指数对数函数基本知识点

指数对数函数基本知识点
指数对数函数基本知识点

基本初等函数知识点

知识点一:指数及指数幂的运算

1.根式的概念

的次方根的定义:一般地,如果,那么叫做的次方根,

其中

当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.

负数没有偶次方根,0的任何次方根都是0。

式子叫做根式,叫做根指数,叫做被开方数。

2。n次方根的性质:

(1)当为奇数时,;当为偶数时,

(2)

3。分数指数幂的意义:

注意:0的正分数指数幂等与0,负分数指数幂没有意义.

4.有理数指数幂的运算性质:

(1) (2) (3)

知识点二:指数函数及其性质

1.指数函数概念

一般地,函数叫做指数函数,其中是自变量,函数的定义域为。

2。指数函数函数性质:

函数名称指数函数

定义函数且叫做指数函数图象

定义域

值域

过定点图象过定点,即当时,。

1 / 6

2 / 6

奇偶性 非奇非偶

单调性

上是增函数

上是减函数

函数值的 变化情况

变化对图象的影响

在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小。

知识点三:对数与对数运算

1。对数的定义 (1)若

,则叫做以为底的对数,记作

,其中叫做底数,

叫做真数.

(2)负数和零没有对数。

(3)对数式与指数式的互化:.

2.几个重要的对数恒等式

.

3。常用对数与自然对数 常用对数:

,即;自然对数:

,即

(其中

…)。

4。对数的运算性质 如果

,那么①加法:

②减法:

③数乘:

⑥换底公式:

知识点四:对数函数及其性质

1.对数函数定义 一般地,函数

叫做对数函数,其中是自变量,函

数的定义域

.

函数名称

对数函数

定义 函数

叫做对数函数

图象

定义域

值域

过定点图象过定点,即当时,。

奇偶性非奇非偶

单调性在上是增函数在上是减函数

函数值的

变化情况

变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.

1。幂函数概念形如的函数,叫做幂函数,其中

为常数。

2。幂函数的性质

(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象。幂函数是偶函数时,图象分布在第一、二象限(图象

关于轴对称);是奇函数时,图象分布在第一、三象限(图象

关于原点对称);是非奇非偶函数时,图象只分布在第一象限。

(2)过定点:所有的幂函数在都有定义,并且图象都通过点。

(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数。

如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.

(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数。当(其中

互质,和),若为奇数为奇数时,则是奇函数,若为

奇数为偶数时,则

是偶函数,若为偶数为奇数时,则是非奇非偶函数.

(5)图象特征:幂函数,当时,若,其图象

在直线下方,若,其图象在直线上方,当时,若

3 / 6

,其图象在直线上方,若,其图象在直线下方.

补充:函数

1. 映射定义:设A,B是两个非空集合,如果按照某种对应法则f,对集合A 中任一元素x,在集合B中有唯一元素y与之对应,则称f是从集合A到集合B的映射。这时,称y是x在映射f的作用下的象记作f(x)。x称作y的原象。

2.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域.定义域,对应法则,值域构成了函数的三要素

3。求函数的定义域常涉及到的依据为

①分母不为0;

②偶次根式中被开方数不小于0;

③实际问题要考虑实际意义

④零指数幂的底数不等于零;

⑤对数的真数大于0,底数大于零且不等于1;

⑥注意同一表达式中的两变量的取值范围是否相互影响

4。函数值域:

x

y

2

3

=

x

x

y

-

+

=

5

3

5、函数图像变换知识

①平移变换:

形如:y=f(x+a):把函数y=f(x)的图象沿x轴方向向左或向右平移|a|个单位,就得到y=f(x+a)的图象.

形如:y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到y=f(x)+a的图象

②。对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称

③.翻折变换

y=f(x)→y=f|x|,(左折变换)

把y轴右边的图象保留,然后将y轴右边部分关于y轴对称

y=f(x)→y=|f(x)|(上折变换)

把x轴上方的图象保留,x轴下方的图象关于x轴对称

在第一象限内,底数越大,图像(逆时针方向)越靠近y轴.

6函数的表示方法

4 / 6

5 / 6

①列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法

②图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上。这种由图形表示函数的方法叫做图像法.

③如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法

7.分段函数

在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数。 8函数单调性及证明方法:

①增函数:一般地,设函数f(x)的定义域为D ,如果对于定义域D 内的某个区间上的任意两个自变量的值x1,x2 ,当x1

②减函数:一般地,设函数f (x)的定义域为D,如果对于定义域D 内的某个区间上的任意两个自变量的值x1,x2 ,当x1〈x2时,都有f (x1)> f(x2),那么就说f (x)在这个区间上是减函数。此区间叫做函数f (x)的单调减区间.

③证明方法

第一步:设x1、x2是给定区间内的两个任意的值,且x1〈x2;

第二步:作差f(x2)—f (x1),并对“差式”变形,主要采用的方法是“因式分解"或“配方法”;

第三步:判断差式f (x2)—f(x1)的正负号,从而证得其增减性 9.函数的奇偶性 ⑴奇函数 ①设函数y=f (x )的定义域为D,如果对D 内的任意一个x ,都有-x ∈D ,且f(—x )=-f (x ),则这个函数叫做奇函数。

②奇函数图象关于原点(0,0)中心对称。 ③奇函数的定义域必须关于原点(0,0)中心对称,否则不能成

为奇函数。

④若F(X )为奇函数,且X 在零处有定义,则F (0)=0。 ⑤定义域关于原点对称。 (2)偶函数

①设函数y=f (x )的定义域为D ,如果对D 内的任意一个x ,都有-x ∈D ,且f (—x )= f (x),则这个函数叫做偶函数。

②如果知道图像,偶函数图像关于y 轴(直线x=0)对称。 ③定义域关于原点对称。 (3)奇函数偶函数运算

①两个偶函数相加所得的和为偶函数.

② 两个奇函数相加所得的和为奇函数.

③ 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

④ 两个偶函数相乘所得的积为偶函数。 ⑤ 两个奇函数相乘所得的积为偶函数。

⑥ 一个偶函数与一个奇函数相乘所得的积为奇函数。 ⑦奇函数不一定f(0)=0,也不一定有f(0)=0推出奇函数

⑧定义在R 上的奇函数f (x )必满足f (0)=0; (4)奇偶函数图象.

①奇函数的图象关于原点成中心对称。 ②偶函数的图象关于Y 轴成轴对称。

③奇偶函数的定义域一定关于原点对称!

④奇函数的偶数项系数等于0,偶函数的奇数项系数等于0。 ⑤Y=0即是X 轴,既是奇函数也是偶函数~!

10.一次函数二次函数 (1)一次函数

6 / 6

①函数()0≠+=k b kx y 叫做一次函数,定义域为R,值域为R 。k 叫做直线

的斜率,b 叫做该直线在y 轴上的截距。一次函数又叫线性函数。 ②当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数. ③当 k>0,b>0, 这时此函数的图象经过第一、二、三象限。

当 k 〉0,b<0, 这时此函数的图象经过第一、三、四象限。 当 k 〈0,b>0, 这时此函数的图象经过第一、二、四象限。

当 k 〈0,b 〈0, 这时此函数的图象经过第二、三、四象限。

④解析式类型

一般式:ax+by+c=0 斜截式:y=kx+b (k 为直线斜率,b 为直线纵截距;其中正比例函数b=0)

点斜式:y-y1=k(x —x1) (k 为直线斜率,(x1,y1)为该直线所过的一个点) 两点式:(y-y1) / (y2-y1)=(x —x1)/(x2-x1) (已知直线上(x1,y1)

与(x2,y2)两点)

截距式:x/a + y/b=1 (a 、b 分别为直线在x 、y 轴上的截距)

⑤当k>0时,函数为增函数; 当k<0时,函数为减函数。

(2)二次函数

①函数c bx ax y ++=2

)0(≠a 叫做二次函数,定义域为R

②a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口。|a |越大,则抛物线的开口越小。 ③抛物线是轴对称图形。对称轴为直线x = —b/2a 。 ④定点坐标:(—b/2a,(4ac —b^2)/4a ); ⑤抛物线与x 轴交点个数:

Δ= b^2-4ac >0时,抛物线与x 轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x 轴有1个交点。

Δ= b^2-4ac <0时,抛物线与x 轴没有交点.

11.待定系数法

①定义:一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写成为一般的形式,其中系数为待定,然后再根据题设条件求出这些待定系数,这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法。

②一般过程:首先确定所求问题含待定系数的解析式; 其次根据恒等条件,列出一组含待定系数的方程;. 最后解方程或消去待定系数。

12、函数与方程

①函数的思想:函数的思想,是用运动和变化的观点,分析和研究数学中的数

量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化

问题,从而使问题获得解决。

②方程的思想:方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、

转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; ③零点:对于函数y=f (α),使得f (α)=0的实数α叫做函数f(x)的零

点。。

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1)(2)(3) 知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 2.指数函数函数性质: 函数名称指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数

函数值的变化情况 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小. 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中…). 4.对数的运算性质 如果,那么①加法:②减法:③数乘: ④⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2.对数函数性质: 函数名称对数函数 定义函数且叫做对数函数图象

对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实

数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 x y > O x y

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

对数函数图象及其性质知识点及例题解析

对数函数的图象及性质例题解析 题型一 判断对数函数 【例1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 【例1-1】下列函数中是对数函数的为__________. (1)y =log a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1);(5)y =log 6x . 解析: 题型二 【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a , 43,35,110 中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( ) A 43,35,110 B ,43,110,35 C .43,35,110 D .43110,35 解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1 的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110 .答案:A 点技巧 作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小. 题型三 对数型函数的定义域的求解 (1)对数函数的定义域为(0,+∞). (2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1. 若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义. (3)求函数的定义域应满足以下原则: ①分式中分母不等于零; ②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

对数及对数函数知识点总结及题型分析

对数及对数函数 1、对数的基本概念 (1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对 数, 记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式 (2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln . (3)指数式与对数式的关系:log x a a N x N =?=(0>a ,且1≠a ,0N >) (4)对数恒等式: 2、对数的性质 (1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a 3、对数的运算性质 (1)如果a >0,a ≠1,M >0,N >0,那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③M n M a n a log log = (2)换底公式: 推论:① b N N b log 1log = ; ② ; ③ 1log log =?a b b a 4、对数函数的定义: 函数 叫做对数函数,其中x 是自变量 (1)研究对数函数的图象与性质: 由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。 (2)复习)10(≠>=a a a y x 且的图象和性质 ()010log >≠>=N a a N a N a ,且b N N a a b log log log = b m n b a n a m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x =x y a =y x =

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

高考学生指数与对数函数知识点小结及典型例题

高考指数函数和对数函数 一.基础知识 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方 根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1 *>∈>= = -n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)] b (f ),a (f [

或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ;○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =;(2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

对数函数知识点总结

对数函数 知识点一:对数函数的概念 1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数.其中x 是自变量,函数的定义域是(0, +∞),值域为),(+∞-∞.它是指数函数x a y = )10(≠>a a 且的反函数. 注意: ○ 1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5 log 5 x y = 都不是对数函数,而只能称其为对数型函数. ○ 2 两个常用对数: (1)常用对数 简记为: lgN (以10为底) (2)自然对数 简记为: lnN (以e 为底) 例1、求下列函数的定义域、值域: (1)4 121 2 - = --x y ( 2))52(log 2 2++=x x y (3))54(log 2 3 1++-=x x y (4))(log 2x x y a --= 知识点二:对数函数的图象 方法一:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数函数图象作关于x y =的对称图形,即可获得。 同样:也分1>a 与10<

(3) x y 3log =(4) x y 3 1log = 思考:函数x y 2log =与y =3log x 与y 函数的相同性质和不同性质. 相同性质: 不同性质: 例2、作出下列对数函数的图象: 知识点三:对数函数的性质 由对数函数的图象,观察得出对数函数的性质. 思考:底数a 是如何影响函数 x y a log =的.(学生独立思考,师生共同总结) 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. 例3、比较下列各组数中两个值的大小:

相关文档
最新文档