激光增材制造技术及现状研究

激光增材制造技术及现状研究
激光增材制造技术及现状研究

PETROLEUMTUBULARGOODS&INSTRUMENTS

初投稿收稿日期:2019-03-06?修改稿收稿日期:2019-08-30

第一作者简介:胡美娟?女?1981年生?高级工程师?2009年毕业于西北工业大学焊接专业?获博士学位?现从事石油管焊接的研究工作?

E ̄mail:humeijuan@cnpc.com.cn

综一述

激光增材制造技术及现状研究

胡美娟?吉玲康?马秋荣?池一强

(中国石油集团石油管工程技术研究院?石油管材及装备材料服役行为与结构安全国家重点实验室一陕西一西安一710077)

摘一一要:基于增材制造技术的发展和分类?对目前金属增材制造最可靠和可行的方法 激光增材制造技术的原理二激光选区熔化成形技术和直接沉积技术的发展现状进行了介绍?分析了其未来的发展趋势?为激光增材制造在国内各个领域的应用提供技术支持?关键词:激光?增材制造?3D打印?金属材料

中图法分类号:V235.1一一一一文献标识码:A一一一一文章编号:2096-0077(2019)05-0001-06DOI:10.19459/j.cnki.61-1500/te.2019.05.001

OverviewofLaserAdditiveManufacturingTechnologyandStatus

HUMeijuan?JILingkang?MAQiurong?CHIQiang

(CNPCTubularGoodsResearchInstitute?StateKeyLaboratoryforPerformanceandStructureSafetyof

PetroleumTubularGoodsandEquipmentMaterials?Xi?an?Shaanxi710077?China)

Abstract:Basedonthedevelopmentandclassificationofadditivemanufacturingtechnology?theprincipleoflaseradditivemanufacturingtechnologywasintroduced?whichisthemostreliableandfeasiblemethodsformetaladditivemanufacturing.Thestatusofselectivelasermelting(SLM)anddirectlaserdeposition(DLD)wasintroducedandthedevelopmenttrendwasanalyzed.ThispaperprovidestechnicalsupportfortheapplicationoflaseradditivemanufacturinginvariousfieldsinChina.Keywords:laser?additivemanufacturing?3Dprint?metalmaterial

0一引一言

在上个世纪?增材制造(AdditiveManufacturing?

AM)的概念得到了显著的发展?依据美国试验材料学会(AmericanSocietyforTestingandMaterials?ASTM)的定义:增材制造技术不同于传统的减法加工过程?是基于材料的增量制造?利用3D数据模型?将材料一层一层连接起来制造物体的过程[1]?由于增材制造技术具有设计和制造一体化二加工精度高二制造周期短?产品物理化学性能优异等特点?美国?时代周刊?将增材制造列为 美国十大增长最快的工业 ?英国?经济学人?杂志则认为它将 与其他数字化生产模式一起推动实现第三次工业革命 [2]?

金属材料增材制造技术作为整个增材制造体系中最具前沿和难度的技术?是先进制造技术的重要发展方向?对于金属材料增材制造技术?按照热源类型的不同

主要可分为激光增材制造二电子束增材制造二电弧增材制造等?其中激光增材制造(LaserAdditiveManufacturing?LAM)技术是一种兼顾精确成形和高性能成形需求的一体化制造技术?也是目前金属增材制造最可靠和可行的

方法?国内外增材制造的研究也主要集中在激光增材制造技术?本文在总结增材制造的发展历史基础上?重点介绍了激光增材制造的原理二激光选区熔化成形技术和直接沉积技术的发展现状?为激光增材制造在国内各个领域的应用提供支持?

1一增材制造的发展历史

1983年?美国科学家查尔斯 胡尔(CharlesHull)发

明光固化成形技术(stereolithograhyAppearance?SLA)并制造出全球首个增材制造部件?1986年?查尔斯 胡尔获得了全球第一项增材制造专利?同年成立3DSystems公司[3]?1987年?3DSystems发布第一台商业化增材制

1 2019年一第5卷一第5期

增材制造(3D打印)国内外发展状况报告

增材制造(3D打印)技术国内外发展状况 --西安交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

金属材料激光增材制造技术

金属材料激光增材制造技术 孙峰、李广生 金属材料增材制造技术是通过对CAD模型进行离散处理,以金属粉末、颗粒、金属丝材等为原材料,采用高功率激光束熔化/快速凝固逐层堆积生长,直接从零件数模完成高性能零件的近终成形制造。 金属材料增材制造技术,可分为以送粉为技术特征的激光沉积制造(Laser Deposition Melting,LDM)技术和以粉床铺粉为技术特征的选区激光熔化(Selective Laser Melting,SLM)技术。 LDM技术是快速成形技术和激光熔覆技术的有机结合,是以金属粉末为原材料,以高能束的激光作为热源,根据成形零件CAD模型分层切片信息规划的扫描路径,将送给的金属粉末进行逐层熔化、快速凝固、逐层沉积,从而实现整个金属零件的直接制造。 LDM系统主要包括:激光器及光路系统、水冷机及冷却系统、数控机床系统、送粉器及送粉系统、惰性气体保护系统、激光熔化沉积腔及工艺监控系统等。 图1LDM激光沉积制造技术 LDM技术集成了快速成形技术和激光熔覆技术的特点,具有以下优点: (1)无需大型设备与模具,零件近净成形,材料利用率高;工艺流程、制造周期短,制造成本低; (2)零件无宏观偏析,组织细小、致密,力学性能达到锻件水平; (3)成形尺寸不受限制,可实现大尺寸零件的制造; (4)激光束能量密度高,可实现难熔、难加工材料的近净成形; (5)可对失效和受损零件实现快速修复,并可实现定向组织的修复与制造。 主要缺点: (1)制造成本较高;

(2)制造效率较低; (3)制造精度较差,悬臂结构需要添加相应的支撑结构。 SLM技术是以快速原型制造技术为基本原理发展起来的先进激光增材制造技术。通过专用软件对零件三维数模进行切片分层,获得各截面的轮廓数据后,利用高能激光束根据轮廓数据逐层选择性地熔化金属粉末,通过逐层铺粉,逐层熔化凝固堆积的方式,实现三维实体金属零件制造。 SLM系统主要由激光器及光路系统、气体净化系统、铺粉系统、控制系统4部分组成。 图2SLM激光选区熔化制造技术 SLM技术具有以下优点: (1)原材料范围广,包括不锈钢、高温合金、钛合金、钴-铬合金及难熔金属等; (2)成形零件精度高,表面稍经打磨、喷砂等简单后处理即可达到使用精度要求; (3)复杂零件制造工艺简单,周期短,材料利用率高; (4)成形零件的力学性能良好,一般力学性能优于铸件,与锻件相当; (5)适合多孔零件的制造,实现零件的轻量化的需求。 主要缺点: (1)层厚和光斑直径很小,导致成形效率很低;

激光增材制造技术及研究现状

在上个世纪,增材制造( Ad di ti ve M a nu fa ct ur in g,A M) 的 概念得到了显著的发展。依据美国试验材料学会(A me ric a n S o ci et y f or Te sti n g a nd Ma te ri als,A ST M) 的定义: 增材制造技术不同于传统的减法加工过程,是基于材料的增量制造,利用3D数据模型,将材料一层一层连接起来制造物体的过程。由于增材制造技术具有设计和制造一体化、加工精度高、制造周期短,产品物理化学性能优异等特点,美国《时代周刊》将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”。 金属材料增材制造技术作为整个增材制造体系中最具前沿和难 度的技术,是先进制造技术的重要发展方向。对于金属材料增材制造技术,按照热源类型的不同主要可分为激光增材制造、电子束增材制造、电弧增材制造等。其中激光增材制造(L ase r A d di ti ve M an uf act u ri ng,LA M) 技术是一种兼顾精确成形和高性能成形需求的一体化制造技术,也是目前金属增材制造最可靠和可行的方法。国内外增材制造的研究也主要集中在激光增材制造技术,本文在总结增材制造的发展历史基础上,重点介绍了激光增材制造的原理、激光选区熔化成形技术和直接沉积技术的发展现状,为激光增材制造在国内各个领域的应用提供支持。一、增材制造的发展历史 1983 年,美国科学家查尔斯·胡尔(Ch ar le s Hu ll) 发明光固化成形技术( st ere o l it ho gr ah y App e ar an ce,SL A) 并制造出全球首个增材制造部件。1986 年,查尔斯·胡尔获得了全球第一项增材制造专利,同年成立3D S ys t em s公司。1987 年,3D S y st em s 发布第一台商业化增材制造设备-快速成型机立体光刻机SL A-1,全球进入增材制造时代。1986年,美国的M i ch ae l F e yg in,首次提出了分层实体制造( L a mi na te d Ob je ct M a nu fa ct ur in g,LO M) 技术。1988年,美国S tr at asy s 公司首次提出熔融沉积成型技术( F us ed D epo s it io n M od el in g,F DM) 。1989 年,美国德克萨斯大学奥斯汀分校的De ck ar d 提出激光 选区烧结( Se le ct i ve L as er S in te r i ng,SL S) 。1995年, 德国Fr au-ho fe r 应用研究促进协会IL T 激光技术研究所的 D r.W il-he lm M ein e rs 等在金属粉末选择性烧结基础上提出激光选区熔化成形技术( S el ec ti ve L as e r M el ti ng,S LM) 。1998 年,美国Sa nd ia 国立实验室将选择性激光烧结工艺SL S 和激光溶覆工艺( La ser Cl ad di ng) 相结合提出激光工程化净成型(L a s e r E n g i n e e r e d N e t S h a p i n g,L E N S)。1990年至现在,增材制造技术实现了金属材料的成型,进入了直接增材制造阶段,相距出现了电子束选区熔化(E BSM)、电子束自由成形制造技术( El ec tr on B eam Fr ee- fo rm Fa br i ca ti on,EB F)、等离子增材制造技术(I on Fu s io n Fo r ma ti on,I F F) 电弧增材制造( Wi r e A r c A dd it iv e Ma nuf a ct ur e,WA AM)等一系列制造工艺。2013年,美国麻省理工大学研发了四维打印技术( Fo ur D i- m ens i on al

增材制造与激光制造重点专项

附件9 “增材制造与激光制造”重点专项 2017年度项目申报指南建议 为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》和《中国制造2025》等提出的任务,国家重点研发计划启动实施“增材制造与激光制造”重点专项。根据本专项实施方案的部署,现提出2017年度项目申报指南建议。 本重点专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。 本重点专项按照“围绕产业链,部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范部署任务。专项实施周期为5年(2016-2020)。 1.增材制造 1.1面向增材制造的产品创新设计技术(基础前沿类)

研究内容:研究面向金属增材制造的工艺约束建模方法,结合结构功能与承载性能约束,发展复杂整体结构的高性能轻量化拓扑优化方法,实现结构构型、功能组件布局、多材料梯度布局的整体匹配优化设计;制定面向增材制造的整体结构、多材料梯度结构优化设计的标准规范、软件,形成可供工程化应用的增材制造结构优化设计技术体系。 考核指标:建立增材制造工艺约束模型和实现方法、典型零部件结构优化设计方法及其性能评估模型,可处理100万以上变量及2种以上不同类型设计变量的混合优化;整体结构优化设计实现结构件数量减少50%以上、功能和效能提升15%以上;形成相关设计软件平台、设计标准和规范;实现在航空、航天、能源、动力等领域的应用验证。 1.2高效宽幅微滴喷射阵列打印头的研发(重大共性关键技术类) 研究内容:微滴喷射阵列打印头的流体输送特性、微小液滴形成与喷射过程、打印头寿命影响因素,液滴喷射品质的评价方法;微滴喷射阵列打印头流道结构设计、芯片封装过滤系统设计、MEMS制造工艺和CMOS工艺设计优化及集成方法;智能芯片设计及开发,芯片模块集成方法和校准方式;打印头微滴喷射控制技术。 考核指标:模块化设计,微滴喷射阵列打印头喷嘴密度大于1200个/英寸;单位打印头模块≥100mm , 集成打印宽

增材制造试题答案

1.增材制造技术的优点 (1)自由成型制造; (2)制造过程快速; (3)添加式和数字化驱动成型方式; (4)突出的经济效益; (5)广泛的应用领域。 2.增材制造技术国内外发展现状 国外发展现状 1 欧美发达国家纷纷制定了发展和推动增材制造技术的国家战略和规划,增材制造 技术已受到政府、研究机构、企业和媒体的广泛关注。 2 德国建立了直接制造研究中心,法国增材制造的专项协会致力于增材制造技术标 准的研究。西班牙启动了一项发展增材制造技术的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容。 澳大利亚、日本等国已经开始将其运用到航空领域,制造精密零件。 对于公司而言:以快速成型技术为主的增材制造设备已发展20多年,大量的增材制造装备的知名企业快速发展,其中以3D Systems 公司为代表,发展的SLA、SLS及3DP装备都备受关注。 美国Stratasys公司率先推出FDM装备,推广Dssignjet 3D 和Dssignjet Color 3D 两款产品。 除了以上具有代表性的外,还有LENS装备生产商、SLM装备生产商英国MIT公司等等。 国内: 我国增材制造技术研究已经经历20多年,以华科、西安交大、清华等大学为代表的科研院所开展了多项技术研究,其中涉及航空、汽车、生物、电子等各个行业。 西安交大:从1993年开始发展SLA技术研究,到现在已经有了成套的技术设备 华科:开展LOM技术,以及SLS\SLM技术,并且已经开发出相应的成套设备,且已经投入到市场使用。 清华大学跟西北工大已经研究多系列低成本FDM装备,并投入使用。并已经广泛使用到了航空领域,制造精密的成型技术。经过多年研究,我国增材制造技术得到飞快发展,精度等到极大提高。 3.增材制造技术的发展趋势。 (1)从快速原型与翻模制造向零部件直接制造转变 (2)学科交叉融合,应用领域不断扩大 (3)装备向零部件直接制造和专业化方向发展 (4)增材制造装备从高端型走向普及型 (5)成型材料开发及其系列化、标准化 4.增材制造技术面临的挑战 (1)进度控制技术; (2)高效制造技术; (3)复合材料零件增材制造技术。 5.增材制造技术面临的伦理安全问题。 (1)增材制造技术制造枪支。通过互联网下载枪支设计数据,借助增材成型工艺制造出来; (2)增材成型技术克隆人体器官。

激光增材制造中的过程监控

2015-03-19 00:21:03 在过去的近两年时间里,增材制造(AM)金属零件的技术在工业领域引发了巨大的风暴。根据业内专家Terry Wohlers(Wohlers Associates公司)的介绍,增材制造行业在2013年整体增长了34.9%,其中金属增材制造子行业增长超过75%。Wohlers评论说:“过去十年,金属增材制造行业的发展超过了塑料25年内走过的路。包括汽车、医疗以及航空航天在内的需求推动着金属增材制造工艺的突飞猛进。GE航空发动机(GE Aviation)公司打算用增材制造技术来生产他们的LEAP引擎的燃油喷嘴,同时欧洲航空防务及航天公司(EADS)也对用于空客飞机的增材制造结构零件做出了评估,综上表明,粉末床金属增材制造技术已经开始被行业接受。 尽管如此,问题仍然存在,例如工艺的可靠性和成品零件的材料性能的重复性。Florian Bechmann博士(德国OEM设备制造商Concept Laser公司的研发总监)在最近一次接受采访时指出:“在金属增材制造设备领域,越来越多的客户对过程监控和连续生产的能力提出期许,例如工业级的复现性。”激光选区熔化(SLM)增材制造工艺的在线实时监控承诺可以满足上述需求,但是这一监控技术目前还处于发展的初期阶段。在这篇文章里,我们将回顾增材制造研究与设备开发中这一热门技术的现状。 技术基础 激光增材制造(LAM)设备有两种类型:粉末床和送粉式。近期业内较多的关注集中在后者身上,本文讨论的也主要是后者。 图1显示了通用的粉末床系统的原理示意图,在该系统的整个工作区中使用刮板来进行平整粉末的步骤,以在构建平台上建立粉末床,整个过程是在可以控制内部环境的成形保护室内进行。激光能量传递到粉末床的表面,引起粉末的局部熔化和融合,使得该区域的金属粉末固化。

金属零件激光增材制造技术及其应用

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铣削等机械工艺方式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明显优于传统减材技术。 激光增材制造技术是一种基于离散/ 堆积成形思想的新型制造技术,是集成计算机、数控、激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿一定方向离散成一系列有序的二维层片;根据每层轮廓信息,进行工艺规划,选择加工参数,自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工,大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动,设计制造高度一体化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。 尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化金属粉末,直接制造出任意复杂形状的零件。其主要方法有: 1、激光直接沉积增材制造技 该技术可追溯到20 世纪70 年代末期的激光多层熔覆研究,但直到20世纪90年代,国内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件的几何形状和力学性能等基础性问题开展大量的研究工作。

复合增材制造技术研究进展

复合增材制造技术研究进展 杨智帆1袁张永康1袁2 渊1.广东工业大学机电工程学院袁广东广州510006曰2.广东镭奔激光科技有限公司袁广东佛山528225冤 摘要院在阐述了复合增材制造技术的含义及关键技术特征的基础上袁对基于机加工的复合增材制造尧基于激光辅助的复合增材制造尧基于喷丸的复合增材制造尧基于轧制的复合增材制造四种复合增材制造技术的特点与优势进行了总结袁并介绍了一种全新的激光锻造复合增材制造技术袁其可与多种增材制造复合并能有效细化晶粒尧消除缺陷和重构应力分布袁最后指出了复合增材制造技术在耦合机理尧参数优化及装备研制方面的发展趋势遥 关键词院复合增材制造曰耦合工艺曰激光锻造中图分类号院TG669文献标志码院A 文章编号院1009原279X渊2019冤02原0001-07 Research and Development of Hybrid Additive Manufacturing Technology YANG Zhifan 1袁ZHANG Yongkang 1袁2 渊1.School of Electro-mechanical Engineering袁Guangdong University of Technology袁 Guangzhou 510006袁China曰 2.Guangdong Leiben Laser Technology Co.,Ltd.袁Foshan 528225袁China 冤 Abstract 院Based on expounding the technical meaning and key features of hybrid additive manufacturing (hybrid -AM)袁the features and advantages of hybrid -AM by machining袁by laser processing袁by shot-peering and by rolling are summarized and analyzed.Then袁a new technology named hybrid -AM by laser forging is introduced袁which can be coupled with other AM processes and effectively refine grains袁eliminate defects and reconstruct stress distribution.Finally袁the development trend of hybrid-AM technology in coupling mechanism袁optimization of multi-processes parameters and equipment manufacturing is discussed. Key words 院hybrid additive manufacturing曰coupled processes曰laser forging 收稿日期院2018-12-10 基金项目院国家重点研发计划渊2017YFB1103600冤曰国家自然科学 基金资助项目渊51775117冤 第一作者简介院杨智帆袁男袁1993年生袁硕士研究生遥 与传统去除成形方法相比袁增材制造是一种基于材料增量制造理念的技术[1]袁是一种利用CAD 模型以材料连接方式完成物体制作的过程[2]袁与减材制造相比袁增材制造通常是逐层累加进行的遥增材制造具备柔性尧快速和绿色制造等技术优势袁在航空航天尧国防工业和生物医疗方面具有重要应用前景[3-4]遥 然而袁增材制造技术存在零件成形精度低尧力学性能不足等问题[5]遥针对上述技术瓶颈袁现已出现 了若干种既保持增材制造技术优点又能吸收传统技术优势的复合增材制造新技术袁为解决瓶颈难题 提供了新路径遥 本文重点介绍复合增材制造技术的研究进展袁并根据辅助工艺的不同将复合增材制造技术分成五种不同类别袁分别进行了总结与分析袁并对复合增材制造技术的发展方向进行了展望遥 1复合增材制造技术含义 野复合冶一词广泛应用于制造领域袁国际生产工程科学院渊CIRP冤将野复合制造冶定义为野一种基于若干种工艺/工具/能量源同步工作尧相互作用可控且对工艺/零件性能有显著影响的技术冶[6]遥一般地袁复合增材制造以增材制造为主体工艺袁在零件制造过程中采用一种或多种辅助工艺与增材制造工艺耦合协同工作袁使工艺尧零件性能得以改进遥复合增材制造虽涉及多种工艺尧能量源袁但并不能严格达到 综述专稿 叶电加工与模具曳2019年第2期 1要要

“增材制造与激光制造”重点专项2018年度项目申报指南

国科发资〔2017〕294号附件7 ??????????????? 2018???????? 为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》和《中国制造2025》等提出的任务,国家重点研发计划启动实施了“增材制造与激光制造”重点专项。根据本专项实施方案的部署,现发布2018年度项目申报指南。 本重点专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;并实现产业化应用示范;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。 本重点专项按照“围绕产业链、部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范部署任务。专项实施周期为5年(2016-2020年)。 2016年本重点专项在2个技术方向已启动12个研究任务的 — 1 —

25个项目,2017年本重点专项在2个技术方向已启动20个研究任务的23个项目。2018年,在2个技术方向启动30个研究任务,拟支持30-60个项目,拟安排国拨经费总概算为7亿元左右。为充分调动社会资源投入,凡企业牵头的项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于1:1。 项目申报统一按指南二级标题(如1.1)的研究方向进行。除特殊说明外,拟支持项目数均为1-2项。项目实施周期不超过3年。申报的项目必须涵盖该二级标题下指南所列的全部研究内容和考核指标。项目下设课题数原则上不超过5个,每个课题参研单位原则上不超过5个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1-2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.增材制造 1.1基于增材制造的智能仿生结构设计技术(基础前沿类) 研究内容:探索形状记忆材料增材制造新原理和新工艺,形成与制造工艺匹配的改性技术和可实现热/光/电/磁等激励响应的专用材料;研究形状记忆材料增材制造结构的智能变形行为,揭—2 —

增材制造(3D打印)国内外发展状况

增材制造(3D打印)技术国外发展状况 --交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工期。而且越是复杂结构的产品,其制造的速度作用越显著。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显著的作用。 美国《时代》刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的式,并改变世界的经济格局,进而改变人类的生活式。

3D打印技术应用趋势及发展前景

3D打印技术应用趋势及发展前景 1 3D打印的概述 3D打印是能够有效地将数字化二维模型实体化的一种快速成型技术,它在设计和制造物体方面表现十分高效,又称增材制造。3D打印的工作原理就是将一个三维的几何拆分为若干个二维的平面,依据拆分对象的三維数据对打印对象进行逐层加工,利用成形设备层层材料堆积而形成所需要的立体模型,制造出实体三维模型。通俗一点来说,就像是现今社会上普遍存在的普通打印机,可以打印出纸面(即二维空间)上的任意图画,3D打印就是将三维几何切分成一个个二维平面进行打印,然后将平面进行顺序叠加,最终制造出一个实体立体几何模型。3D打印采用的是增材制造的方式,和采用减材制造的传统工艺有所不同,它在实现原材料的高效利用上具有重要意义,节约能源,是一种更加符合现代化建设的制造方式。目前为止,发展的3D打印技术类型有熔融沉积式(FDM)、分层叠加式(GLOM)、光敏树脂固液化成式(SLA)、选择性粉末激光烧结式(SLS)、激光选区融化式(SLM)等。 自3D打印技术产生以来,就是作为人类社会文明的一次重大突破而存在的。仅仅几十年的时间,3D打印技术就已经广泛应用于各个不同的领域,产生显著影响。同时,随着社会的进步,3D打印技术快速且广泛的被大众所关注、讨论和接受,3D打印机的价格也不断下降,更为其普及程度作出贡献,使更多普通用户能够体验到制造三维立体模型的所带来的新奇感与愉悦感。现如今3D打印技术的普遍应用,不仅仅是因为它更为多样化的材料选择和加工方式更加符合现代化道路的发展,也是因为它是人类文明历史上前所未有的一种生产生活方式和理念。准确来讲,3D打印并非是一种全新的技术,与其称它为新,不如称它是综合性生产方式,毕竟它综合了现代计算机、激光、材料等多种先进技术。可以说3D打印是一种应运而生的综合

增材制造与激光制造-国家科技管理信息系统公共服务平台

附件9 增材制造与激光制造”重点专项 2017年度项目申报指南建议 为落实《国家中长期科学和技术发展规划纲要(2006- 2020年)》和《中国制造2025》等提出的任务,国家重点研发计划启动实施“增材制造与激光制造”重点专项。根据本专项实施方案的部署,现提出2017年度项目申报指南建议。 本重点专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。 本重点专项按照“围绕产业链,部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范部署任务。专项实施周期为5年(2016 - 2020)。 1.增材制造 1.1面向增材制造的产品创新设计技术(基础前沿类)

研究内容:研究面向金属增材制造的工艺约束建模方法,结合结构功能与承载性能约束,发展复杂整体结构的高性能轻量化拓扑优化方法,实现结构构型、功能组件布局、多材料梯度布局的整体匹配优化设计;制定面向增材制造的整体结构、多材料梯度结构优化设计的标准规范、软件,形成可供工程化应用的增材制造结构优化设计技术体系。 考核指标:建立增材制造工艺约束模型和实现方法、典型零部件结构优化设计方法及其性能评估模型,可处理100万以上变量及2种以上不同类型设计变量的混合优化;整体结构优化设计实现结构件数量减少50%以上、功能和效能提 升15%以上;形成相关设计软件平台、设计标准和规范;实现在航空、航天、能源、动力等领域的应用验证。 1.2高效宽幅微滴喷射阵列打印头的研发(重大共性关键技术类) 研究内容:微滴喷射阵列打印头的流体输送特性、微小液滴形成与喷射过程、打印头寿命影响因素,液滴喷射品质的评价方法;微滴喷射阵列打印头流道结构设计、芯片封装过滤系统设计、MEMS制造工艺和CMOS工艺设计优化及集成方法;智能芯片设计及开发,芯片模块集成方法和校准方式;打印头微滴喷射控制技术。 考核指标:模块化设计,微滴喷射阵列打印头喷嘴密度大于1200个/英寸;单位打印头模块》100mm ,集成打印宽幅》900mm,

增材制造技术概述

3.1 增材制造技术概述 增材制造技术诞生于20世纪80年代后期的美国。一开始,增材制造技术的诞生源于模型快速制作的需求,所以经常被称为“快速成型”技术。历经三十年日新月异的技术发展,增材制造已从概念(沟通)模型快速成型发展到了覆盖产品设计、研发和制造的全部环节的一种先进制造技术,已远非当初的快速成型技术可比。 3.1.1概述 1.概念 增材制造(即Additive Manufacturing,简称AM):一种与传统的材料“去除型”加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 增材制造的概念有“广义”和“狭义”之说,如图3-1所示。 “广义”增材制造则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群。而“狭义”的增材制造是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系。 目前,出现了许多令人眼花缭乱的多种称谓:快速成型(Rapid Proto-typing)、直接数字制造(Direct Digital Manufacturing)、增材制造(AdditiveFabrication)、“三维打印(3D—Printing )”、“实体自由制造(Solid Free-form Fabrication) ”、增层制造(Additive Layer Manufacturing)等。2009年美国ASTM专门成立了F42委员会,将各种RP统称为“增量制造“技术,在国际上取得了广泛认可与采纳。 2.原理与分类 实际上在我们的日常生产、生活中类似“增材”的例子很多,例如:机械加工的堆焊、建筑物(楼房、桥梁、水利大坝等)施工中的混凝土浇筑、元宵制法滚汤圆、生日蛋糕与巧克力造型等。 图3-1 增材制造概念 基本原理:首先将三维CAD模型模拟切成一系列二维的薄片状平面层。然后利用相关设

(完整版)增材制造技术较传统工艺的优势与关键技术

增材制造技术较传统工艺的优势与关键技术 一、增材制造技术的简介 增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。 增材制造原理与不同的材料和工艺结合形成了许多增材制造设备,目前已有的设备种类达到20多种。该技术一出现就取得了快速发展,在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等多个领域都得到了广泛的应用。其特点是单件或小批量的快速制造,这一技术特点决定了快速成形在产品创新中具有显著的作用。 二、增材制造技术的优势 2.1设计上的自由度——在机加工、铸造或模塑生产当中,复杂设计的代价高昂,其每项细节都必须通过使用额外的刀具或其它步骤进行制造。相比而言,在增材制造当中,部件的复杂度极少需要或根本无需额外考虑。增材制造可以构建出其它制造工艺所不能实现或无法想像的形状,可以从纯粹考虑功能性的方面来设计部件,而无需考虑与制造相关的限制。 2.2小批量生产的经济性——增材制造过程无需生产或装配硬模具,且装夹过程用时较短,因此它不存在那些需要通过大批量生产才能抵消的典型的生产成本。增材工艺允许采用非常低的生产批量,包括单件生产,就能达到经济合理的打印生产目的。 2.3高材料效率——增材制造部件,特别是金属部件,仍然需要进行机加工。增材制造工序经常不能达到关键性部件所要求的最终细节、尺寸和表面光洁度的要求。但是所有近净成形工艺当中,增材制造是净成形水平最高的工艺,其后续机加工所必须切削掉的材料数量是很微量的。

激光增材制造工艺过程的有限元模拟

应用与试验2〇16年第3期(第29卷,总第I43期)?机械研究与应用?d〇i:10.16576/j. cnki. 1007-4414.2016.03.049 激光增材制造工艺过程的有限元模拟* 张昭,葛芄 (大连理工大学运载工程与力学学部工业装备结构分析国家重点实验室工程力学系,辽宁大连116〇24) 摘要:激光增材制造工艺过程中热应力的大小及变化规律显著影响加工质量和工件的可靠性,为了明确激光增材制造过程中热应力的变化,采用生死单元技术对激光增材制造过程进行模拟,并采用双椭球热源模型模拟激光热源,从而计算激光增材制造过程中温度场分布、热应变及热应力变化过程。计算结果表明,激光增材制造过程中,增材厚 度、增材层数等制造工艺对整体温度场影响较大,增材厚度越大,增材层数越少,激光增材制造峰值温度越低,材料温 度变化幅度越小。在激光增材制造过程中,出现明显拉应力,有可能是导致激光增材制造过程中材料断裂的重要原因。激光增材制造过程中,变化的热应力具有峰值较高,变化速度较快,持续时间较长的特点。 关键词:激光增材制造;数值模拟;温度场;热应变;热应力 中图分类号:V261.8 文献标志码:A 文章编号:1007-4414(2016)03-0136-04 Finite Element Simulation of the Laser Additive Manufacturing Z H A N G Zhao,G E Peng (State Key Laboratory o f Structural Analysis for Industrial Equipment, Department of Engineering Mechanics,Dalian University of Technology,Dalian Liaoning 116024,China ) Abstract :The variations of the thermal stresses in laser additive manufacturing can significantly affect the reliability and qual-ity of the manufactured workpieces. To determine variation of the thermal stresses, the laser additive manufacturing process is simulated by use of active/inactive element method. The double-ellipsoid heat source model is used for the simulation of the laser input heat. The temperature distribution and the thermal strain and stress can be then calculated. Results indicate that the temperature in additive manufacturing can be obviously affected by the additive thicknesses and the additive layers. The maximum temperature and the temperature variations in AM can be decreased with the increase of the additive thicknesses and the decrease of the additive layers. In laser AM, tensile stress can be easily found. It can be one of the main reasons for the possible fracture in laser AM. In the laser additive manufacturing process, the variational thermal stress has very high peak, and it has advantages of change quickly and last a relatively long period. Key w ords:laser additive manufacturing;numerical simulation;temperature field;thermal strain;thermal stress 〇引言 通过激光增材制造(am)对材料进行逐层连接, 实现高参数化、低消耗、高效率的装备制造,逐渐成为 以数字化工业变革为理念的高端工业领域的主要制 造手段。近20年来,国内外诸多学者对激光增材制 造给予了重点关注,如美国Sandia国家实验室、Los Alamos国家实验室、德国Fraunhofei?国家实验室 等[M]。在研究过程中,激光增材制造过程温度场分 布+8]、热应力变化及影响>W]、微观晶粒生长[11]等 问题成为了研究者关注的热点。Roberts等[4]采用生 死单元法模拟了激光增材制造过程的瞬态温度场分 布及其变化规律。MichaleriS[5]则将生死单元法进行 改进,提出了静止单元与生死单元并行的模拟方法,提高了计算的准确性,降低了计算成本。Klingbeil 等[9]对激光增材制造残余应力进行了计算,研究表 明激光增材制造路径等工艺的选择严重影响着制造 构件的残余应力分布。Kadrn等[11]则采用实验的方 法对激光增材制造相变过程进行了讨论。 王华明院士[1]认为制造过程中材料的内部缺陷 形成机理、热应力变化规律等相关问题是制约目前激 光增材制造技术发展的关键性问题。因此,笔者以 A B A Q U S移动热源方法为基础?,采用生死单元技 术对激光增材制造过程进行数值模拟,对激光增材制 造过程温度场变化规律、热应力变化规律进行计算分 析,对比了不同激光增材制造工艺下温度场和应力场 的变化规律。 1理论基础 采用通用有限元软件A B A Q U S进行计算分析, *收稿日期=2016-03-29 基金项目:国家自然科学基金(编号= 11572074);教育部新世纪优秀人才支持计划(编号:NCET-12-0075);国家重点基础研究发展(973)计划(编号:2011CB013401)。 作者简介:张昭(1979-),男,河北衡水人,教授,博士,博士生导师,研究方向:制造工艺力学。 ? 136 ?

增材制造技术发展前景

中国信息化周报/2013年/7月/22日/第005版 趋势 增材制造技术发展前景广阔 中国工程院院士李培根 增材制造技术将成为产业和社会变革的助推器,将为建设创新型社会,提供强有力的技术支撑。 发展增材制造技术,可以成为我们国家制造业基础创新的有效手段。增材制造大大增加了创新设计空间技术。另外符合绿色制造的发展方向,有利于制造业的可持续发展。它可以促进传统制造业技术水平的提升,尤其是我们把增材制造技术和传统工艺结合起来,可有望培育新兴产业,优化产业结构,促进产业升级。 我国正处于工业转型升级的关键时期,这既是重大的机遇,又有严峻的挑战。在此背景下召开增材制造技术工程国际研讨会及展览会,将为我们全面客观地掌握国内外增材制造技术的发展现状和趋势,研讨制定3D打印技术性发展带来的机遇和挑战,以及我国增材制造业技术创新与产业化发展战略对策部具有非常重要的意义。 用科普图书带动增材制造的激情 当前,全球迎来技术创新与产业变革的新高潮,其基本特征是制造业数字化、智能化,新能源、新材料技术取得突破,这必将引发新一轮的科技革命。增材制造技术是典型的数字技术,利用计算机数据,生产三维实体,将对制造业生重要的影响。 2012年,美国学者杰里米里夫金的《第三次工业革命》一书出版后,在中国引起了很大的反响,人们认为第三次工业革命有可能会改变未来的生产与生活模式。尽管这些观点现在还存在着一些争议,但是我们认为增材制造技术不管怎样都会有很大的发展前景。 我们希望科普图书能够以通俗的语言介绍增材制造技术的概念、现状、案例等等。大家可能会感到奇怪,我们的咨询报告为什么要去关注科普图书? 我认为科普图书对增材制造技术未来在中国的普及具有非常重要的意义。仔细对比一下美国和中国在增材制造技术方面的研究和研发情况,我们可以发现国内目前有好多家机构在做相关的研究,并且有一些已经做得非常好。但是,我们发现有一个很大的差别是,美国的民间对增材制造技术的热情要远远大于中国。如何去激发我们民间对增材制造技术及其运用的热情?我想科普图书可以发挥非常重要的作用。 我们希望通过科普图书吸引更多的人尤其是青少年,去关注增材制造技术,激发青少年的创意。这样,未来增材制造技术在中国才会有发展前景,否则,仅仅是依靠大学和一些科研院所进行研究是远远不够的。 增材制造技术的科普图书是面向所有对该技术感兴趣的人,因此当然要用简明生动的形式去做介绍。我觉得这本3D打印科普书最让人感兴趣的就是它的案例,该书大约搜集了一百多个案例,领域涉及到航空航天、汽车、现代制造业、医学、生物工业技术,以及个人消费品等多个方面。 提升增材制造技术的重大需求 从国外的总体技术情况来讲,3D打印已经从快速原型、工艺辅助等间接制造发展到直接制造,装备产业化、系列化向专业化方向发展,从科研到工业,高端型向办公和个人消费等大众化领域拓展,正在形成一个集装备材料、软件服务为一体的产业链。 3D打印需要标准,现在已经开始制订国际标准。其应用是多学科交叉的融合和发展,存在的问题包括:成形的材料种类仍然很有限,不是所有的材料都可以适用这种方法。此外,成形的精

相关文档
最新文档