f x ≥;若函数单调递减,则 '()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解. 2、 函数的极值与最值: 极大值和极小值:一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有的点都有)(x f <)(0x f 或)(x f >)(0x f ,就说)(0x f 是函数)(x f 的一个极大值或极小值,记作极大值y =)(0x f ,0x 是极大值点或记作极小值y =)(0x f ,0x 是极小值点.

在定义中,极大值与极小值统称为 取得极值的点称为 极值点是自变量的值,极值指的是 最大值和最小值:观察图中一个定义在闭区间[]b a ,上的 函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在 []b a ,上必有最大值与最小值. 请注意以下几点: (1; (2)函数的极值不是唯一的; (3)极大值与极小值之间无确定的大小关系 ; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点取得最大值.最小值的点可能在区间的内部,也可能在区间的端点. 思考探究: 在连续函数)(x f 中,0)('= x f 是函数)(x f 在 x x =处取到极值的什么条件( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件D 、既不充分也不必要条件 典型例题: 题型一:利用导数求函数的极值最值问题: 例1:求函数5224+-=x x y 在区间[]2,3-上的最大值与最小值.

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

多元函数的极值及其应用(精)

2012 年 5 月(上)科技创新与应用科教纵横多元函数的极值及其应用苏兴花(山东现代职业学院,山东济南 250104 )多元函数的极值问题在近年来研究比较广泛,相关的理论逐渐地完善起来,多元函数极值问题的应用也越来越广泛.然而在数学分析的教材中,与一元函数比较起来,多元函数极值的理论及应用却比较少,没有详细的讨论,例如二元函数极值的讨论中,当判别式时,无法判别二元函数的极值是否存在.鉴于这种状况与实际需要的矛盾,总结出几种较为简便的判别多元函数极值的方法,使得多元函数的极值问题的解决方法简单多样化,运用起来更加灵活与方便。 1 多元函数极值 1.1 极值的定义、性质和判定定理二元函数的极值定义 1 设二元函数 f(x,y 在点 P(a,b 的邻域 G 有定义,在 P 处给自变量的增量△P=(h,k,相应有函数增量.若,则称 P(a,b是函数 f(x,y的极大点(极小点).极大点(极小点)的函数值 f(a,b称为函数 f(x,y的极大值(极小值).极大值与极小值统称为函数的极值.定义 2 方程组的解(xy 平面上的某些点)称为函数 f(x,y的稳定点.定理 1 若函数 f(x,y在点 P(a,b存在两个偏导数,且P(a,b是函数 f(x,y的极值点,则 . 定理 2 设函数 f(x,y有稳定点 P(a,b,且在 P(a,b的邻域 G 存在二阶连续偏导数.令 1)若△<0,则 P(a,b是函数 f(x,y的极值点,(iA>0(或 C>0,P(a,b是函数 f(x,y的极小点; (iiA<0(或 C<0,P(a,b是函数 f(x,y的极大点. 2)若△>0,P(a,b不是函数 f(x,y的极值点. 1.2 多元函数极值推广 1.2.1 多元函数极值在数学分析中的推广定理设 f(P是 R n 中的实函数,且 f(P在点 P 0 取到极值,则 f(P 在点 P 0 的任何方向导数均为零. 1.2.2 多元函数极值在线性代数中的推广定理 1 设 n 元函数 f(x=f(x 1 ,x 2 ,...,x n 在某区域上具有二阶连续偏导数,并且区域内一点 P(a 1 ,a 2 ,...,a n 是 f(x的稳定点.其中为实对称矩阵,其元素且不全为零 (i,j= 1,2,...,n即A≠0. 1 若 A 为正定矩阵,f(P为极小值; 2 若 A 为负定矩阵,f(P为极大值; 3 若 A 既不正定,也不负定,则 f(P不是极值.注意:若二次齐次多项式为零,即 A=0 时,此时不能用 A 的正定与负定来判断 f(P是否为极值,或判断 f(P是极大值或极小值,需根据二次齐次多项式后边的高次项去判定.定理 2 设二元函数 f(x,y在点 P 0 (x 0 ,y 0 的某邻域内具有三阶连续偏导数,且 P 0 是稳定点,又,即△=0 时,则当时, f 在点 P 0 无极值.例 2 判别函数是否存在极值.解

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

导数与函数的极值专题

导数与函数的极值专题 1.函数的极值 (1)函数的极小值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极小值点, 叫作函数y=f (x )的极小值. (2)函数的极大值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极大值点, 叫作函数y=f (x )的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2、利用导数求函数极值的一般步骤: (1) 求导函数f /(x); (2) 求解方程f /(x)=0; (3)检查f /(x)在方程f /(x)=0的根的左右的符号,并根据符号确定极大值与极小值 题型1:极值与导数的关系: 1、已知定义在R 的函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 2、已知定义在R 的可导函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 3、已知函数f (x )=2e f '(e)ln x e x -(e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .e 1- C .1 D .2ln 2 4、设f (x )=12x 2-x+cos(1-x ),则函数f (x ) ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

函数的最大值与导数教学设计

§函数的最大(小)值与导数 宜宾市四中李斌 一、教学内容分析 1.在教材中的位置: 本节内容安排在《普通高中课程标准实验教科书数学选修1-1》人教A版,第三章、第三节“导数在研究函数中的应用” 2.学习的主要工具: 基本初等函数的识图能力与函数的极值与导数知识。 3.学习本节课的主要目的: 本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后“生活中的优化问题”打好基础。 4.本节课在教材中的地位: 函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。 二、学情分析 学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。 三、课堂设计思想 培养学生学会学习、学会探究、学会合作是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

四、教学目标 1.知识和技能目标 (1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件。 (2)掌握求在闭区间上连续的函数的最大值和最小值的方法和步骤。 2.过程和方法目标 (1)问题驱动,自主探究,合作交流。 (2)培养学生在生活中学习数学的方法。 3.情感和价值目标 (1)通过观察认识到事物的表象与本质的区别与联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.(4)通过学生的参与,激发学生学习数学的兴趣。 五、教学重点与难点 重点:求闭区间上连续可导的函数的最值的求解,理解确定函数最值的方法,并联系函数单调性的应用。 难点:求函数的最值的方法的提炼,同时让有余力的学生了解函数的最值与极值的区别与联系 六、教学方法 发现探究式、启发探究式 本节课教学基本流程:复习检查→情境导入、展示目标→合作探究、精讲点拨→反思总结、课后升华、当堂检测→布置作业 七、教学过程设计

相关文档
最新文档