质谱练习题

质谱练习题
质谱练习题

例1:未知物1的质谱图。

解:从图谱上看,该化合物的裂解碎片极少,说明应为具有高度稳定性结构的化合物,不易进一步被裂解。

例2、未知物2的质谱图。

解:该化合物为具有两个稳定结构单元的化合物,分子离子峰具有较为稳定的结构,易失去一个苯基形成m/z105的高度稳定的碎片。分子离子与m/z105碎片离子之间由较弱的键连接。例3、未知物3的质谱图。

解:该化合物的质谱峰很孤单,同位素峰丰度非常小,低质量端的峰没有伴随峰。示该化合物含有单同位素元素,分子中的氢很少。

例4:未知物4的质谱图。

解:髙质量端的质谱峰很弱,低质量端的质谱峰多而强。示为脂肪族化合物。

例5、某化合物的化学式是C8H16O,其质谱数据如下表,试确定其结构式

43 57 58 71 85 86 128

相对丰度/% 100 80 57 77 63 25 23 解:⑴ 不饱和度Ω=1+8+(-16/2)=1,即有一个双键(或一个饱和环);

⑵ 不存在烯烃特有的m/z41及41+14n系列峰(烯丙基的α断裂所得),因此双键可能为

羰基所提供,而且没有m/z29(HC O+)的醛特征峰,所以可能是一个酮;

⑶ 根据碎片离子表,m/z为43、57、71、85的系列是C n H2n+1及C n H2n+1CO 离

子,分别是C3H7+、CH3CO+,C4H9+、C2H5CO+,C5H11+、C3H7CO+及C6H13+、C4H9CO+离子;

⑷ 化学式中N原子数为0(偶数),所以m/z为偶数者为奇电子离子,即m/z86

和58的离子一定是重排或消去反应所得,且消去反应不可能,所以是发生麦氏重排,羰基的γ位置上有H,而且有两个γ-H。m/z86来源于M-42(C3H6、丙稀),表明m/z86的离子是分子离子重排丢失丙稀所得; m/z58的重排离子是m/z86的离子经麦氏重排丢失质量为26的中性碎片(C2H4、乙烯)所产生,从以上信息及分析,可推断该化合物可能为:

由碎片裂解的一般规律加以证实:

例6、某化合物由C、H、O三种元素组成,其质谱图如下图,测得强度比M :(M+1):(M+2)=100 :8.9 :0.79 试确定其结构式。

解:⑴ 化合物的分子量M=136,根据M、M+1、M+2强度比值,可以看出该化合物不含S、Cl、Br原子,从M+1/M的强度比估计该化合物大约含有8个碳原子。查Beynon表,根据氮规则确定该化合物最可能的化学式为C8H8O2;

⑵ 计算不饱和度,Ω=1+8+(-8/2)=5,图谱中m/z77、51以及39的离子峰,表明化合物中有单取代苯环。苯环的不饱和度为4,还剩余一个不饱和度,考虑到分子中有两个原原子,其剩余的不饱和度很可能是构成C=O基);

⑶m/z105峰应由m/z136的分子离子丢失或产生;m/z 77峰为苯基碎片离子峰,由m/z105脱 CO或C2H4所得。由于图谱中没有m/z91的峰,所以m/z105

的碎片离子不可能烷基苯侧链断裂形成的,该峰只能是苯甲酰基离子。综上所述,该化合物的可能结构为:或

。用IR光谱很容易确定为哪一种结构。

例7、某化合物的化学式为C5H12S,其质谱如下图,试确定其结构式。化合物C5H12S的质谱图。

解:⑴计算不饱和度,Ω=1+5+(-12/2)=0,为饱和化合物;

⑵图中有m/z70、42的离子峰,根据氮规则,这两峰应为奇电子离子峰,是通过重排或消去反应形成。分子离子峰为m/z104,丢失34质量单位后生成碎片离子m/z70,丢失的碎片应为H2S中性分子,说明化合物是硫醇;m/z 42是分子离子丢失(34+28)后产生的离子,即丢失了中性碎片(H2S+C2H4),其裂解过程可能是下述二种结构通过六元环的过渡。

⑶m/z47是一元硫醇发生α断裂产生的离子CH2=H

⑷m/z61是CH2 CH2SH离子,说明有结构为R-CH2-CH2-SH 存在;

⑸m/z29是C2H5+离子,说明化合物是直链结构,m/z 55、41、27离子系列是烷基键的碎片离子。

综上解释,该化合物最可能结构式为: CH3-(CH2)3-CH2SH0。

例8:一个羰基化合物,经验式为C6H12O,其质谱见下图,判断该化合物是何物。

解:图中m/z100的峰可能为分子离子峰,那么它的分子量则为100。m/z85的峰是分子离子脱掉质量数为15的碎片所得,应为脱去一个甲基。m/z 43的碎片等于M-57,是分子去掉C4H9的碎片。m/z 57的碎片是C4H9+或者是M-(Me-CO)。根据酮的裂分规律可初步判断它为甲基丁基酮,裂分方式为:

以上结构中C4H9可以是伯、仲、叔丁基,质谱图中的m/z 72峰,应该是分子离子经麦氏重排脱去乙烯分子后生成的碎片离子。只有仲丁基经麦氏重排后才能得到m/z72的碎片,如为正丁基通过麦氏重排得不到m/z 72的碎片。

因此该化合物为3-甲基-2-戊酮。

习题

1、简述单聚焦质谱的工作原理。

2、质谱仪由哪几部分组成?各部分的作用是什么?(划出质谱仪的方框示意图)

3、在质谱仪中当收集离子的狭缝位置和加速电压V固定时,若逐渐增大磁场强度H,对具

4、在质谱分析中,较常遇到的离子断裂方式有哪几种?

5、认别质谱图中的分子离子峰应注意哪些问题?如何提高分子离子峰的强度?

6、有不同质荷比的正离子,其通过狭缝的顺序如何确定?

7、在质谱仪中若将下述的离子分离开,其具有的分辨率是多少?

(1) C12H10O+和C12H11N+ (2)CH2CO+和C3H7+

8、用质谱法对四种化合物的混合物进行定量分析,它们的分子量分别为260.2504,260.214

9、解释下列术语:均裂、异裂、半异裂、分子离子(峰)、同位素离子(峰)、亚稳离子(峰)、麦氏重排、消除反应、奇电子离子、偶电子离子、氮律。

10、试确定具有下述分子式的化合物,其形成的离子具有偶数电子,还是奇数电子?

(1)C3H8(2)CH3CO (3)C6H5COOC2H5(4)C6H5NO2

11、有一化合物其分子离子的m/z分别为120,其碎片离子的m/z为105,问其亚稳离子的m/z是多少?

12、某有机化合物(M=140)其质谱图中有m/z分别为83和57的离子峰,试问下述哪种结构式与上述质谱数据相符合。

13解释下列化合物质谱中某些主要离子的可能断裂途径:

①丁酸甲酯质谱中的m/z43、59、71、74;

②乙基苯质谱中的m/z91、92;

③庚酮-4质谱中的m/z43、71、86;

④三乙胺质谱中的m/z30、58、86。

14、某一未知物的质谱图如图所示,m/z为93,95的谱线强度接近,m/z为79,81峰也类似,而m/z为49,51 的峰强度之比为3∶1。试推测器结构。

15、某一液体的化学式为C5H12O,bp 138℃,质谱数据如图所示,试推测其结构。

16、某化合物C4H8O的质谱图如下,试推断其结构,并写出主要碎片离子的断裂过程。

17、某化合物为C8H8O的质谱图如下,试推断其结构,并写出主要碎片离子的断裂过程

18、某一液体化合物C4H8O2,b.p 163o C,质谱数据如下图所示,试推断其结构

19、某一液体化合物C5H12O,b.p 138℃,质谱数据如下图所示,试推断其结构

20、化合物A含C 47.0%,含H 2.5%,固体m.p 83℃;化合物B含C49.1%,含H 4.1%,液体b.p 181℃,其质谱数据分别如下图(a)、(b)所示,试推断它们的结构。

Waters Xevo G2-XS QTof高分辨质谱仪操作规程

Waters Xevo G2-XS QTof高分辨质谱仪操作规程 一、开机步骤 1. 打开氮气发生器的电源(或液氮瓶的开关),确认压力指示在100psi(或0.6-0.8MPa),打开氩气减压 阀确证压力指示在7psi(或0.05MPa)。 2. 打开电脑输入用户名:administrator,密码: waters进入Windows桌面并等待3分钟。 3. 打开液相各个模块的电源(没有顺序)。 4. 打开质谱电源开关(在质谱背面板中下部有两个银色按钮,将两个银色按钮按照自上而下的顺序搬至向 上的位置,在搬动过程中,需要将按钮向外稍微用力才可以上下搬动)。 5. 等待5分钟。 6. 双击桌面上的MassLynxV4.1图标,打开软件,等待在MassLynx的主窗口状态栏中部偏右的位置出现 “Not Scanning”的信息。 7. 打开MS Tune窗口,选择Vaccuum菜单中的pump选项。

8. 打开MS Tune窗口,单击氩气的控制开关,使氩气关闭。 9. 观察MS Tune/View/Vacuum中真空度变化情况,当TOF真空度小于1.1e-6仪器可以工作。 10. 开机过程结束。 二、质谱调谐和校正 1.打开“MS Tune”界面,用于质谱调谐与控制,选择“Shortcut”, “Instrument”列表下,点击“MS Tune”。 2.点击质谱调谐界面右下角按钮,使仪器处于开机工作状态。 3.在质谱调谐界面选择正离子模式、灵敏度模式和MS 模式。

11. 12. 13. 14. 15. 4. 在质谱调谐界面,“ES+”标签下,设置质谱离子源参数,毛细管电压Capillary(kV):ES+ 2.5 kV / ES- 3.0 kV,样品锥孔电压Sample Cone:30 - 60 V,离子源缺省电压Source Offset:80 V,源温Source temperature:80 - 120 °C ,脱溶剂温度Desolvation temperature:280 - 400 °C ,锥孔气Cone Gas:0 - 50 L/h,脱溶剂气流速Desolvation Gas:600 - 1000 L/h。 5. 在质谱前面板左侧“Intellistart Fluidics system”位置放置溶液 A: 乙腈:水 = 50:50 B: 亮氨酸脑啡肽溶液(200 pg/μL) C: 甲酸钠溶液(0.5 mM) 6. 在质谱调谐界面,选择“Fluidics”标签,“LockSpray Flow Control”下,“Reservoir”选择B号瓶(亮氨酸脑啡肽,LE),点击,Purge LE。 7. 在质谱调谐界面,选择“Fluidics”标签,“LockSpray Flow Control”下,“Flow State”下拉菜单,选择“Infusion”,“Sprayer Position”选择“LockSpray”,点击,进样。

液相色谱-质谱联用(LC-MS)使用指南及注意事项

液相色谱-质谱联用(LC-MS)使用指南及注意事项 高洁 生物站A308 仪器型号: 岛津LCMS-2020 1.开机 1.1 开机前准备 ?确认氮气畅通,液氮罐GAS出口压力表指针在0.7~0.8MPa之间。压力不够时,将其对面的增压阀拧大,使压力达到要求,若压力还不够,说明需要更换液氮。 ?确认流动相溶剂瓶内液体够用(流动相A-娃哈哈小瓶装纯净水,B为乙腈,分别加千分之零点三五的HPLC级三氟乙酸),液面要没过吸滤头。 ?打开UV检测器箱门,将三通与质谱分流接头连接。 1.2 开机过程 开机顺序为1 2 3 4 5 6,关机顺序为6 5 4 3 2 1。 1.3 打开电脑之后 ?打开分析程序。 ?将MS配置到程序中。 方法如下: Main→System Configuration→LCMS→上方蓝箭头→OK 听到“滴”一声后,页面显示液相与质谱绿色ready状态,说明LC与MS均与程序连接良好。

2.1样品准备 ?浓度:0.1 mg/ml 左右 ?溶剂:流动相(乙腈水甲醇),若以上均不溶,用少量DMSO溶解再稀释到以上溶剂中 ?过滤膜!! ?样品瓶要确保无尘 2.2仪器准备 ?打开之前设定好的Method File→Download(目的是将仪器参数从程序配置到仪器) ?如果刚刚开机的话,各个部件还未预热,需要把各个部件打开。 打开顺序为:1234567(7打开后8和9自动打开) 1)如果方法中的分子量扫描范围不是你需要的,重新设置: ?在下图中,Scan(+)Scan(-)分别为正负离子扫描设置。 ?扫描速度=扫描范围/ 扫描周期,扫描速度在1000u/second 左右比较好,所以改变扫描范围之后,要相应地改变扫描周期,使扫描速度在1000左右。 ?扫描范围为m/z 50-2000,一般设置100以上起始,因为溶剂中100以下小分子杂质较多,终止分子量一般为目标分子量的二倍稍高。 2)LC洗脱程序设置,设置方法与HPLC相似。(一般化合物都可以使用宋志建的fast方法,需要修改的可以询问王怀民,高洁)。 3)UV检测器波长设置。根据自己化合物的基团的设置。 4)全部设置完毕后, ?单击Start Single Run,在弹出的对话框中修改Data Method,命名为你自己的样品名。?输入样品架号(Tray name,左边很多排的为1号架,右边只有一排的为0号架) ?样品号(Vial#,放置在样品架的几号孔中) ?进样量(Inject V olume,一般为1-10μl,根据样品浓度自行决定) ?单击OK 3.进样完毕 日常进样完毕后,要关闭6和8,注意9要保持开启状态

过程质谱仪的技术及应用

过程质谱仪技术及应用
上海舜宇恒平科学仪器有限公司

基本背景
z
在线分析:通过仪器对过程变化进行在线实时监控,检测特定化学物质或物理 状态,得到过程信息(如反应状态、速率、均匀性和浓度等) 传统气体成分在线分析:工业色谱、红外和其它单一的气体检测单元(紫外, 热导 磁氧) 存在分析速度慢 准确度差 系统集成化和自动化程度不高 热导,磁氧),存在分析速度慢、准确度差、系统集成化和自动化程度不高, 不能及时地反映过程的快速变化等问题 过程质谱:原理同实验室质谱。在过程检测中,由于质谱仪能够进行实时、多 过程质谱 原 同实验 质谱 在过程检测中 由 质谱仪能够进行实时 多 点、多组分检测,提供定性定量信息,具有灵敏度高、检测快速等优势,因此 越来越受到在线过程监控应用领域的重视。 应用领域:石油化工、半导体、冶金、环境、食品、催化和地质勘探等气相工 应用领域 石油化工 半导体 冶金 环境 食品 催化和地质勘探等气相工 业反应的监测。
z
z
z

主要内容
1 2 3 4 在线质谱技术 在线质谱应用 在线质谱仪系统 舜宇恒平在线质谱仪

在线质谱技术

质谱分析法
z
质谱,即质量的谱图,物质的分子在高真空下,经各种途径形成带电粒子(即 质谱 即质量的谱图 物质的分子在高真空下 经各种途径形成带电粒子(即 离子),某些带电粒子可进一步断裂。 每 离子的质量与所带电荷的比称为质荷比(m/z) 每一离子的质量与所带电荷的比称为质荷比 ( / )。 不同质荷比的离子经质量分离器分离后,由检测器测定每一离子的质荷比及强 度 由此得出的谱图称为质谱 度,由此得出的谱图称为质谱。
85
9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
z
z
O
CH3
41 56
27
67
100

液相色谱-质谱联用(LC-MS)

液相色谱-质谱联用(LC-MS) LCMS分别的含义是:L液相C色谱M质谱S分离(友情赠送:G是气相^_^) LC-MS/MS就是液相色谱质谱/质谱联用 MS/MS是质谱-质谱联用(通常我们称为串联质谱,二维质谱法,序贯质谱等) LC-MS/MS与LC-MS比较,M(质谱)分离的步骤是串联的,不是单一的。 色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。 现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理: 由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。 从两相的状态分类:

(完整word版)超高效液相色谱-四极杆飞行时间高分辨质谱联用仪

附件:技术参数 一、超高效液相色谱-四极杆飞行时间高分辨质谱联用仪 1.应用范围: 系统主要用于有机化合物的定性和定量分析。可分别通过多目标未知物筛查流程、完全未知物筛查流程等来开展未知物的发现和鉴定工作;还可以开展药物代谢、代谢物鉴定和代谢组学研究等。 2.工作环境条件: 2.1 电源:230Vac,±10%,50/60Hz,30A。 2.2 环境温度:15 ~ 26?C。 2.3 相对湿度:20 ~ 80%。 3.总体要求: 3.1 该系统基本组成包括超高效液相色谱部分和具有超高灵敏度、超快扫描速度的落地式高频四极杆-飞行时间串联质谱仪部分。仪器由计算机控制、配有独立的ESI和APCI离子源。软件包括仪器调节、数据采集、数据处理、定量分析和报告。 3.2 仪器灵敏度要高,性能稳定,重复性好。 3.3 国际知名质谱公司(10年以上商品化四极杆-飞行时间质谱生产经验)推出的主流产品,产品全部为原装进口,其性能达到或超过以下要求。 4. 质谱性能指标: 4.1 离子源:配有电喷雾离子源(ESI)、大气压化学电离源(APCI),离子源切换方便、快速,清洗、维护方便。

4.1.1 插拔式可互换ESI及APCI喷针,可实现ESI源及APCI源的快速更换。 4.1.2 大气压离子源采用锥孔结构,使用气帘气技术,而无毛细管(半径<1mm)设计装置,以同时保持高灵敏度和优异的抗污染能力。(要求提供接口结构图) 4.1.3 电喷雾离子源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.4 大气压化学电离源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.5 脱溶剂能力:离子源内采用辅助气体加热,气体最高温度可达700℃,确保最佳的离子化效率。(要求提供硬件结构图和软件界面截图作为证明文件) 4.1.6 离子源内废气排放:有主动废气排放装置,防止气体在密闭的离子源腔体中的回流,降低离子源的记忆效应和污染,降低机械泵的负荷延长机械泵泵油使用时间,维护试验环境,保障工作人员健康。 4.1.7 Q0聚焦技术:离子引入部分拥有高压离子聚焦技术,压力至少达7.5mtorr,以确保最佳的离子聚焦效果和离子传输效率,有效消除“记忆效应”和“交叉污染”。 4.1.8 校正方式:外置CDS辅助校正。 4.2 质量分析器:落地式四极杆-飞行时间串联质谱。

质谱操作说明

质谱操作说明及日常使用注意事项 1 开机 打开主电源,打开毛细管加热装置(CPS),打开旁路泵电源,待指示灯变黄之后,按向上的箭头,当压力达到5×10-6后,开控制箱(RC Interface),听见滴的一声,打开MAsoft 的软件开始实验设置。 2 软件操作 (1)新建文件:File—New File新建文件,出现主窗口; (2)点亮灯丝,观察控制箱上灯丝状态,当灯丝亮启后,点击绿色开始按钮,开始扫描。注意:两个灯丝不能同时打开,勿点击Degas analysis Source, 容易烧坏灯丝,点击该按钮前,请与该公司工程师联系。 (3)当需要查看各个循环次数时,可选择要查看的Scan窗口,点击右键,选择Mode-Historical data,当需要转化到目前的扫描窗口时,选择Real time。 (4)当扫描结束时,点击黄灯结束当前循环后停止,红灯则马上停止扫描。 (5)可选择路径自己保存数据File-Save As , 可导出Excel 数据File-Export-File (6)格式可选择曲线颜色:Views—Trend View setup ; 在Windows中可改变窗口形式。(7)在Edit-Library-compound中可查看各物质的峰含量图谱,可点击New进行添加新物质。3关机 (1)关闭MAS soft 软件,然后关闭控制箱。 (2)关泵,关闭cps,待面板上出现off时,关闭总电源。 4注意事项: (1)实验过程中,切勿用肥皂泡检查气路,包括自己的气路在检查时也一定要与质谱接口断开(非常重要,很多质谱都因为学生采用肥皂泡捡漏使得四级杆污染无法继续使用);(2)一般情况下,质谱要保持正常运行状态,除非15天以上不用仪器,方可关闭。因为质谱需要一定时间稳定(24h以上),频繁开关质谱也会加速真空规污染。在预知停电的情况下,请提前关掉质谱。 (3)泵油的更换:要经常观察泵油颜色,当变成黄褐色时应立即更换。如果仪器使用频繁且气体比较脏,则要求至少半年更换一次,加入泵油量不超过最上层液面。 (4)QIC20散热过滤网应定期进行清洗(每两个月清洗一次),在夏天没有空调的房间使用时尽量打开上盖,以防影响仪器散热。 (5)毛细管在不与外部仪器连接时,不要直接放置在脏的桌面上,尽量悬空放置;毛细管内部的过滤器要定期清洗,在拆装过程中注意不要丢失部件。 (6)在仪器运输过程中,如果有油泵需要放出泵油(若干净可进行收集以后继续使用)、卸掉RF射频头,单独运输。

液相色谱—质谱联用

液相色谱—质谱联用来进行物质分离的实验 一、实验目的 1.了解液相色谱—质谱联用的基本原理; 2.掌握液相色谱—质谱联用时的操作步骤及实验方法; 3.学习分析色谱图和质谱图。 二、实验原理 利用不同的物质在固定相和流动相中具有不同的分配系数,当两相作相对位移时,使这些物质在两相间进行反复多次分配, 使得原来微小的分配差异产生明显的分离效果,从而依先后次 序流出色谱柱,以此来达到分离多种物质的目的。然后依次流 出的物质进入质谱中被打碎成为各种离子而被检测到。以此达 到分离的目的。 三、实验仪器和材料 高效液相色谱仪及质谱仪(见下图)、甲醇、水、TADB(相对分子量516)、TAIW(相对分子量336)、色谱柱

四、实验步骤 1.将待分离的两种物质的混合物配成溶液加入到2号样瓶中去; 2.启动联机软件,在四元泵模块的空白处右键单击,在弹出的 “方法”选项中编辑好流动相和流速,点击确定,以使体系过 渡到目标状态,直到压力稳定为止; 3.进入“方法”菜单,“编辑完整方法菜单”,按照“方法参考”进行编 辑(“方法参考”中的参数编辑完成后继续进行编辑,编辑质 谱的相关参数:选择正负极及电压等),编辑完成后再次进 入“方法菜单”,选择“方法另存为”命名后点击“确定”进入“序列” 菜单,“序列表菜单”,然后编辑样品瓶位置为1号、样品名称、 使用方法、进样次数、数据文件、进样量,确定后再次进入 “序列菜单”的“序列参数”菜单,再选择文件夹,确定; 4.方法编辑完成且压力稳定后,点击进样器左上方的“序列/开 始序列”按钮,进行测试,等待测试完毕,点击停止按钮。 然后进入“脱机”软件,查看积分测试报告。 五、实验结果及分析 实验时的液相色谱条件统一为:70%的甲醇,流速0.4ml/min,进样量1ul,波长230nm,测试时间15min。在正极性条件下:

在线单颗粒气溶胶质谱仪及挥发性有机物走航监测系统技术参

在线单颗粒气溶胶质谱仪及挥发性有机物走航监测系统技术参数 一、技术需求 面对新乡市目前细颗粒物浓度减排压力以及臭氧污染逐渐凸显的局面,为切 和臭氧前体物VOCs的快速诊断技实开展、落实减排工作计划,现亟需针对PM 2.5 和VOCs的特征画像,弄清污染物的浓度、种类、来源及术,通过建立本地PM 2.5 其空间分布、排放规律等,实现从区域污染全局把握,到重点区域精细化诊断的 和VOCs污染问题的的快速响应,精准管控,靶向治理。工作计划,实现对PM 2.5 传统“离线采样-分析测试-数据解析”的方法时效性较低,周期较长,耗费大量人力物力且指向性较差,难以有效满足重污染应对及精准防控和评估的需求,因此拟采用在线监测技术手段,通过定点在线监测及移动走航,实现从“点-线-面”多维度对新乡市空气质量及污染来源的快速摸排。为满足本项目需求,现需购置挥发性有机物走航监测系统一套、颗粒物在线源解析质谱监测系统一套及具备完善的运维及报告分析服务三年。 二、采购需求 通过颗粒物在线源解析质谱监测技术,增强我市大气污染成因分析能力,确定需优先控制的颗粒物污染源类别和重点管控区域,提高我市精细化管理水平,实现颗粒物浓度有效削减,为空气质量的持续改善提供技术支撑, 通过挥发性有机物走航监测技术,快速对本地挥发性有机物的排放情况进行全面的摸底调查,摸清新乡市整体的挥发性有机物分布情况,锁定重点区域,重点企业,重点工段,实现对挥发性有机物排放单位有效管控,对差异化治理措施的制定和治理措施的快速后评估提供数据支撑。具体采购内容如下:

三、工作目标 (一)颗粒物在线源解析质谱监测系统 1、判定重污染天气成因并明确管控方向 利用单颗粒质谱高时间分辨率的优势,分析污染过程中逐小时的颗粒物成分及来源,以及颗粒物浓度变化情况。该系统应能实现对整个重污染过程的追踪,并结合气象条件、污染源分布及现场巡查,及时判断污染成因。如:在传统大类源的基础上,可以针对燃煤和机动车尾气两类源展开精细化源解析的工作,细化污染来源,使得管控手段更加精准,更具有指向性。 2、对管控效果开展评估并实时调整 颗粒物在线源解析质谱监测系统应根据源解析的结果,及时对采用的管控效果进行评估,并提出科学、合理的调整方案。 3、对异常点位开展原因分析,实现削峰降频 根据高时间分辨率成分及来源结果,结合高时间分辨率气象及辅助数据(风向、风速、气态污染物、污染源分布等),剖析长期异常的点位异常原因,尤其是其异常时段相对于正常时段的差异,提供精准管控指向。 4、建立长期分析监测机制,实现达标减排 能够开展时间维度的上分析,包括年度,季度,月度,同比,环比等,明确污染源及其组分占比、变化规律等。系统需结合新乡市大气污染防治的工作要求,精准评估治理效果,通过动态调控,实时跟踪,建立长期分析监测机制,优化治理措施,为进一步的减排及举措提供有力的数据支撑。 (二)挥发性有机物走航监测系统 1、通过对环境空气挥发性有机物的走航监测工作,对新乡市本地企业挥发性有机物的排放特征进行摸底调查,弄清污染物的时空分布、物种、浓度、分布、来源及排放规律等,对城市挥发性有机物排放进行画像。 2 、依据区域挥发性有机物分布画像,明确区域的重点区域和重点企业,对重点区域和企业进行分级,对其进行不同级别的走航工作。如:在工业聚集区开展摸排、业务化巡查、问题点位锁定、问题企业锁定等工作,针对企业污染情况,分级管控。深入开展“一企一策”,针对各个企业的污染情况开展长期的,多维度的分析,包括厂界监测,厂内工段排查,昼夜排放对比等工作。

高分辨质谱技术参数

高分辨质谱技术参数 一.应用范围 1.适用于食品中农兽残,环境污染物,非法添加药物、营养成分等快速筛查确证以及定量检测分析工作。 2.适用于新药研发,药物杂质鉴定、代谢物鉴定、研究与疾病有关的标记物和代谢组学、脂质组学、小分子和生物大分子的相互作用、天然产物结构分析等领域。 3.适用于蛋白质组学:蛋白质组学研究中的蛋白质鉴定、翻译后修饰、生物大分子相互作用、多肽和蛋白质的定量分析。 二.设备名称:高分辨质谱仪 1.工作条件 1.1电源:230V±10%,AC(交流),50/60Hz 1.2环境温度:15-27℃(最优:18~21℃) 1.3相对湿度:20-80% 1.4气体需求:高纯氮气,最大消耗量不大于20L/min 2.质谱部分: 2.1 离子源部分 2.1.1 独立的可加热电喷雾离子源(ESI源),集成式气路电路设计,安装离子源时即可实 现气路电路连接,自动识别,无需进行额外操作; 2.1.2喷针采用60度喷雾设计,前后,左右,上下可调,正对废液出口。雾化后,废产物 直接进入废液出口,确保离子源腔体洁净; 2.1.3 具有雾化气和辅助雾化气,进一步提高雾化效率和稳定性,具有强的雾化效果抗污染能力; 2.1.4可加热ESI源,离子源加热温度最高可达600℃,不分流的情况下采用纯水作为溶剂,流速为1μl-2000μl/min;APCI流速为50μl-2000μl/min; 2.1.5 全自动注射泵实现质谱直接进样,自动调谐和校正,可通过软件自动切换模式; 2.1.6 质谱配置软件具备实时监控并反馈喷雾稳定性功能; 2.1.7离子源腔体具有观察窗口,可以直接观察喷雾效果以及离子源腔体洁净程度; 2.2 离子传输部分 2.2.1离子传输系统必须配有金属离子传输管设计,保护分子涡轮泵,减少真空负担; 2.2.2离子传输管独立加热,最高温度可达400℃,进一步提高去溶剂效果和确保离子传输系统抗污染能力; 2.2.3具有真空隔断阀设计,在移去、清洗离子传输部件时,不需破坏真空, 待机时不需要消耗氮气; 2.3 质量分析器部分

+LC-MS-MS液相色谱质谱质谱联用仪

+LC-MS-MS液相色谱质谱质谱联用仪LC-MS-MS 液质联用(LC-MS)性能选择和价格比较液相色谱—质谱联用的原理及应用 简介液色迷人https://www.360docs.net/doc/d815453202.html," 1977年,LC/MS开始投放市场 1978年,LC/MS首次用于生物样品分析 1989年,LC/MS/MS取患上成功 1991年,API LC/MS用于药物开发 1997年,LC/MS/MS用于药物动力学高通量筛选 2002年西方强国质谱协会统计的药物色谱分析各种不同方法所占的比例。1990年,HPLC高达85%,而2000年下降到15%,相反,LC/MS所占的份额从3%提高到约莫80%。我们国家目前在这方面可能相当于西方强国1990年的水平。为此我们还有很长的一段路要走色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,使成为事实对庞大混合物更准确的定量和定性分析。并且也简化了样品的前处理过程,使样品分析更简便。 色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为增补,分析不同性质的化合物。 液质联用与气质联用的区别: 气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)获患上的谱图,可与标准谱库对比。 液质联用(LC-MS)首要可解决如下几方面的需要解答的题目:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多

肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。 常见的色质联用仪首要有气相-质谱联用仪和液相-质谱联用仪。随着我国财政能力的日益增强和理化分析仪器的飞速发展,许多单元处于一个设备迅速增长的高峰期,提出买质谱的单元也不少,下面针对疾控系统中色质联用仪的采办与应用需要解答的题目谈下个人看法。 从技术层面来说,采办色质联用仪的目的首要有两方面:定性,灵敏度。 谈到色质联用仪在定性方面的作用,就要先谈一下从色谱定见的逻辑缺陷。 色谱定性和色谱定量都涉及到一个基本逻辑:“在两个流程的绝大多数因素都完全一致,则独一不不异的那一个因素,最终引起了成果的不同”。 色谱定量是依据这个逻辑(在各个条件都一致时,决议峰面积不同的独一因素就是浓度的不同),色谱定性也是这样(在各个条件都一致时,决议保留时间不同的独一因素就是组分的不同)。 色谱定性最重要的依据就是色谱峰的保留时间(在绝大多数情况,这甚或是独一的依据)。我们在定性时的色谱定见就是:“ 组分峰与标准峰保留时间不异,则判断该组分=标准物质”。注意,我们使用的是“不异”,而上边逻辑中的重点却是“不同”。 要使这样的色谱定见合乎逻辑,必需加上至少一个限制:过程中的每个因素都能对成果产生特别优异性的作用。对于色谱来说,就是“在定性时,每种不同的组份必需对应不同的保留时间”。 然而,大量的测试成果告诉我们,不同的组份,往往会有不异或极为相近的保留时间。 以上就是我们常说的“色谱定性可靠度不高”的由来,在色谱测试中,不同的保留时间对应不同的组份是成立的,但是反过来,不异的保留时间象征着不异的组份却是靠不住的。 所以在测试中,排除是相当有决议信念的,而确认则在相当程度上是“靠天吃饭”,有一

液相色谱串联质谱联用仪检测技术

液相色谱串联质谱联用仪检测技术 实验指导 (2014、2015级) 课程内容(一个实验8学时): (1)AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用。 (2)利用液相色谱串联质谱联用仪快速测定水果中7种农药的残留量。 吉林农业大学农业部参茸质检中心 2017.03

实验一AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用 一.实验目的和意义 通过学习液质联用仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生使用液质联用仪进行仪器分析的能力,并培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 (一)检测仪器 1、仪器名称高效液相色谱串联质谱联用仪(简称LC-MS-MS)。型号:4500 QTRAP(美国Applied Biosystems公司)。 2、仪器组成液相色谱部分:岛津LC-30A,配有在线脱气机、超高压二元泵、自动进样器;串联质谱部分:QTRAP4500,配有ESI离子源、串联四级杆/线性离子阱。 3、主要性能指标离子化方式:ESI电离质量范围:(5 ~ 1700)amu 分辨率:> 6900 质量稳定性:0.1 amu/12h 灵敏度:1pg reserpine, ESI+, MRM扫描(m/z : 609/195),信噪比S/N > 120:1 扫描速度:4000 amu/sec 质量准确度:< 0.01%(全质量数范围) 4、方法原理高效液相色谱二元泵将流动相泵人系统并混合,自动进样器将待测样品注入流动相中,随流动相进入色谱柱,由于样品不同组分在色谱柱中保留时间不同,各组分被分开,依次进入离子源。在离子源中,各组分以ESI或APCI方式电离,被加速后进入质量分析器。4500QTRAP 的质量分析器主要由Q1、Q2、Q3三组四级杆串联组成。Q1可将分子离子按质荷比(m/z)大小分开;Q2是碰撞室,可将母离子进一步破碎为碎片离子;Q3具有四级杆和线性离子阱两种功能,作为四级杆时可将分子离子或碎片离子按质荷比大小分开,作为离子阱还可富集离子从而提高检测灵敏度。各组分的不同离子在质量分析器中被破碎、分离,并按质荷比大小依次抵达监测器,经记录即得到按不同质荷比排列的离子质谱图。4500QTRAP通过串联四级杆/线性离子阱两种不同质谱技术的结合,可以在单次分析中对复杂样本中的单个成分同时进行定性和定量,也可以对多个化合物进行定量分析。整台仪器的控制、数据采集、数据处理、结果输出均由PC计算机Windows操作系统支持下的Analyst软件控制完成。

Agilent 7890B-5977气相色谱质谱仪

7890B-5977A气质联用仪 1. 技术要求 1.1 气相色谱 1.1.1 主机 1.1.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,13路电子流量控制 1.1.1.2 压力调节:0.001psi 1.1.1.3 保留时间重现性:<0.001min,峰面积的重现性:<1% RSD 1.1.1.4 大气压力传感器补偿高度或环境变化,具有4种EPC操作模式:恒温,恒压,程序升压,程序升流 1.1.2 炉箱 1.1. 2.1 操作温度:室温以上4?C至450?C 1.1. 2.2 温度设定:1?C ,程序升温间隔 0.1?C 1.1. 2.3 升温速度:0.1?C -100?C / min (最大) 1.1. 2.4 程序升温:20 阶,21个温度平台 1.1. 2.5 稳定性:< 0.01?C 1.1. 2.6 温度准确度:± 1% 1.1. 2.7 炉箱冷却速度:450?C到50?C, 240秒 1.1. 2.8 最大运行时间:999.99分钟 1.1.3 毛细柱分流/不分流进样口(具有电子压力控制功能) 1.1.3.1 最高使用温度:350?C 1.1.3.2 电子参数设定压力,流速和分流比 1.1.3.3 压力设定范围:0-100psi;压力设定精度:0.001psi 1.1.3.4 流量范围:0-200mL/分钟N2, 0-1250mL/minH2 or He 1.1.4 氢火焰离子化检测器(FID) 1.1.4.1 温度范围:1?C步进可达400?C 1.1.4.2 自动灭火检测,自动点火,自动调节点火气流 1.1.4.3 最低检测限:<1.5 pg C / sec 1.1.4.4 线性范围:>107 1.1.4.5 数据采集频率:400HZ 1.1.5 微板流路Deans Switch组件

液相色谱与质谱联用技术的各种模式探索

液相色谱-质谱联用技术(LC-MS)的各种模式探索摘要:为了了解LC-MS的主要构造和基本原理,学习LC-MS的基本操作方法,以及掌握LC-MS的六种操作模式的特点及应用。通过邻苯二甲酸酯的液相色谱-质谱联用技术的各种模式探索的方法,以及实验条件的控制。根据质谱图可以知道很多物质的信息。液相色谱-质谱联用技术具有分辨率高、质量范围广、扫描快和灵敏度高的优点。 关键词:LC-MS 模式探索质谱图 Abstract To learn the basic principles and the main structure of LC-MS and study the basic operation of LC-MS methods,master features and application to six LC-MS mode of operation. By liquid chromatography - mass spectrometry techniques to explore various modes of approach, as well as controlling the experimental conditions. According spectrum can know a lot of information material. Liquid chromatography - mass spectrometry technology has high resolution, wide mass range, high sensitivity and fast scanning advantages. Keywords:LC-MS Mode Exploration Spectrum 近年来,随着工业生产和塑料制品的广泛使用,邻苯二甲酸酯不断进入环境,普遍存在于土壤、底泥、大气、水体和生物体等环境样品中,成为环境中无所不在的污染物。而邻苯二甲酸酯类具有较弱的环境雌激素成分,具有影响生物体内分泌和导致癌细胞增殖的作用。环境内分泌干扰物是指能改变机体内分泌功能,并对机体、后代

质谱仪操作规程

简介:Agilent5975质谱仪主要为有机化学重点学科及其研究生教学、科研之用,主要涉及有机合成和药物合成中间体及产品的检测、以及分析测试方法的建立研究等。仪器由化学系实验中心安排专人维护,操作人员须由经过专门培训的或有操作经验的教师和实验员担任。学生在做研究性课题需使用本仪器时,须在有关老师指导下进行。 开机: 1、打开Agilent5975质谱仪主机和SIS Probedirect控制器电源,再打开电脑桌面上的Instrumnet#1、Probedirect软件及数据分析软件Intrumnet#1 Dat a Analysis,进行通讯连接。 2、连接成功后,在化学工作站上调入相应方法文件。在界面上有3个监视框,分别显示离子源温度、四极杆温度和涡轮分子泵的转速比例。在开机6~8分钟后,若涡轮分子泵转速达不到正常速度的80%,工作站会停止加热离子源、四极杆。出现这种情况应检查真空系统是否出现漏气情况。 3、开机至少2小时后,做调谐报告。具体为: 在主界面上点击…View?菜单栏下面的…Tune and Vacuum Control…?,再选新界面…Tune?菜单下的…Standard Sp ectra tune(Stune.U)?,调谐报告出来,查看报告里的一些重要参数是否正常。 4、保存调谐报告。选…File?菜单下的…Save Tune Parameters…?保存调谐参数。 5、选…View?菜单下的…Instrument Control?返回化学工作站界面。 测试: 1、打开Adwardz pump电源开关;打开N2冷却气阀门(减压表读数在0.3Mp a左右); 2、在样品瓶中放入 10—20ng 的样品, 将样品瓶插入探针内; 3、将探针放到进样架中, 推到 STOP 1 位置; 4、逆时针打开探针泵的出口阀. 停留 10—15 秒. 将探针推到 STOP 2 位置; 5、慢慢地打开隔离阀, 将探针推到 STOP 3 位置; 6、顺时针关掉探针泵的出口阀; 7、再将探针推入 MSD 的离子源.不要太用劲以免损坏离子源; 8、按探针控制器面板的 START 键运行样品分析; 9、分析完成后, 将探针拉到 STOP 3 位冷却,等到温度下降到 100℃以下时.再将探针拉到 STOP 2 位置, 关上隔离阀. 然后将探针拉到 STOP 1 位置; 10、确认隔离阀已经关闭后,才可将探针完全拔出; 11、用丙酮等挥发性溶剂清洗装样工具,然后准备下一个样品。 关机: 样品测试完毕,选…View?菜单下的…Tune and Vacuum Control…?,在Vacuum 菜单下选Vent放空,跳出一个界面框,显示当前仪器状况是否满足关机要求。当满足关机条件后,界面会转向关机提示框。关闭质谱仪电源、相关软件,关闭SIS Probedirect控制器、Adwardz pump电源,关闭N2阀门。

液相色谱-质谱联用(lcms)的原理及应用

【转帖】液相色谱-质谱联用(lc/ms)的原理及应用 液相色谱-质谱联用(lc/ms)的原理及应用 液相色谱—质谱联用的原理及应用 简介 色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。而且也简化了样品的前处理过程,使样品分析更简便。 色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。 液质联用与气质联用的区别: 气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。 现代有机和生物质谱进展 在20世纪80及90年代,质谱法经历了两次飞跃。在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da 的非挥发性化合物,但重复性差。20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。 随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质谱法(MALDI-MS)应运而生。 目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。前者常采用四极杆或离子阱质量分析器,统称API-MS。后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。 质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。

飞行时间质谱仪

河南师范大学 光 谱 分 析 论 文 专业:新联物理 年级:2011级 学号:11020274003 姓名:王冉

飞行时间质谱仪 质谱仪(Mass spectrometry)是对电离的原子、分子以及分子的碎片进行测量。质谱仪有磁式、四电极的与飞行时间的等多种类型。按照带电粒子在磁场或电场中的飘移,或他们移动能量来确定它们的荷质比。 在激光质谱检测中最常用的是四级质谱仪与飞行时间质谱仪Time of Flight Mass Spectrometer (TOF),尤其是飞行时间质谱仪。飞行时间质谱仪是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。 飞行时间质谱仪发展史:1948年A1E1Cameron和D1F1Eggers研制出世界上第一台飞行时间质谱仪实验样机,其直线飞行管长达10m,分辨率却不到5。初期由于质量分辨本领很低,很长时间未得到推广应用,但研究工作一直持续不断。值得注意的进展是1955年W1C1Wiley和I1H1Mclaren从理论上探讨限制TOFMS分辨率的两个主要因素,即初始空间分散和初始能量分散,并通过新型离子枪,双场加速和延迟引出的方法,将直线式飞行时间质谱仪的分辨率提高到300。但此后的20年,TOFMS的发展一直处于低谷,其分辨率在几百之内。直到1973年B1A1Marmylin引入静电反射器制成反射式飞行时间质谱仪,用离子

国产小型质谱仪研制获得突破性进展

A1 分析仪器 2011年第2期国产小型质谱仪研制获得突破性进展 质谱仪是分析仪器行业的高端产品,其产业状况在一定程度上反映了一个国家的创新能力和分析仪器发展水平。我国的质谱仪市场目前100%被国外公司垄断。“十五”期间,科技部提出“突破关键技术,主攻小型质谱仪自主研制”的质谱仪发展路线。 日前,由中国计量科学研究院与清华大学2002年开始的,历时8年联合完成的“小型质谱仪关键技术创新及整机研制”项目获2010年度国家科学技术进步二等奖。该项目攻克了质谱联用仪相关核心技术和关键部件,成功研制出实验室质谱、车载质谱、生物质谱和小型便携质谱等6种质谱仪及其研发技术平台,并实现了四极杆质谱仪的产业化,开启了中国质谱事业的新局面。其中3项核心技术成果为国际首创,3项成果达到国际先进水平,填补国内空白。 针对质谱领域发展的大趋势,项目组在关键的两个核心领域,即质量分析器和离子源方面提出了3项重要的发明,占据了国际质谱研究的一席之地。在多电极离子阱和离子光学方面,他们在国际上首次提出了“用电场分布平衡机械误差带来的高阶场”的新思路;在叠型场离子阱质量分析器方面,他们又首次提出“用机械形状近似来提供更多完美电场”的新思路。这两种新的发明为离子阱、线性离子阱的发展开辟了新的更加广阔的道路。项目组还首次提出介质阻挡放电离子源的实现方法,介质阻挡放电离子源和自主研制的便携式质谱仪首次成功结合,将在国民经济的发展中发挥重要的作用。 项目组还取得了一系列专利技术。例如:阱内光电离技术使得复杂挥发性有机气体的定性和定量分 析变得简单;离子阱阵列可以对一个或者多个样品同时进行分析,大大提高了质谱分析的效率,同时,信号累加的方式可以在痕量分析时获得更高的灵敏度;便携式质谱仪研制的成功使我国成为国际上为数不多的具备质谱小型化能力的国家。最新研制的便携式质谱仪使现场快速检测、在线和原位检测成为可能,为应对突发性事件、公共安全事件等提供了必要的装备。 现在,项目组已成功研制出车载质谱、生物质谱、小型便携式质谱。它们将在我国生命科学、生物安全、航天科技等领域发挥支撑作用。 项目组把产业化作为成果应用推广的首要任务,3种型号质谱联用仪工艺样机,已进入产品工艺化阶段。他们已与普析通用公司通过签署技术开发服务的模式,成功实现了四极杆质谱仪的产业化。到2010年底,该产品已销售数十台,实现上千万的销售额。 2011年1月17日,由中科院武汉物理与数学研究所成功研制的300MHz-500MHz核磁共振波谱仪产业化工程正式启动。科技部科研条件与财务司副司长吴学梯、湖北省科技厅副厅长郑春白等参加启动仪式。 核磁共振波谱仪广泛应用于科研、教育、生产、卫生等领域,在生命科学、材料科学、中药现代化等方面作用重要。国内对核磁共振波谱仪的需求量逐年上升,但我国的核磁共振波谱仪至今仍完全依赖进口。 信息简讯 国产300MHz-500MHz核磁共振波谱仪产业化工程启动 图为质谱研制团队

相关文档
最新文档