微分方程-微分方程应用模型举例

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

§8-5--微分方程应用举例

§8-5 微分方程应用举例 在前面几节,已经举了一些力学、运动学方面应用微分方程的实例,本节将再集中学习几个在其他方面的应用实例,说明微分方程在许多实际领域中都有着广泛的应用. 应用微分方程解决实际问题通常按下列步骤进行: (1)建立模型:分析实际问题,建立微分方程,确定初始条件; (2)求解方程:求出所列微分方程的通解,并根据初始条件确定出符合实际情况的特解; (3)解释问题:从微分方程的解,解释、分析实际问题,预计变化趋势. 例1 有一个30?30?12(m 3 )的车间,空气中CO 2的容积浓度为0.12%.为降低CO 2的含量,用一台风量为1500(m 3 /min )的进风鼓风机通入CO 2浓度为0.04%的新鲜空气,假定通入的新鲜空气与车间内原有空气能很快混合均匀,用另一台风量为1500(m 3 /min )的排风鼓风机排出,问两台鼓风机同时开动10min 后,车间中CO 2的容积浓度为多少? 解 车间体积为10800m 3 .设鼓风机开动t (min )后,车间空气中CO 2的含量为x =x (t ),那么容积浓度为 10800 x . 记在t 到t +dt 这段时间内,车间CO 2含量的改变量为dx ,则 dx =该时间段内CO 2通入量-该时间段内CO 2排出量 =单位时间进风量?进风CO 2的浓度?时间-单位时间排风量?排风CO 2浓度?时间 =1500?0.04%?dt -1500? 10800 x ?dt , 于是有 dt dx =1500?0.04% -1500?10800x 即 dt dx =36 5 (4.32-x ) 初始条件x (0)=10800?0.12%=12.96. 方程为可分离变量的方程,其通解为 x (t )=4.32+C t e 36 5-. 将初始条件代入上式,得C =8.64.于是在t 时刻车间内空气中CO 2的含量为 x (t )=4.32(1+2t e 36 5-). 所以鼓风机打开10min 后,车间中CO 2浓度为 10800 47 .610800)10(= x =0.06%. 例2 (马尔萨斯人口方程)英国人口学家马尔萨斯在1798年提出了人口指数增长模型:人口的增长率与当时的人口总数成正比.若已知t =t 0时人口总数为x 0,试根据马尔萨斯模型,确定时间t 与人口总数x (t )之间的函数关系.据我国有关人口统计的资料数据,1990年我国人口总数为11.6亿,在以后的8年中,年人口平均增长率为14.8‰,假定年增长率一直

第七章 常微分方程模型的数值解法

第七章 常微分方程数值解法简介 微分方程在科学和工程技术中有很广泛的应用。许多实际问题的数学模型都可以用微分方程来描述,归结为常微分方程的定解问题;很多偏微分方程问题,也可以化为常微分方程问题来近似求解,但是求出所需的解绝非易事。实际上,除了极特殊情形外,人们不可能求出微分方程的解析解,只能用各种近似方法得到满足一定精度的近似解。在常微分方程中已经熟悉了级数解法和Picard 逐步逼近法,这些方法可以给出解的近似表达式,称为近似解析方法。另一类方法只给出解在一些离散点上的值,称为数值方法。后一类方法应用范围更广,特别适合用计算机计算,本章主要介绍常用的常微分方程数值解法。 7.1实际问题的微分方程模型 函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。在许多实际问题中,往往不能直接找出变量之间的函数关系,但是有时却容易找出变量的改变量之间的关系,从而建立描述问题的微分方程模型。 例7.1.1 将初始温度00150u C =的一碗汤放置于环境温度a u 保持为024C 的桌上,10分钟后测得汤的温度为0100C 。如果汤的温度低于055C 才可以喝,试问再过20分钟后这碗汤能喝了吗? 解:为了解决这一问题,需要了解有关热力学的一些基本规律。热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这个物体的温度和其所在的介质温度的差值成正比。 设物体在t 时刻的温度为()u u t =,从t t t →+?温度从()()u t u t t →+?,注意到热量总是从温度高的物体向温度低的物体传导,因而0a u u >,所以温度差 a u u -恒正,又因物体将随时间而逐渐冷却;则温度的改变量为: ()()(())a u u t t u t k u t t u t ?=+?-=-+?-? 两边除以t ?,并令0t ?→得温度变化速度为: ()a du k u u dt =-- 这里0k >是比例常数。从而得出描述物体冷却过程的微分方程模型为: 0()(0)a du k u u dt u u ?=--???=? (7.1.1) 容易求出这个一阶微分方程初值问题的解为:

常微分方程的建模训练

常微分方程的建模训练 各位同学: 欢迎大家开始《高等数学》课程的第二阶段的学习。本次辅导材料是关于建立微分方程的模型,主要目的有2个。一是开阔大家的视野,二是练习如何将一个实际问题用数学语言描述出来,也就是平时讲的建模,这是一个理工科学生的最重要的基本功之一。希望大家努力掌握之。 建立微分方程的途径主要有: 1)根据问题的性质,利用相应学科已经知道的客观规律,比如研究物体的运动,在已知外力的情况下,可运用著名的牛顿第二定律;研究热力学问题,可以用热力学定律,研究电路问题就可以用电路的基尔霍夫定律等。 2)对于一些没有明显规律可用时,可以考虑应用微元法(上学期学习积分时已经学习过),这时,需要考虑的是在自变量[,d] +的微段d x中,函数的增 x x x 量的微分表达式。 本次材料包括的题目不少,你可能没有太多的时间做。没有关系,可以边学边做,或有空时做,拳不离手,曲不离口,功夫是逐渐炼成的。要注意的是,对一个确定的问题,仅仅列出微分方程是不够的,还要有一组初始条件或边界条件,才能使微分方程的通解具体化,称为一个对应与问题本身的特解!如何列出这样的条件,也需要训练你的观察能力,因为很多题目中,这些条件常隐含在题目的叙述中。 本次练习不要求你去求解这些方程,但随着我们课堂的进度,当你学会微分方程的求解后,你再去求解它们。 好,开始吧! 1. 有一类物质具有放射性,根据观察,放射性元素的质量随时间推移而逐渐减少,这种现象称为衰变。由实验测定,每一时刻放射性元素镭的衰变率(即质量减少的速率)与该时刻 λ>。求镭的衰变规律。 的镭的质量成正比,比例系数0 又由经验判断,镭经过1600年后,只剩下原始量的一半,求镭的质量R与时间t的函数关系。 2. 物理上把已知物体质量和外力的条件下,求物体的运动规律的问题称为动力学问题。物 s t来表示。 体的运动可用它的位移量() 已知物体质量为m的物体在外力F的作用下沿外力的方向作直线运动。试根据下列提供的外力特点,求物体的运动规律: 1)外力为地球重力; 2)外力为与其速度的平方成反比的阻力; 3)外力为与其位移成正比,但方向相反的弹性恢复力;

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

数学建模作业求解常微分方程和人口模型问题

实验报告 课程名称:数学建模 课题名称:求解常微分方程与人口模型 专业:信息与计算科学 姓名:胡家炜 班级: 123132 完成日期: 2016 年 6 月 10 日

一.求解微分方程的通解 (1). dsolve('2*x^2*y*Dy=y^2+1','x') ans = (exp(C3 - 1/x) - 1)^(1/2) -(exp(C3 - 1/x) - 1)^(1/2) i -i (2). dsolve('Dy=(y+x)/(y-x)','x') ans = x + 2^(1/2)*(x^2 + C12)^(1/2) x - 2^(1/2)*(x^2 + C12)^(1/2) (3). dsolve('Dy=cos(y/x)+y/x','x') ans = (pi*x)/2-x*log(-(exp(C25 + log(x)) - i) /(exp(C25 + log(x))*i - 1))*i (4). dsolve('(x*cos(y)+sin(2*y))*Dy=1','x') ans = -asin(x/2 + lambertw(0, -(C30*exp(- x/2 - 1))/2) + 1) (5). dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x') ans = C32*exp(x*(13^(1/2)/2 - 3/2)) + C33*exp(-x*(13^(1/2)/2 + 3/2)) + (13^(1/2)*exp(x*(13^(1/2)/2-3/2))*exp((5*x)/2(13^(1/2)*x)/2)* (2*sin(2*x) - cos(2*x)*(13^(1/2)/2 - 5/2)))/(13*((13^(1/2)/2 - 5/2)^2 +4))-(13^(1/2)*exp(x*(13^(1/2)/2+3/2))*exp((5*x)/2 +(13^(1/2)*x)/2)*(2*sin(2*x)+cos(2*x)*(13^(1/2)/2+5/2))) /(13*((13^(1/2)/2 + 5/2)^2 + 4)) (6)dsolve('D2y+4*y=x+1+sin(x)','x') ans = cos(2*x)*(cos(2*x)/4 - sin(2*x)/8 + sin(3*x)/12 - sin(x)/4 + (x*cos(2*x))/4 - 1/4) + sin(2*x)*(cos(2*x)/8 - cos(3*x)/12 + sin(2*x)/4 + cos(x)/4 + (x*sin(2*x))/4 + 1/8) + C35*cos(2*x) + C36*sin(2*x)

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

常微分方程在数学建模中的应用

北方民族大学学士学位论文 论文题目:常微分方程在数学建模中的应用 院(部)名称:信息与计算科学学院 学生姓名:马木沙 专业:信计学号:20093490 指导教师姓名:魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制

摘要 本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用. 关键词:常微分方程,数学建模,数学模型

Abstract In this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields. Keywords: ordinary differential equations, mathematical modeling, mathematical model.

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=/m=/(1400-18t) dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[*x(2)^2)/(1400-18*t)]; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[*(v.^2))./(1400-18*t)]; [t,h,v,a]; 数据如下: t h v a 000

微分方程与微分方程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方 程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系: (1)初等积分法(一阶方程及几类可降阶为一阶的方程) 一阶线性微分方程组(常系数线性微分方程组的解法) (3)高阶线性微分方程 (高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理 0.常数变易法: 常数变易法在上面的(1) (2) (3)三部分中都出现过,它是 由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次 方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法, 掌握全微 分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参 数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 dx f(x)g(y); M(x)N(y)dx P(x)Q(y)dy 0; 常数变易法:(1)线性方程,y p (x )y f (x ), (2)伯努里方程,y p(x)y f (x)y n , 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程F (x,y, y ) 0,有 参数法:(1)不含x 或y 的方程:F (x,y ) 0,F (y,y ) 0; 对于高阶方程,有 分离变量法:(1)可分离变量方程: (2)齐次方程: dy dx dy dx f(ax by C ); ux vy w

⑵可解出x或y的方程:y f(x,y),x f ( y, y ); 降阶法:F(x,y(k),y(k 1), ,y(n)) F(y,y,y) 0; 恰当导数方程 一阶方程的应用问题(即建模问题) 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本 理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。 3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次 微分方程的通解结构,刘维尔公式等); n 阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。 4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。 5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。 6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。 7.差分方程。 8.偏微分方程。 二、数学建模的微分方程方法 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

一阶微分方程的应用

一阶微分方程的应用

(1)数学建模列出微分方程(含初始条件);(2)求解微分方程. 步骤: 利用共性建立微分方程,利用个性确定定解条件.

),(y x M y x o 例1 已知某曲线经过点( 1 , 1 ),轴上的截距等于切点的横坐标, 求它的方程. 提示: 设曲线上的动点为M (x,y ),令X = 0, 得截距由题意知微分方程为 x x y y ='-即11-=-'y x y 定解条件为.11==x y y x x ' =αtan x 此点处切线方程为它的切线在纵1、几何应用

2、物理应用(1)动力学:例2跳伞运动(如图),求伞降落速度与时间的关系,初始时刻为原点. mg )( 阻力kv f =x o kv mg F ma -==作受力分析用ma F =

(2)热学 例3 发动机冷却系统设计 (Newton 冷却定律:冷却速度与温差成正比) dt T T k dt dT e )(-+=α. 之间的关系与试建立发动机温度t T , ),(e T t T 环境温度为工作温度为),(,e T T k -降温速率为升温速率为α

例4. 已知某车间的容积为 的新鲜空气 问每分钟应输入多少才能在30 分钟后使车间空 的含量不超过0.06 % ?提示: 设每分钟应输入t 时刻车间空气中含 则在],[t t t ?+内车间内=?x 两端除以t ?并令0→?t 与原有空气很快混合均匀后, 以相同的流量排出)得微分方程 t k ??10004.0t x k ??-5400 5400( 假定输入的新鲜空气输入, 的改变量为

微分方程型建模实例题

一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。下面就微分方程模型建模展开建模。下面给出些微分方程建立模型的实例,供大家参考。 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,() 10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。现有一包裹从离地150米高的飞机上落下,(1)求其落地时的速度(2)如果飞机高度更大些,结果会如何,包裹的速度会随高度而任意增大吗? 11.生态学家估计人的内禀增长率约为0.029,已知1961年世界人口数为30.6亿(3.06×)而当时的人口增长率则为0.02。试根据Logistic模型计算:(1)世界人口数的上限约为多少(2)何时将是世界人口增长最快的时候? 12.早期肿瘤的体积增长满足Malthus模型(=λV,其中λ为常数),(1)求肿瘤的增倍时间σ。根据统计资料,一般有σ (7,465)(单位为天),肺部恶性肿瘤的增倍时间大多大于70天而小于465天(发展太快与太慢一般都不是恶性肿瘤),故σ是确定肿瘤性质的重要参数之一(2)为方便起见,医生通常用肿瘤直径来表示肿瘤的大小,试推出医生用来预测病人肿瘤直径增大速度的公式 D = 13.正常人身上也有癌细胞,一个癌细胞直径约为10μm,重约0.001μg.,(1)当患者被查出患有癌症时,通常直径已有1cm以上(即已增大1000倍),由此容易算出癌细胞转入活动期已有30σ天,故如何在早期发现癌症是攻克癌症的关键之一(2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于个时即可凭借体内免疫系统杀灭。 14.设药物吸收系数(k为药物的分解系数),对口服或肌注治疗求体内药物浓度的峰值(峰浓度)级达峰时间。 15.医生给病人开药时需告诉病人服药的剂量和两次服药的间隔时间,服用的剂量过大会

二阶常系数线性微分方程的应用举例

第七章常微分方程7.13 二阶常系数线性微分 方程的应用举例 数学与统计学院 赵小艳

解 受力分析 例1 (弹簧的机械振动) 如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力 作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律. pt H t f sin )(1=x x o )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由t x kx pt H t x m d d d d μ--=sin 22可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位置 的位移为x (t ). .0,000====t t x x d 还应满足初始条件:

.0,000====t t x x d 还应满足初始条件:2m t x kx pt H t x m d d d d μ--=sin 22 可得m m pt h x t x t x sin 2222=++ωδd d d d 强迫振动的微分方程

2m m m pt h x t x t x sin 2222=++ωδd d d d 强迫振动的微分方程 对应齐次方程: 02222=++x t x t x ωδd d d d 自由振动的微分方程 其特征方程: 0222=++ωδλλ. ,222221ωδδλωδδλ---=-+-=. 0)1(22>-ωδ.)(2)(12222t t e C e C x ωδδωδδ-+----+=齐次方程的通解为 .0)(→∞→t x t 时,当此时物体运动按指数函数规律衰减. t x O

相关文档
最新文档