4种常用的大气校正方法

4种常用的大气校正方法
4种常用的大气校正方法

A Comparison of Four Common Atmospheric

Correction Methods

Abdolrassoul S. Mahiny and Brian J. Turner

Abstract

Four atmospheric correction methods,two relative and two absolute,were compared in this study.Two of the methods

(PIF and RCS)were relative approaches;COST is an absolute image-based method and6S,an absolute modeling method.

The methods were applied to the hazy bands1through4

of a Landsat TM scene of the year1997,which was being used in a change detection project.The effects of corrections were studied in woodland patches.Three criteria,namely

(a)image attributes;(b)image classification results,and

(c)landscape metrics,were used for comparing the perform-ance of the correction methods.Average pixel values,

dynamic range,and coefficient of variation of bands consti-tuted the first criterion,the area of detected vegetation

through image classification was the second criterion,and

patch and landscape measures of vegetation the third criterion.Overall,the COST,RCS,and6S methods performed better than PIF and showed more stable results.The6S method produced some negative values in bands2through

4due to the unavailability of some data needed in the

model.Having to use only a single set of image pixels

for normalization in the PIF method and the difficulty of selecting such samples in the study area may be the reasons

for its poor performance.

Introduction

Australian woodlands have been subject to vegetation

clearing and livestock grazing since European settlement

around two centuries ago, which has resulted in patchy vegetation remnants surrounded by farms and other land-

use. The long-term persistence of these patches has been the subject of debate and research in Australia and elsewhere

(e.g., Saunders et al., 1987). These have given rise to studies

of vegetation change at the local and countrywide scales.

One of the most time and cost-efficient methods of vegeta-

tion change detection is through remote sensing data and methods. This has brought about an era of research highly dependent on remotely sensed imagery.

However, reflectance of the objects recorded by satellite sensors is generally affected by atmospheric absorption and scattering, sensor-target-illumination geometry, and sensor calibration (Teillet, 1986). These normally result in distor-

tion of the actual reflectance of the objects that subsequently affects the extraction of information from images. There has been considerable research on the need to and the

ways of correcting the satellite data for atmospheric effects (Song et al., 2001; Campbell et al., 1994; Chavez, 1988; Collett et al., 1997; Forster, 1984; Furby and Campbell, 2001; Hall et al., 1991; Milton, 1994; Schott et al., 1988;

Yang et al., 2000; Yuan and Elvidge, 1996). Deciding on the need to correct for atmospheric effects is often a critical first step that can affect subsequent steps in applications of

satellite data. For instance, the need for atmospheric correc-tion in change detection studies is generally related to the methods used. Song et al. (2001) state that in linear methods

of change detection such as simple image differencing, there

is no need to correct the images as long as the stable classes

in the differenced image have a zero mean.

Song et al. (2001) have shown that atmospheric correc-tion affects the results of ratio transformations such as Normalized Difference Vegetation Index (NDVI) (Song et al., 2001), and that image classification is the image analysis procedure least affected by correction. This is stated to be especially true when the training data and the image to

be classified are at the same radiometric scale (i.e., both corrected or both non-corrected) (Song et al., 2001).

In a study of vegetation change occurring in a rural area

of southeastern Australia over the years 1973 through 1997, simple and NDVI differencing and post-classification compari-son methods were the change detection methods chosen to

be used, based on an extensive literature review (Brogaard

and Prieler, 1998; Caccetta et al., 1998; Macleod and Congal-ton, 1998; Singh, 1989). Prior to analysis, the remote sensing data were examined for their need for atmospheric correction and common correction methods were reviewed in an

attempt to assess their usefulness. However, after an exten-sive literature review on the need to and the usefulness of

the common methods of atmospheric correction, it was still

not clear which of these methods was best for the available data and the objects of interest in this study, namely vege-tated areas. The literature often offered examples of studies carried out in a small area where nearly all the required data and parameters necessary for complete correction were available. This is far from reality in most practical applica-tions of remote sensing data where vast areas are studied

using images from different sensors, and some of the needed information for atmospheric correction is usually lacking.

As a result, we chose to compare the effects of four atmospheric correction methods on image attributes, image classification results, and landscape metrics of vegetation patches. These

four represented a range of levels of sophistication in

Abdolrassoul S. Mahiny is with the College of Environment,

Gorgan University of Agriculture and Natural Resources Science, Gorgan, Iran, PC: 49138-15749

(Rassoul.Mahiny@https://www.360docs.net/doc/d89117856.html,.au).

Brian J. Turner is with SRES, The Australian National Univer-sity, 0200, Canberra, Australia (Brian.Turner@https://www.360docs.net/doc/d89117856.html,.au).Photogrammetric Engineering & Remote Sensing Vol. 73, No. 4, April 2007, pp. 361–368.

0099-1112/07/7304–0361/$3.00/0? 2007 American Society for Photogrammetry

and Remote Sensing

PHOTOGRAMMETRIC ENGINEERING&REMOTE SENSING April2007361

correction algorithms and were found to be the most often recommended by researchers and analysts.

The study area was the catchment of the Boorowa River in southern New South Wales, Australia, approximately 110 km northwest of Canberra (Figure 1). The availability of field data, long history of settlement, and vegetation clearing and accessibility were among the reasons for this choice. The catchment covers an area of about 220 thousand hectares and is relatively flat with undulating hills to the east, north, and west. Pastures, farmlands, remnant woodlands, and small towns are the major land-cover/land-use covering the area. The average annual rainfall ranges from 570 mm to 770 mm (Hird, 1991). The area has a warm climate with long summers and cool to cold winters. Studies show that the pre-European native vegetation of the area was composed of three categories: dry schlerophyll forest, woodlands and grasslands (Hird, 1991).

Eucalypt forests are dominant on the hilly country of the eastern edge of the catchment where average annual rainfall exceeds 640 mm (Hird, 1991). The woodlands are mostly found on the lower slopes and plains (Figure 2). Also, minor areas of grasslands can occur in small pockets in the wood- land environment. The area has been subject to conversion of woodland to agricultural lands for nearly two centuries. It is thought that almost all native communities comprised of eucalypt species have been cleared or modified to some extent by agriculture or grazing (Yates and Hobbs, 1997a and 1997b). As such, woodland patches have shrunk and remain mainly in the hilly eastern areas. Areas of poor agricultural quality also contain small patches of woodland (Newham, 1999). Contro- versy continues over the amount of clearing that has taken place, the rate of current change (loss and gain of woodland areas), and the future stability of the woodland patches.

Literature Review

The aim of image normalization is to remove time- and scene-dependent effects in remotely sensed data. Variability in acquisition conditions is normally a result of differences in atmospheric absorption and scattering, sensor-target- illumination geometry, and sensor calibration. Converting raw digital numbers (DN ) in the images to the exo-atmos- pheric or top-of-atmosphere reflectance (TOA ) removes the effects of differences in illumination geometry (Collett et al .,

Figure 1. The area of study showing the Boorowa Catchment location.

Figure 2. The gray scale composite image of the Boorowa region, Landsat TM97 Bands 2,3,4. The darker areas represent vegetation.

1997). Scene-based data from a haze-free image (reference image) can be used to accomplish the normalization process over a series of multi-date images. This is done using sets of pixels from invariant or pseudo-invariant features (PIF ) in the reference image and hazy images to be corrected (slave images). Regression coefficients between these sets are used to normalize images for atmospheric and illumination

effects. Pixels in the bright and dark portions of the tasselled cap transformation (Hall et al ., 1991) constitute the radio- metric control set (RCS ) which can be used alternatively in the regression equation for image normalization.

Campbell et al . (1994) state that in most cases of change detection projects, it is sufficient to convert raw DN of the image set to be consistent with a reference haze-free image. So in most cases, a relative atmospheric correction method such as PIF or RCS is recommended. As alternatives to these normal- ization methods, the cosine of the sun zenith angle (COST ) and the second simulation of the satellite signal in the solar

spectrum (6S ) absolute correction methods are also commonly used to convert raw DN of the images to the actual reflectance of the objects on earth. The COST and 6S methods are relatively easily implemented and are either incorporated into most commercial image processing software (for the COST method) or are available through standalone software (for the 6S method). For brevity purposes, the term correction will be used through- out this paper to denote both normalization and correction.

The PIF and RCS Methods

Two of the most commonly used atmospheric correction

methods are the pseudo-invariant features (PIF ) and the radiometric control sets (RCS ) approaches. The PIF are normally composed of man-made and natural features such as concrete, asphalt, rooftops, and rock outcrops. Members of the RCS are composed of non-vegetated extremes of the

362

April 2007

PHOTOGRAMMETRIC E NGINEERING & REMOTE S ENSING

tasselled cap transformation (Hall et al ., 1991) representing bright and dark objects in the imagery. For RCS , the green- ness and brightness components produced through the tasselled cap process are used to single out the extreme elements of the landscape such as deep water-bodies and

Based on the fact that normally, dark objects comprise

nearly 1 percent of the whole image reflectance (Chavez, 1988), the radiance of an absolutely dark object when it is haze-free will be:

sands for dark and bright sets, respectively.

L 1% ? (0.01E 0 cos TZ ) / (pd 2) (5)

The PIF and RCS are selected through the following criteria (Schott et al ., 1988; Hall et al ., 1991):

where d 2 is the squared sun-earth distance in astronomical

units. Hence, when the dark objects are hazy, the path PIF: {(Band4/Band3) ? t 1

AND (1)

radiance due to haze (L haze ) can be calculated by subtracting L 1% from the at-satellite radiance of hazy objects.

RCS: Dark sets ? {(greenness ? t 1)

AND

(brightness ? t 2)} L haze is then substituted in Equation 4, and the images are corrected band by band for atmospheric and radiometric noise. AND AND Bright sets ? {(greenness ? t 1) (brightness ? t 2)}

(2)

As is evident, the COST method uses no additional parameters other than those of the image and is able to approximate the effects of atmospheric gas absorption and where t 1 and t 2 are threshold values and the bands refer to Landsat TM data.

Geographically identical pixels are selected from the reference and slave images. Then, a simple linear regression is fitted between the raw DN in the slave and reference images for each band and used to normalise the slave image(s) to the reference one. The COST Method

Rayleigh scattering based on sun zenith angle.

The 6S Method

This model predicts the reflectance (?) of objects at the top of atmosphere (TOA ) using information about the surface reflectance and atmospheric conditions (Vermote et al ., 1997b). This information is provided through a minimum of input data to the model and incorporated features. The TOA reflectance can be estimated using the following formula:

COST is an image-based absolute correction method. It uses only the cosine of sun zenith angle (cos (TZ )) as an accept- able parameter for approximating the effects of absorption by atmospheric gases and Rayleigh scattering, hence the name COST . In using the model, DN of the images are first converted to radiance through the following formula (Chavez, 1988):

L sat ? (Lmin ? (Lmax ? Lmin )/DN max ) DN

(3)

r ? (p L sat d 2) / (E 0 cos TZ )

The surface reflectance (Ref) free from atmospheric effects is estimated as:

Ref ? [(Ar ? B ] / [1 ? (g (Ar ? B ))]

where A ? 1/??, B ? ??/?, ? is the global gas transmit- tance, ? is the total scattering transmittance, and ? is the (6)

(7)

where L sat is the spectral radiance at the sensor, Lmin is the minimum spectral radiance for a given band, Lmax is the maximum spectral radiance for a given band, and DN max is

the maximum digital number of the image range.

The values of Lmin and Lmax for each Landsat band are given by Markham and Barker (1986).

Then, the radiance is converted to reflectance of the objects at the Earth‘s surface using the following formula:

spherical albedo (UNESCO, 1999). Alpha, beta, and gamma are constants generated from running the model. The minimum data set needed to run the 6S model is the meteorological visibility, type of sensor, sun zenith and azimuth, date and time of image acquisition, and latitude and longitude of scene center. Using the input data and the embedded features, the model produces variables to assess the surface reflectance.

Ref ? p (L sat ? L haze ) / (E 0cos TZ )

(4)

Data and Methods where Ref is the reflectance at the Earth surface, L sat is the spectral radiance at the sensor, L haze is the path radiance, E 0 is the mean solar exo-atmospheric irradiance, and TZ is the mean solar angle. E 0 is obtained from Table 4 of the Markham and Barker (1986) publication.

The first step in calculating the path radiance (L haze ) is selection of the DN haze through one of the following ways:

· By looking at the image histogram and finding the minimum · By looking at areas of known zero reflectance like large deep

water-bodies and assuming that any value in the raw image

in these areas other than zero represents haze effects (although sediments and microscopic plants may obscure · By using software which automatically finds the DN for haze

· By defining other dark objects such as shadows and looking

for non-zero values in these areas. Principal components analysis or the tasselled cap transformation can be used for segmenting the shadows.

Then, the haze DN value is converted to at-satellite radiance for each band using Equation 4.

Overview

For the change detection study, a Landsat MSS scene for 1973

and a TM scene for 1997 were obtained (Table 1). This was done to provide the most extensive time frame for the change detection. From examination of the band histograms and actual DN values of dark water bodies, the MSS 1973 bands were found haze-free, so no correction was needed for them. On the other hand, examination of histograms of the TM 1997 bands revealed that the first three bands were contaminated with a moderate amount of haze that required atmospheric correction (Table 2). For the PIF and RCS relative atmospheric correction methods, a haze-free reference image was required. A TM scene from 1991 was the only haze-free image set available. It was recognized that using data so far apart in time might introduce difficulties due to sensor degradation or changes in the landscape. However, due to a lack of other suitable image data, the TM 1991 was chosen for the normalisation task. Field data recently collected were available to test the accuracy of image classification. Additionally, a 2002 SPOT XS image was acquired and used to assess the accuracy of classifi- cation. Because of the high spatial resolution of the SPOT XS image (10-meters) and high accuracy of its classification (99

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

April 2007

363

(Band7 ? t 2)

DN representative of haze values (Chavez, 1988); this);

value and applies a dark-object subtraction correction; or

T ABLE1.I MAGE D ATA S ETS U SED IN THE S TUDY AND THE S PECIFIC

I NFORMATION N EEDED FOR C ORRECTION

Sun

Imagery Date Zenith Azimuth D2COS TZ Landsat MSS18 Jan. 197322.910301.900 1.020.92 Landsat TM8 Feb. 199144.74076.1500.970.71 Landsat TM22 Oct. 199738.91061.800 1.010.77 SPOT 5 XS18 Nov. 200240.79052.300—

T ABLE2.I MPROVING THE S ELECTION OF DN haze V ALUES FOR B ANDS U SING THE M ILTON S PREADSHEET AND THE M ETHOD D EVELOPED BY C HAVEZ Fragstats ver. 2 (McGarigal and Marks, 1995) software was

used for landscape analysis.

Correction Methods Applied

PIF Normalization

For the PIF normalization, the relatively haze-free TM1991 was used as a reference. Then, pseudo-invariant features, consisting mainly of rock outcrops, bare soils, and built-up

areas were segmented using bands 3, 4, and 7 of the TM

1991 and TM1997 scenes, respectively.

For TM1991, a total of 3,155 pixels were singled out as

the PIF set. This was done in two stages. First, the TM1991 band 4 was divided by band 3. Then, by trial and error

Initial Refined

Imagery Band DN haze L haze (using known urban areas, water-bodies, and rock outcrops

on the division band), a DN value of 1.0 was chosen as the threshold value (t1) that separated the image into urban

TM22 Oct. 9715050.0 2.48

21315.2 1.15

3911.80.53

40 5.70.11

50 5.30.00

70 3.80.00

to 100 percent on classifying woody vegetation) tested by

visual evaluation and field data, this image was used as ground

truth for accuracy assessment.

The four methods of atmospheric correction were

applied to the TM1997 image and image attributes, image classification results, and landscape metrics were investi-

gated to compare the methods.

Average reflectance of woodlands, and the entire bands

of the image together with the dynamic range and coefficient

of variation were the image attributes evaluated. The dynamic

range of the bands is an important feature because it shows

the amount of fine detail and extractable information (Yang

and Lo, 2000). Hence, in a relative sense, any atmospheric correction method that produces wider dynamic ranges will

be of greater value for image classification. The frequency distribution of image values is another important measure

reflecting separability of clusters in an image (Yang and Lo, 2000). As a variable representing the frequency distribution,

the coefficient of variation (CV) was selected for comparing

the methods.

Landscape attributes are generally studied at three

scales: patch, class, and landscape (McGarigal and Marks,

1995). In this research, patch refers to the isolated remnant vegetation areas. The patches of vegetation can be grouped

into size classes or other categories. The whole landscape

mosaic containing patches, corridors of vegetation connect-

ing them, and the background matrix is studied through

the landscape metrics. It is assumed that any major change

in the bands‘ attributes will be reflected in the landscape

metrics. In order to assess the effects of the correction

methods on landscape metrics, the detected woodlands in

the classified TM1997 image were subjected to an adaptive

3 ? 3 box filter for removing single pixels. Woodland

patches less than 0.5 hectare were also removed, and the

remaining patches were classified into the following size

classes (in hectares): 0.5 to 1, 1 to 5, 5 to 10, 10 to 20, 20 to

50, 50 to 100, and more than 100.

Then, the number of patches and percent of landscape occupied by different patch-size classes were compared for

the correction methods. Total area of patches, patch-density,

mean patch-size, and landscape shape index together with

nearest neighbor and proximity indices were the landscape

metrics studied. IDRISI ver. 3.2 and ENVI ver. 3.4 software

were used for remote sensing analyses. The raster version of areas, water-bodies, and rock outcrops as one class and

other land-cover as the second class. Second, the DN values between 11 and 173 (t2) were used for segmenting man-

made features and vegetation on TM1991 band 7. Intersect-

ing the two resultant images with a logical AND gave the

final PIF set including only urban areas, rock outcrops, and

bare soils (Equation 1).

For TM1997,a total of3,577pixels were collected as the PIF set using t1and t2thresholds of0.9and9to238, respectively.The relatively low number of dark and bright pixels is due to most of the area being agricultural land and remnant woodlands.The coefficients of regres-sion between the bands were then used to normalise bands1through5,and7of TM1997relative to that of TM1991.

RCS Normalization

For the RCS method, a tasselled cap transformation was

applied to TM1991 and TM1997 bands 1 through 5 and 7. Then, the greenness and brightness components were

examined interactively for bright and dark objects. This

resulted in the selection of 973 bright and 33,672 dark

pixels for TM1991 and 1,416 bright and 30,469 dark pixels

for TM1997. Regression coefficients of the sets were calcu-

lated for the TOA reflectance of each band and then applied

to the bands to normalise TM1997 to TM1991.

COST Method

For the COST method,initial DN haze values were selected through histogram evaluation and then refined using gain and offset values(Table2).The refined DN haze values were calculated employing an Excel?spreadsheet,devel-oped by Milton(1994).The spreadsheet has been con-structed using the ideas of Chavez(1988)on improving atmospheric correction procedures.The horizontal visibil-ity was50km for the image date(Commonwealth Bureau of Meteorology,personal communication,2003)and

the haze DN value for the first band was50.Hence,the atmosphere was relatively clear at the time of satellite overpass,and a relative scattering model representing a clear atmosphere was chosen for the calculations in the Milton spreadsheet(see Chavez,1988).The results of the spreadsheet application and COST correction method are shown in Table 2.

The calculated L haze for each band was substituted in Equation 4 for the COST method. Automatic selection of

DN haze values by commercial software can be misleading,

because it normally results in the selection of the lowest

non-zero number with a very low frequency in the his-

togram for the haze value. However, in most cases, the

histogram minimum just represents noise in the imagery and

values slightly larger than that with a higher frequency of

pixels should be selected (Figure 3; Table 3).

364April2007PHOTOGRAMMETRIC E NGINEERING&REMOTE S ENSING

T ABLE 4. P ARAMETERS D ERIVED FROM THE 6S M ODEL

AND S UBSEQUENT C ALCULATIONS

Parameter

TM1

TM2

TM3

TM4

Global gas 0.98 0.91 0.93 transmittance Total scattering 0.76 0.84 0.88 0.92 transmittance Reflectance 0.07 0.04 0.02 0.01 Spherical albedo 0.15 0.10 0.07 0.04 A 1.32 1.29 1.20 1.17 B

?0.09

?0.04

?0.02

?0.01

Figure 3. Hypothetical figure showing the difference between automatic and manual selection of DN haze value.

T ABLE 3. C OMPARISON OF DN haze S ELECTION T HROUGH M ANUAL H ISTOGRAM A NALYSIS AND A UTOMATIC M ETHOD. ―A‖ S TANDS FOR A UTOMATIC AND ―M‖ FOR

H ISTOGRAM M ETHOD

Band 2

Band 3

Band 4

Image Attributes

The expected reflectance pattern for eucalypt woodlands is a relatively low reflectance in the blue band (band 1), a rise in the green band (band 2), a fall in the red band (band 3), followed by a sharp rise in the near infrared band (band 4) (e.g., Huang et al ., 2004). The RCS and PIF corrected data showed this pattern (Figure 4). However, the 6S method gave lower than expected reflectance values for bands 1 and 2, and the COST correction resulted in relatively lower reflectance in the green band. The TOA reflectances (uncorrected for atmospheric effects) were high in the blue band, a not unexpected result.

The COST method generated the widest dynamic range in most bands followed by the 6S method (Table 5). The PIF A 42 1 12 A 6 1 method generated the lowest dynamic range except in band 48 1 M

14 3 50 3 15 43 M

9

10 M

51 16 1054 32 52 21 17 5550 60 53 127 18 5426 534 54 489 19 5353 13 2219 55 1167 20 9986 14 4449 56 2059 21 36434 15 9613 57

3604 22

54221 16

21612

DN

four in which it was greater than RCS .

In order to test the differences statistically, a hundred points were randomly selected across the image and areas of 62 hectares in size were digitised around them. Then, the dynamic range of the random areas across the bands were measured and subjected to analysis of variance (ANOVA ) using Statistica ver. 5.2 (Statsoft, Inc., 1999). The analysis showed significant differences between the mean dynamic ranges for the COST , 6S, RCS , and TOA methods over all four bands. Tukey‘s honestly significant difference (HSD ) test was carried out on all pairs of means to reveal the significant differences between pairs. As can be seen from Table 5, the 100 799 0 2190 PIF range was significantly less than that of the other

1

97 716 7991 methods in bands 1 through 3. The COST and 6S produced a 248 No Haze

3 336

4 55

5 5 892

2208 14314 6289 3 16595 13618 4 16191 16052 11612

similar dynamic range in most cases.

Analysis of the different bands in relation to the coefficient of variation (CV ) showed that the 6S method

6456 10377 6 7396 17239 5959 7

4756 8 21761 4148 4103 9

13718

3509

4211

6S Modeling

For the 6S atmospheric correction, a minimum data set

composed of date, sun zenith, azimuth angles, and horizontal visibility was used. The horizontal visibility was available from weather stations located in the region (Commonwealth Bureau of Meteorology, personal communication). The Msixs software ver. 6.2 (Vermote et al ., 1997a) was used for the calculations. The result of running the 6S model for the first four bands of the TM 1997 dataset is given in Table 4. The TOA reflectance for each band was converted to ground reflectance using Equation 7.

Results and Discussion

The effects of the correction methods at three levels of (a) image attributes, (b) image classification results, and (c) landscape metrics are explained as follows.

Figure 4. Average reflectance of woodlands for the correction methods.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

April 2007

365

generated the largest CV for bands 1 and 3, and the RCS method gave the highest CV for band 2 followed by the 6S method (Table 6). The PIF method produced the smallest average CV in most bands.

Statistical analysis of the random areas for the four

bands treated with the COST, 6S, RCS, PIF, and TOA methods showed significant differences in terms of coefficient of variation. Tukey‘s HSD test applied to the CV for the four bands revealed that in most cases, for bands 1 through 3 the methods of correction are significantly different from each other. There was little separability for band 4.

Image Classification

In the post-classification comparison method, images for

each date are classified individually, and the results of classification are compared through cross-tabulation. To

implement this method, all of the six bands of the corrected

and uncorrected (raw) TM1997 image were used in a maximum likelihood classification with a set of training

areas selected from the classified SPOT XS image. The images were initially classified into two categories of woody and

non-woody areas. The SPOT classification image was also

used to validate the TM1997 classification. Differences were detected between the results of the classification of the

corrected bands and that of the uncorrected bands. In this

regard, the proportion of woodlands to the whole image

was nearly equal for the COST, 6S, and RCS methods. The

PIF method indicated a smaller proportion of woodlands

compared to the other methods and the TOA image showed the highest proportion (Figure 5).

The additional area of detected woodlands resulting

from the correction methods was validated by the classified

and highly accurate SPOT image. Then, this additional area

for each correction method was compared to the uncorrected image. The TOA image detected the greatest additional area

of woodland followed by the RCS, 6S, and the COST. The PIF

method produced the smallest area of additional woodland.

SPOT image validation of the corrected classified images confirmed an average additional 1,195 hectares of wood-

T ABLE5.T UKEY‘S HSD T EST ON D YNAMIC R ANGE OF R EFLECTANCE OF

TM97(A LPHA? .05)

TM Bands Correction Methods and Means

16S COST RCS TOA PIF ?:.060.058.057.045.033 2COST6S RCS TOA PIF ?:.087.0863.081.067.048 3COST6S TOA RCS PIF

Figure 5.Difference in classification of woody and

non-woody areas as a result of correction methods

lands resulting from application of the correction methods. However, the methods failed to make an average area of

277 hectares of woodlands discernible to the classifier as compared to the non-corrected image. Table 7 shows the differential amount of woodland detected by the maximum likelihood classification of the non-corrected and corrected

TM1997 images.

The differential areas of woodland detected by the correction methods were overlaid to investigate their spatial overlap. Of the validated extra woodlands detected by different methods of correction, only 327 hectares (27.3 percent) were detected by all four methods. This shows that

the correction methods behave differently in making areas of woodlands discernible to the classifier. In other words, apart from the fact that the corrections have improved the classifi-cation results, each method has affected the process by identifying woodlands in different locations. Hence, it is expected that the distribution of patches across the land-

scape and the related landscape indices will also be differ-

ent for the correction methods used.

Landscape Metrics

Analysis of the patch metrics revealed that the number of patches over the landscape was greatest in the TM1997 image corrected by 6S and TOA followed closely by the RCS and COST methods. Again, the PIF method resulted in a smaller number of patches as compared to the other meth-

ods but the number was still greater than that determined

?:.125.116.097.063from the raw image (Table 8). This supports the argument

4COST6S TOA PIF RCS ?:.440.391.342.262.224

T ABLE6.T UKEY‘S HSD T EST ON C OEFFICIENT OF V ARIATION OF TM97

(A LPHA? .05)that a larger dynamic range and CV also give rise to detec-tion of finer detail in the images since the PIF method returned low values for these two measures.

TM Bands Correction Methods and Means

16S COST RCS PIF TOA ?:31.4416.0913.659.70 6.84 2RCS6S COST TOA PIF

?:28.1623.3818.0312.028.88 36S COST TOA RCS PIF

?:31.3125.7620.3919.8416.47 4COST TOA RCS PIF6S

?:21.0220.6818.9218.8717.73

T ABLE7.A REA OF W OODLANDS D ETECTED IN THE C ORRECTED I MAGES AND N OT-DETECTED IN THE R AW I MAGES(A) AND THE R EVERSE(B)

Amount of Woodland (ha) Subtraction Operation A B Raw - 6S1,213252 Raw - COST

1,168278 Raw - PIF956244 Raw - RCS1,226328 Raw - TOA1,412283

366April2007PHOTOGRAMMETRIC E NGINEERING&REMOTE S ENSING

T ABLE 8. C OMPARISON OF THE P ATCH M ETRICS FOR THE

C ORRECTION M ETHODS

No. of Patches

Class (ha) PIF

RCS

COST

6S

TOA

(uncorrected)

.5–1 884 913 909 875 912 801 1–5 784 820 778 838 811 735 5–10 135 127 138 141 149 118 10–20 70 67 78 80 72 47 20–50 48 46 60 56 43 50–100 19 20 21

18 100? 24 22 25 23 26 TOTAL

1,964 2,015

2,007

2,032

1,791

T ABLE 9. C OMPARING

THE E FFECT OF C ORRECTION ON THE D ISTRIBUTION OF

P ATCHES A CROSS L ANDSCAPE

Correction Method

Indices 6S

COST

PIF RCS TOA

Raw Mean Nearest 605

629 665

640

635

658 Neighbor (m) Mean Proximity 4.7 5.2

4.9 4.2 7.5

10

Index

T ABLE 10. C OMPARISON OF S ELECTED L ANDSCAPE I NDICES FOR THE

C ORRECTION M ETHODS

Method

Area (ha) Patches (#100 ha) Size (ha) Shape Index PIF

15,763 1,964 12.45 8.02 65.54 RCS

16,019 2,015 12.57 7.95 66.38 COST

16,091 2,007 12.47 8.01 66.26 6S

16,190 2,032 12.55 7.96 66.74 TOA

16,467 2,032 12.34 8.10 66.45 Raw 14,546

1,791

12.31

8.12

63.63

The correction methods were also found more efficient in detecting the smallest areas of vegetation. In this regard, the RCS, TOA , and the COST methods produced the best results (Table 8).

As is clear from Table 9, the distribution of patches for the different methods of correction varies greatly. The smallest nearest neighbour was found with the 6S method, followed by COST, TOA , and RCS . With the PIF method, this index was even greater than the raw image suggesting that the method has been able to distinguish the larger patches at the expense of the smaller ones. Also, the smallest proximity index was detected using the RCS method followed by the 6S and PIF . The COST method was better than the TOA , and the raw image performed very poorly in this connection.

The results shown in Table 10 also affirm these conclu- sions. As is clear from this table, the correction methods have produced images with more patches than detected in the raw image.

Conclusion

Atmospheric correction methods used in this study showed an effect on image attributes, vegetation change detection, and the landscape metrics. Based solely on this fact, atmos-

pheric correction is judged a necessary step with regard to

the aims and specifications of the broader research study. However, it was shown that each method behaved somewhat differently. When it comes to choosing one of the methods for atmospheric correction, the user should be aware that the methods have their own advantages and disadvantages. Each of the COST, RCS , or 6S methods can be equally used where slight differences in the detected woodlands in the form of small and scattered remnants are deemed unimportant. When studying woodlands for the purpose of biodiversity or wildlife habitats, even a few extra hectares and their spatial arrangement can cause profound effects on the final results. In these instances, choosing the right correction method becomes crucial. Around 1,195 extra hectares of woodland have been detected in this study as a result of corrections applied to the TM 1997 compared to the raw TM 1997 image and confirmed by the reference classified SPOT image. The extra woodland has been found dispersed across the landscape. This is about 8.9 percent of the total woodland coverage in the area of study. The difference between the corrected images and the raw image and the discrepancy between the results of the correction methods may be ecologically important. For example, the extra woodlands act as connectors of the patches, increasing the size, changing the shape and other attributes of the patches that affect the decisions on the faunal habitat quality, biodiversity, and the persistence of the patches. The correction methods each tended to increase the accuracy of the classification through distinguishing the vegetation patches in different parts of the landscape. In other words, what was classified as a patch of woodland in a given correction method, might not be so detected by another method. The 6S, RCS, COST , and PIF along with the TOA tended to detect more small patches compared with the raw image. Thus, the proximity index and mean nearest neighbour decreased with the above corrections. This is because of the higher dynamic range in the data as a result of the corrections.

With any of the correction methods, the time needed to carry out the procedure and the feasibility of application can become very important. The time required for each method can be a crucial factor when many sets of imagery are used. The RCS method required more analyst time than the PIF . The absolute and modeling methods of COST and 6S were applied to the imagery in considerably less time than the PIF and RCS methods. It is suggested that selection of a small sample and relying on just one sample may have caused the PIF method to perform poorly. The only critical factor with the COST method is selection of the correct DN haze values. In this study, the automatic selection of DN haze did not produce the same results as the manual method. Usually, a combina- tion of automatic selection of DN haze and visual inspection of the histogram is required for this purpose. For the 6S model to produce accurate results, detailed data on the atmospheric condition is required. Often this information is not available. Using only the available information on parameters and default values for the rest may cause the model to produce anomalous results such as negative values. However, the number of these pixels is likely to be minimal compared to the whole scene (as in this study), and hence it may not affect the final results greatly.

The COST, RCS , and 6S methods produced relatively consistent results across the bands when the dynamic range and coefficient of variation were considered. Also, with image classification and landscape indices, the COST , 6S , and RCS performed better than the PIF and raw image and distinguished more patches. It was shown that merely converting raw image data to exo-atmospheric reflectance could enhance the final results. In most cases where a

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

April 2007

367

relatively accurate correction fulfils the needs of study, the image-based correction method of the COST is an efficient way of removing atmospheric effects while saving time. Where possible, the RCS method offers a good way of correcting images. In case of a need for a speedy correction with relatively correct results, the 6S modelling procedure with minimum input can be employed. It is suggested that

for the PIF method to produce acceptable results, a large sample of pixels be selected from across the image. If this cannot be achieved, applying the method is better than

using the non-corrected image at the very least. To borrow a sentences from Keith et al. (2002), although using in a different context, this study has shown that making correc-

tion through one of the COST, RCS, or 6S methods is more important than quibbling about which of these correction methods to use.

Acknowledgments

The authors wish to thank the authorities at the Gorgan University of Agricultural Sciences and Natural Resources

of Iran for financially supporting the Ph.D. research for

the principal author. Dr. Gary Richards of the Australian Greenhouse Office, Canberra, kindly provided some of the remote sensing data. Also, the Boorowa Shire made the required SPOT image available to this study. Dr. Lachlan Newham offered other needed remote sensing data, and Ms. Suzanne Furby of the Bureau of Rural Sciences provided technical advice. Several reviewers provided helpful com-ments. We thank them all greatly.

References

Brogaard,S.,and S.Prieler,https://www.360docs.net/doc/d89117856.html,nd cover in the Horqin Grasslands,North China.Detecting Changes Between1975and

1990by Means of Remote Sensing, International Institute for

Applied System Analysis, Austria, URL: http://www.iiasa.ac.at/

Publications/Documents/IR-98-044.pdf (last date accessed:

23 December 2006).

Caccetta, P.A., N.A. Campbell, F. Evans, S.L. Furby, H.T. Kiiveri, and J.F. Wallace, 1998. Mapping and Monitoring Land Use and

Condition Change in the South-West of Western Australia Using

Remote Sensing and Other Data, CSIRO Mathematical and

Information Sciences, URL: http://www.cmis.csiro.au/RSM

/research/pdf/CaccettaP_europa2000.pdf (last date accessed:

23 December 2006).

Campbell, N., S. Furby, and B. Fergusson, 1994. Calibrating Images from Different Dates, CSIRO Mathematical and Information

Sciences, URL: http://www.cmis.csiro.au/rsm/research/index.htm (last date accessed: 23 December 2006).

Chavez, P.S., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data,

Remote Sensing of Environment, 24:459–479.

Collett, L.J., B.M. Goulevitch, and T.J. Danaher, 1997. SLATS Radiometric Correction:A Semi-automated,Multi-stage Process

for the Standardisation of Temporal and Spatial Radiometric

Differences, Queensland Department of Natural Resources, URL:

https://www.360docs.net/doc/d89117856.html,.au/slats/pdf/arspc9_rad_corrections1.pdf (last date accessed: 23 December 2006).

Forster, B.C., 1984. Derivation of atmospheric correction procedures for Landsat MSS with particular reference to urban data,

International Journal of Remote Sensing, 5:799–817.

Furby, S.L., and N.A. Campbell, 2001. Calibrating images from different dates to ?like-value‘ digital counts, Remote Sensing of

Environment, 77:186–196.

Hall, F.G., D.E. Strebel, J.E. Nickeson, and S.J. Goetz, 1991. Radio-metric rectification – Toward a common radiometric response

among multidate, multisensor images, Remote Sensing of

Environment, 35:11–27.Hird, C., 1991. Soil Landscapes of the Goulburn1:250,000, Soil Conservation Service of NSW, Sydney, Australia.

Huang, Z., B.J. Turner, S.J. Dury, I.R. Wallis, and W.J. Foley, 2004.

Estimating foliage nitrogen concentration from HYMAP data

using continuum removal analysis, Remote Sensing of Environ-

ment, 93:18–29.

Macleod, R.D., and R.G. Congalton, 1998. Quantitative comparison of change-detection algorithms for monitoring eelgrass from

remotely sensed data, Photogrammetric Engineering&Remote

Sensing, 64(2):207–216.

Markham, B.L., and J.L. Barker, 1986. Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and

at-satellite tmperatures, EOSAT Landsat Technical Notes,

1:3–8.

McGarigal, K., and B.J. Marks, 1995. FRAGSTATS:Spatial Pattern Analysis Program for Quantifying Landscape Structure, USDA

Forest Service, URL: https://www.360docs.net/doc/d89117856.html,/pubs/viewpub.

jsp?index?3064, (last date accessed: 23 December 2006). Milton, E.J., 1994. Teaching atmospheric correction using a spread-sheet, Photogrammetric Engineering&Remote Sensing, 60(6):

751–754.

Newham, L.T.H., 1999. The Use of Remote Sensing and Geographic Information Systems in Landcare Resource Assessment and

Planning, M.Sc. thesis, Department of Forestry, The Australian

National University, Canberra.

Saunders, D.A., G.W. Arnold, A.A. Burbidge, and A.J.M. Hopkins, 1987. Nature Conservation:The Role of Remnants of Native

Vegetation, Surrey Beaty & Sons, NSW, Australia.

Schott, J.R., C. Salvaggio, and W.J. Volchok, 1988. Radiometric scene normalization using pseudoinvariant features, Remote

Sensing of Environment, 26:1–16.

Singh, A., 1989. Digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, 10:

989–1003.

Song, C.,C.E.Woodcock,K.C.Seto,M.P.Lenney,and S.A.

Macomber, 2001. Classification and change detection using

Landsat TM data: When and how to correct atmospheric

effects?, Remote Sensing of Environment, 75:230–244.

Teillet, P.M., 1986. Image correction for radiometric effects in remote sensing, International Journal of Remote Sensing,

7:1637–1651.

UNESCO, 1999. Applications of satellite and airborne image data to coastal management, Coastal Region and Small Island Papers4, UNESCO, Paris, URL: https://www.360docs.net/doc/d89117856.html,/tcmweb/bilko/ (last

date accessed: 23 December 2006).

Vermote, E.F., D. Tanre, J.L. Beuze, M. Herman, and J.J. Morcrette, 1997a. Msixs,Release6.4, Université des Sciences et Technolo-

gies de Lille, Lille, France, URL: http://www-loa.univ-lille1.fr

/Msixs/msixs_gb.html (last date accessed: 23 December 2006). Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcrette, 1997b. Second simulation of the satellite signal in the solar

spectrum, 6S: An overview, IEEE Transactions on Geoscience

and Remote Sensing, 35:675–686.

Yang, X.J., and C.P. Lo, 2000. Relative radiometric normalization performance for change detection from multi-date satellite

images, Photogrammetric Engineering&Remote Sensing, 66(8): 967–980.

Yates, C.J., and R.J. Hobbs, 1997a. Woodland restoration in the western Australian wheatbelt: A conceptual framework using a

state and transition model, Restoration Ecology, 5:28–35. Yates, C.J., and R.J. Hobbs, 1997b. Temperate Eucalypt woodlands:

A review of their status, processes threatening their persistence

and techniques for restoration, Australian Journal of Botany,

45:949–973.

Yuan, D., and C.D. Elvidge, 1996. Comparison of relative radiomet-ric normalization techniques, ISPRS Journal of Photogrammetry

and Remote Sensing, 51:117–126.

(Received 26 April 2005; accepted 07 September 2005; revised

01 November 2005)

368April2007PHOTOGRAMMETRIC E NGINEERING&REMOTE S ENSING

行为矫正的原理与方法介绍

行为矫正的原理与方法 心理咨询与心理学治疗的若干方法及其理论基础 一、概述 (一)心理咨询与心理治疗的方法与人格心理学理论的关系: 人格心理学是一门基础性的学科,它主要研究诸如人格的构成(或结构)、人格的发展等等基本的理论问题。关于人格的发展:人格心理学一方面要研究在正常的情况下个体的人格是如何发展的,其内在机制是什么;另一方面要研究变态的心理和行为是如何形成的,其内在机制是什么;当然还要研究究竟是哪些因素影响了人格的发展,这些因素是如何发生影响的。对异常心理和行为的形成机制的研究,就是心理病理学的研究;而对导致心理和行为异常的因素的研究,就是心理病原学的研究。 心理咨询与心理治疗则是一门研究如何用心理学方法来处理异常的心理和行为异常问题一门学科。而心理咨询与心理治疗过程中所采用的原理、原则,所采用的具体技术和方法都是以人格理论为其理论基础的。心理咨询和心理治疗的具体的理论和方法虽然各式各样,但都可以用相应的人格理论中找到其渊源。如信奉精神分析的人格理论的咨询心理学家和心理治疗家,倾向于采用“心理分析学的技术与方法”来实施具体的心理咨询与心理治疗过程;信奉行为主义的心理学咨询师和治疗专家,会倾向于采用根据行为主义的基本原理设计出来的行为矫正的原理与方法;而信奉人本主义心理学理论的治疗师,会倾向于采用人本主义和存在主义的咨询和治疗技术和手段;而信奉认知取向的人格理论的心理咨询与心理治疗专家,则会倾向于认知疗法,即通过改变当事人(病人)的认知来改变个体的情绪和行为。由此可见,具体的心理咨询与心理治疗的技术和方法,是以心理病理学和心理病原学为基础设计、发展出来的。心理病理学揭示心理疾病和行为问题形成的机理,心理病原学揭示心理疾病和行为异常的原因,在此基础上,咨询心理学家和心理治疗专家才能找到治愈心理病症、矫正异常行为的方法。这正如医学家寻找治愈疾病的方法时一样。要治愈某一种病症必须得先找到这一疾病产生的原因,了解发病的机理,在此基础上,才有可能开发出相应的治疗药物和治疗方法。自然科学中的状况也是如此,只有揭示了自然的规律之后,这些规律才有可能运用于实际的生活。如爱因斯坦先揭示了物质与能量之间的转化关系(E=MC)之后,才有可能将核能运用实际生活,才有可能制造出核电站和核武器。 那么人格心理学和心理咨询与心理治疗究竟是什么关系呢?用一个形象的说法,是母与子的关系,人格心理学是母,心理咨询与心理治疗是子。人格理论是心理咨询和心理治疗理论的上游理论,而具体的心理咨询与心理治疗技术则是根据具体的人格理论发展出来的。先有其母,才有其子。因此,要真正透彻地理解心理咨询与心理治疗的原理、牢固地掌握心理咨询与心理治疗的方法,透彻地了解这些原理和方法的利敝得失,并结合心理咨询与心理治疗的实际、灵活地运用之,必须得牢固地掌握人格心理学理论。因为只有掌握了具了心理咨询与心理学治疗所依据的人格理论,才能创造性地运用这些具体的方法,并可能设计出新的、适用于特定的对象的方法,才有可能扬长避短。 (二)心理咨询与心理治疗的主要流派: 在考察心理咨询与心理治疗的学派时,我们会遇到一个小小的麻烦,那就是,到目前为止,曾见诸文献的心理咨询与心理治疗学派有上百个之多,如基于生物学的一些派别;弗洛伊德的古典精神分析、还有同属于精神分析范畴的阿德勒学派、容格学派、精神分析的社会文化学派(霍妮、沙利文)、自我心理学学派(哈特曼)、对象关系学派(克莱因、范尔贝因、威尼考特、雅各布森、马勒)、自身心理学理论(科赫特);此外,还有原始宣泄疗法、先验医学疗法、认知疗法、现实疗法、理性情绪疗法、行为疗法、折衷分析疗法、格式塔疗法、

行为矫正复习资料——个人整理

一、名解: 广义的行为:包括外显与内隐,外显是行为变化,内隐是心理过程,就目前应用而言,是外显为主,内隐从属的地位。问题行为:指个体在行为上失去常态,并给他人造成困扰或妨碍自己生活适应的行为。 异常行为:指个体的某项行为异于常态,也就是偏离年龄相仿、教育水平相近的人群的平均值。 刺激分化:指的是通过选择性的强化和消退,使有机体学会对条件刺激和与条件刺激相类似的刺激做出不同反应的一种条件作用过程。 行为应予限制:是指行为本身不是问题,但是它发生在不该表现的环境中,因此应将其限制在特定的环境之中。 行为应予发展:是指当事人目前还不会操作目标行为,需要教会他如何动作来表现这一目标行为。 逐变标准设计:指在实验处理阶段,采取逐步实现目标行为的方式,将整个处理阶段划分为若干小阶段,并预先确定每一小阶段的要求标准,依序提升,以逐步形成目标行为的方法。 交替治疗设计:又叫同时治疗设计或多元素实验设计,指常被用来研究两种或两种以上实验处理或干预措施对单一行为效果的方法。 概括性条件强化物:当某一条件性强化物与多种多样的其他强化物配对使用时,这一条件性强化物就叫概括性条件强化物,简称概括性强化物。 正强化:指行为反应之后所尾随的事件造成反应概率提高的现象。 负强化:指行为反应之后立刻除去的厌恶刺激,可以增加该反应的发生概率。 消退:在特定情境中,个体产生了以前被强化的行为,但此时这个反应之后并不跟随着通常的强化,那么当他下一次遇到相似的情境时,该行为的发生概率就会降低。 差别强化:就是具体的期望(良性)行为后面出现强化物而其他(不良)行为后面没有强化物的程序。 刺激控制:指某一特定行为跟某一特定刺激而不是其他刺激的出现而出现。 刺激促进:就是在辨别性刺激存在的情况下,在行为发生之前和进行之中所增加的刺激。 塑造:就是建立个体在当时还不会完成的新的目标行为的过程,即个体从不能做出某一行为到一步一步学会这一行为的过程。 渐隐:就是指逐渐改变控制反应的刺激,最终使个体对部分变化了的刺激或完全更新了的刺激,仍能做出同样反应的现象。 连锁:就是把要求习得的整体行为分解为一个个紧密联系着的环节,即刺激—反应链,然后对当事人的行为链条逐一进行训练,并最终使之习得整体行为的方法。 代币系统:凡是能够累积并用来交换其他强化物,称为代币,凡是使用代币作为强化物来进行的行为矫正计划,就叫做代币系统。 行为契约:其实质就是建立一套以文字条款为形式的,对目标行为的奖励和惩罚机制。 行为迁移:指行为改变的效果延伸到其他情境场所的一种行为改变技术。行为维持:指行为改变的效果在时间范围上得到延伸的一种行为改变技术。 自我控制:指自己对自己实施行为矫正的方法。 即时后果短路:心理学家把即时后果的作用大于延缓后果的作用的现象,叫做即时后果短路。 厌恶疗法:是将欲戒除的目标行为与某种不愉快的或惩罚性的刺激反复多次结合起来,通过厌恶性条件作用过程,从而达到戒除或减少目标行为的目的。 生物反馈:是在电子仪器的帮助下,将我们身体内部的生理过程、生物电活动加以放大,放大后的机体电活动信息以视觉(如仪表读数)或听觉(加蜂鸣器)形式呈现出来,使主体得以了解自身的机体状态,并学会在一定程度上随意地控制和矫正不正常的生理变化。 认知:一般是指认识活动或认识过程,包括信念和信念体系、思维和想象。 矫枉过正:就是在问题行为发生后,要求当事人进行与该问题行为有关的费力活动。它包括过度补偿和积极练习两种形式。 实验设计:安排矫正方案来证明行为改变的原因,被称为实验设计。常用的实验设计方法有:倒返实验设计、多重基线设计、逐变标准设计、和交替治疗设计等形式。 三、填、选 1、问题行为的类型有:行为不足、行为过度、行为不当。 2、在行为矫正的历史上,最早把条件反射学习理论与临床心理治疗实践相结合的是南非的活尔普和英国的艾森克。 3、促使行为矫正真正走向人们的日常生活领域、走向广泛的临床应用领域的是著名心理学家斯金纳和班都拉等人。 4、行为矫正的理论基础主要包括四个方面:①经典性条件作用理论、②操作性条件作用理论、③社会学习理论④认知行为学习理论。 5、最早把经典性条件作用理论与临床心理治疗实践相结合的是南非的活尔普。 6、经典性条件作用是强化决定反应,而操作性条件作用则是反应决定强化。 7、任何行为都可能同时包括经典性和操作性两种条件反射。 8、大多数行为矫正的具体方法都是建立在操作性条件反射基础上。 9、认知行为学习理论,简单的说,就是结合行为理论和认知学习理论,认为通过影响个体的内在认知可以改变个体外显的问题行为。 10、正式开始使用认知行为矫正技术等术语,并著书立说,创立与发展认知行为矫正理论的著名学者主要是艾里斯和贝克。艾里斯创立了理性情绪行为疗法,贝克提出了认知疗法。 11、不合理信念的主要特点有下列三个:①绝对化要求;②过分概括化;③糟糕至极。 12、班都拉在提出学习的交互决定论以及大量实验研究的基础上,提出了观察学习理论。

大气校正方法说明

利用MODTRAN 进行大气校正的方法说明 一. 大气校正公式、原理以及所需参数 大气是介于传感器和地球表层之间由多种气体和气溶胶组成的介质层,电磁波在地物和传感器之间传输时,必然受到大气的影响。遥感对地观测时,要想得到目标的真实信息,大气校正是不可回避的。由卫星传感器获取的表观反射率ρ* 可由下式表出: '()(,,)(,,)(())1v s s v s v a s v s v t t v d t T S e t τμθρθθφφρθθφφρρθρ-*-=-++- (1) 式中: s θ:太阳天顶角 , s φ:太阳方位角 ,v θ :传感器天顶角,v φ :传感器方位角, t ρ:目标反射率,(,,)a s v s v ρθθφφ-:大气的路径辐射项等效反射率, τ:大气的光学厚度, S :大气的半球反照率,' ()v d t θ:散射透过率,cos()v v μθ=。 通过MODTRAN4对大气辐射传输进行模拟,求得大气校正所需参数,将所求的大气校正参数和传感器获得的表观反射率一并代入大气辐射传输公式 (1),便可计算出目标的真实反射率t ρ,从而完成大气校正的任务。 在实际的工作中,我们可以用下面的公式: 0()()()1t v v d v t L L F T S ρμμμρ=+ - (2) 是传感器接收到的辐射亮度,0()v L μ是路径辐射项,d F = 式中:s μ0F ()s T μ是太阳下行总辐射(0F 是大气层顶的太阳辐照度), ()v T μ=v e τμ-+'()v d t θ是传感器和目标之间的透过率(v e τμ-是直射透过率,' ()v d t θ是散射透过率)。在已知的观测条件(太阳和传感器的几何参数,大气廓线,地表反射率等)下,设定一组t ρ值以及相应的传感器高度,通过MODTRAN4模拟得到一组辐射亮度()v L μ,代入方程(2),再经过简单的代数运算就可以求出大气校正所需的参数(路径辐射项、透过率、大气半球反照率和太阳下行总辐射)。地表反射率和相应传感器高度设置见表1:(地面高程时候传感器不受大气影响,L0项去掉;()v T μ=1表示完全透过) 表1 地表反射率和相应的传感器高度参数设置 由(2)式,可以解出t ρ, ()v L μ

最新行为矫正重点整理

行为矫正 第一章 1、行为(名词解释):指的是个体任何可观察到的或者可测量的动作或者活动包括个体外部的动作和个体内在的心理过程,主要是个体外部的动作。 2、行为矫正(名词解释):依据学习的原理来处理问题行为问题,从而引起行为改变的一系列客观而系统的方法。行为改变:个体行为在本质上并非固定不变,而是因身心发展和客观环境影响在随时改变。 3、问题行为的类型: 虽然问题行为在生活中表现繁多,范围很广,但大体都可归为以下三大类: ①行为不足,人们期望的行为(良性行为)很少发生或从不发生。五岁儿童很少与同伴交流; ②行为过度,人们所不期望的行为(不良行为)发生太多,儿童上课时经常侵犯把别人; ③行为不当,期望的行为在不适宜的情景下产生,但在适宜的条件下却不发生。10岁儿童叫爸爸为“老兄”; 4、行为矫正的基本假设? 行为矫正的基本假设为: ①问题行为是习得的,其完全是个体后天在生活环境中通过学习而获得的; ②各个问题行为是分别习得的,其分别是在其特定环境中,进行了某种特定学习的产物; ③问题行为与环境有特殊的关系,其是在不良的环境条件影响下进行了某种不恰当的学习的结果; ④重新学习可以矫正问题行为,行为矫正的实质就是指导个体重新学习,以使问题行为发生改变的过程; 5、行为矫正的基本特点: 通过对学者的概括和总结,行为矫正有以下五个特点: ①行为矫正着眼于问题行为的解决;②行为矫正有明确的学习理论基础;③行为矫正强调环境和学习的作用;④行为矫正重视专业和生活的结合;⑤行为矫正强调对行为的测量; 第二章 1、行为的获得律和消退律(课本17—18) 获得律:条件作用是通过条件刺激反复与无条件刺激相匹配,从而使个体学会对条件刺激做出条件反应的过程建立起来的。 消退律:在条件反射建立以后,如果条件刺激重复出现多次而没有无条件刺激相伴随,则条件反应变的越来越弱,并最终消失。

行为矫正 案例分析

小学生问题行为矫正的案例分析 姓名:郑宜昌 学号:039 班级:09级应用心理学(1)班 授课老师:严云堂 目录 1.案例导入 2.背景资料 3.问题行为评估和概述 4.矫正目标 5.矫正方案的设计 6.矫正的技术和方法 7.矫正方案实施(细则) 8.矫正结果 9.注意事项 小学生问题行为矫正的案例分析

一.案例导入 小瑞(化名),男,12岁,汉族,某小学五年级学生。据父母介绍,孩子在上了小学之后,就逐渐出现了一些问题行为,让父母摸不着头脑。主要表现有: 1. 脾气暴躁,易激惹,家长不能满足其要求就大哭大闹。 2. 自制能力差,不能按时完成作业,并经常撒谎。 3. 逃学早退,有时候连续几周不去上课,近半年来,此类情况表现显著。 4. 不喜欢出门,一个人呆在家里; 在学校的时候,不喜欢群体活动,朋友很少。来访者在其父母的带领下找到咨询师,明显带有不配合的情绪。咨询师观察到,小瑞衣着较得体,只是显得比较拘谨。 二.背景资料 通过访谈,咨询师得知,来访家庭经济状况良好,有车、有房,爸爸是民营企业的职工,妈妈是个体商户。 成长经历:小瑞不到两岁的时候,爸爸下岗。一直以来,父母感情不好,经常为一些小事吵架。小瑞4岁之前一直跟着外公外婆生活,上了幼儿园后被父母接回。从小,家人对小瑞就听之任之,要什么买什么,很是溺爱。4岁开始上幼儿园,但时断时续,随意性大。从二年级开始就有无缘无故不到校上课的情况发生,但次数不多,老师也找过其谈话,谈话后行为次数减少。四年级上学期这种情况又开始严重,家长着急生气,加上工作比较忙多日不管他了。到后来,发展为有时连续一个礼拜不去上学。随着时间的推移,小瑞的功课落下了很多,本来学习还算中等的学生渐渐成了“特困帮扶对象”。 三.问题行为评估和概述 咨询师针对父母提出来的问题行为对小瑞进行了单独访谈,情况基本属实。通过分析,咨询师认为,脾气暴躁,喜欢大哭大闹属于情绪情感方面的问题;自

大气校正问题心得

九月份学习报告 报告人:fairy郑 学习内容介绍: 九月份主要对论文中存在的问题进行了修正以及对论文中不足的部分进行了改善。 一.首先:对环境小卫星HJ_1A的HIS数据进行了深入的了解。 二.其次:对envi软件在处理环境小卫星的HJ_1A的HIS数据的FALSSH大气校正从原理到实际操作有更加清晰的认识。 三.最后:对环境小卫星的HJ_1A的HIS数据的FALSSH大气校正的处理结果进行分析,并且根据此次实验对论文中的错误进行修正。 一.对环境小卫星HJ_1A的HIS数据的了解。 HSI 数据为资源卫星中心提供的辐亮度产品, 影像已经过系统级几何校正与表观辐亮度标定, 但前20 几个波段具有较为明显的噪声和条带效应。由此可知:环境小卫星HJ_1A的HIS数据是经过辐射定标的数据。 由辐亮度数据可以直接用公式求算出地物的表观反射率曲线 下图即为表观反射率曲线,即为原始数据的光谱曲线: 由上图可以得出在760 nm 与820 nm 附近存在两个明显的波谷, 这是由于760 nm 处为氧气吸收带,820 nm 处为水汽吸收带。说明直接由H SI 的辐亮度产品获得的表观反射率含有较多的大气影响。若直接基于表观反射率开展遥感应用, 难以体现地物的真实物理特性, 从而影响其后遥感应用的准确性。

二.在envi软件中进行大气校正的步骤 第一步:由于envi软件不能打开HJ_1A的HIS的h5格式的图像,所以下载了HDF5 这个扩展模块,这个扩展模块不用自己安装,直接将copy到“save_add”目录下,默认为C:\Program Files\ITT\IDL##\products\envi##\save_add\。 要使用这个这个功能时:按照File→Open Extenral File→HJ-1→HIS就可以打开h5格式的图像,同时还可以读取下载图像的原始信息。如下图 第二步:将图像格式转换为bip格式,

(完整word版)行为矫正原理与技术试卷及答案

核试卷 行为矫正原理与技术 (A 卷) ( 闭卷) 课程性质:必修 考核方式:考试 专业:应用心理学 年级:2004级本科1班 本卷满分100分 完卷时间:120分钟 1. 爱德华·桑代克对心理学的主要贡献是对以下哪一方面进行了描述。 ( ) A. 反应性条件反射 B. 条件情绪反应 C. 效果定律 D. 操作性条件反射 2. “任何时候马克把手指放在嘴里并把牙齿咬合在指甲上、表皮上或指甲周围 的皮肤上”这一描述是“咬指甲”这一行为哪方面的描述。 ( ) A. 归类 B. 判断 C. 类别名称 D. 行为定义 3. 一位老师在记录一个孩子上课时间每15分钟是否有扰乱课堂的行为,这位老 师让定时器每15分钟响一次。当扰乱行为出现时,老师在数据单相应的地方做一记录。当一个间隔上已经做子记录后,老师就不用观察这个孩子或 记录他的行为了,直到下一个间隔开始。这是以下哪一种记录方法。 ( ) A. 成果记录 B. 间隔记录 C. 连续记录 D. 时间样本记录 4. 在科学研究中,可以接受的最低观察者间信度值是多少 。 ( ) A. 60% B. 70% C. 80% D. 90% 一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

5. 以下哪一种设计不是真正的实验设计,因为它没有重复。 () A. A-B B. A-B-A-B C. 多基线跨行为 D. 改变标准 6. 王老师在对一个孩子说“请”和“谢谢”的行为记录。在一周的基线期之后, 王老师开始使用强化来增加说“请”的行为。两周基线期之后王老师又用 强化来增 加说“谢谢”的行为。王老师使用的是什么研究设计? () A. 多基线跨行为设计 B. 多基线跨被试设计 C. 多基线跨环境设计 D. 改 变标准设计 7. 小冉是一名电话销售员。他通过电话来销售产品。他不知道谁会买他的产品。 但他知道大约平均打13个电话就有一个人买。小周打电话的行为被什么强化程 序所强化? () A. 固定比例 B. 可变比例 C. 固定间隔 D. 可变间隔 8. 剥夺使得一个强化物力量如何变化。 () A. 更小 B. 更大 C. 没有变化 D. 失去作用 9. 明明一边骑自行车一边看着脚下的地面。突然间,他撞上了一辆停着的轿车, 他从车上弹起来,重重地摔在地上,把门牙摔掉了。这件事之后,明明再也不 敢在骑车时看着地面了。这是属于何种惩罚方式。() A. 撤销惩罚 B. 强化物损失惩罚 C. 负性惩罚 D. 正性惩罚 10. 杰克在他妻子向他大喊大叫之后再也不把脚放在茶几上了。当他的妻子不 在家时,他也不把脚放在茶几上的时候,这是属于以下哪种行为矫正的原理。 () A. 刺激控制 B. 刺激辨别 C. 刺激泛化 D. 刺激反应 11. 条件情绪反应这个术语是由谁于1920年首次提出的。 ()

行为矫正的研究方法(行为矫正技术)

授课题目行为矫正的研究方法授课类型理论课程授课时数 2 授课方法讲授法、讨论法 教学目标知识目标 掌握行为矫正实施的过程,包括行为评估的过程与方法、行为矫正计划的制定与实施过程,以及实验设计的方法。 情感、态 度、价值观 目标 培养学生在接到家长或教师说孩子存在行为问题,是否应当对这个孩子进行行为矫正的判断能力以及怎么开展。 能力目标 在学习的过程中,根据现实生活中的案例,如何开展行为矫正以及如何在行为矫正过程中开展研究。 重 点与难点1.教学重点:掌握行为矫正的实施过程以及实验设计。 2.教学难点:掌握行为矫正研究中的实验设计方法。 教 学 准 备 课件PPT、教案、教材 作业布置思考以下问题:1.行为矫正实施的过程 2.什么倒反实验设计?其设计原理是什么? 3.什么是多重基线设计,有哪几种形式? 板书设计 第一编行为矫正的基本理论第二章行为矫正的研究方法 一、行为矫正的实施过程 二、行为矫正的实验设计方法 教学反思 通过学习让学生掌握行为矫正的实施过程以及实验设计的方法,通过现实生活中的案例巩固所学知识。 教学过程

导入: 在第一章中我们就提到过,开展行为矫正要包括搜歌方面,即观察、测量和评估个体当前可观察到的的行为模式,这四个方面的内容实际上也回答了应该如何开展行为矫正这一问题。接下来,我们一起来学习行为矫正的实施过程以及实验设计方法,以及在这个过程中应当注意的问题。 一、行为矫正的实施过程 在临床实践中,行为矫正通常需要通过三个阶段:一是行为评估阶段,在这个阶段干预者需要对矫正的问题行为进行仔细的评估;二是制定行为矫正计划阶段,干预者根据评估阶段所获得的与行为有关的信息来制定适当的行为矫正计划;三是行为矫正实施阶段,干预者根据所制定的计划实施行为矫正。 (一)行为评估阶段 1.行为评估阶段的任务 行为评估是指干预者通过访谈、测验、观察等方式来收集行为当事人的信息,并运用分析、推论、假设等方式对个体的行为性质进行判断,并对需要矫正的问题行为的基本特点以及环境因素进行详细的测量的过程。 (1)行为筛查 筛选并确定需要矫正的问题行为。 (2)问题行为的详细评估 对所确定的问题行为进行更仔细的测量。 思考:行为筛查过程中干预者应当考虑哪些问题或因素? 对问题行为的原因进行评估 除了进一步获得有关行为发生频率、行为发生时每次所持续的时间以及行为强度方面的资料之外,重点在于对行为发生的过程中各种可能的环境因素进行评估。 获得与问题行为发生有关的各种环境因素,确定行为发生的直接诱因与相关因素。 2.行为评估的方法 在行为评估的过程中,常常用到的评估方法有四种:访谈、直接观察、检核表和标准化测验。 (1)访谈法 通常是一种非直接的评估方式。 访谈的对象:熟悉学生的人(教师、家长、同伴)或学生自己(有语言表达能力)。这些信息包括: 行为在什么地方出现?是否与场所有关?

FLAASH大气校正参数设置

1.3.2FLAASH其它参数的设置 (1)图像中心点坐标 可以从相应的HDF文件中找到,也可以从屏幕上直接读取影像的中心坐标,对反演结果影响不大。当影像位于西半球时,经度为负值; (2)传感器类型 当选择传感器类型时,模块会选择相应的类型的传感器波段响应函数,同时系统一般会自动设置传感器的高度和图像的空间分辨率; (3)海拔高度 海拔高度为研究区的平均海拔; (4)数据获取日期和卫星过境时间 卫星过境时间为格林尼治时间,可以从相应的HDF文件中找到; (5)大气模型 模块提供热带、中纬度夏季、中纬度冬季、极地夏季、极地冬季和美国标准大气模型,研究者根据数据获取时间选择相应的大气模型; (6)水气反演 大多数多光谱数据不推荐反演水汽含量; (7)气溶胶模型 可供选择的气溶胶模型有无气溶胶、城市气溶胶、乡村气溶胶、海洋气溶和对流层气溶胶模型。当能见度大于40Km时,气溶胶类型选择对反演没有太多影响,一般情况下利用ASTER 数据不做气胶反演; 在高级设置中,①Modtran 分辨率(Modtran resolution):一般设置成5cm-1;②反射率输出的时尺度系数,默认尺度系数是10000,可以使用默认的尺度系数。若使用默认的尺度系数,大气校正后得到反射率图像的数值域为:0-10000。其余参数使用默认值。 大气校正的目的是消除大气和光照等因素对地物反射的影响,获得地物反射率和辐射率、地表温度等真实物理模型参数,用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧对地物反射的影响,消除大气分子和气溶胶散射的影响。FLAASH 可以处理任何高光谱数据、卫星数据和航空数据(860nm/1135nm),这些数据是由HyMAP、AVIRIS、CASI、HYDICE、HYPERION(EO-1)AISA、HARP、DAIS、Probe-1、TRWIS-3、SINDRI、MIVIS、OrbView-4、NEMO等传感器获得的。FLAASH还可以校正垂直成像数据和侧视成像数据。

大气校正(ENVI)

大气校正(ENVI) 大气校正是定量遥感中重要的组成部分。本专题包括以下容: 大气校正概述 ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。

图1 大气层对成像的影响示意图 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他 途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校

正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正的 意义是一样的。 目前,遥感图像的大气校正方法很多。这些校正方法按照校正后的 结果可以分为2种: 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。 相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 常见的绝对大气校正方法有: 基于辐射传输模型 MORTRAN模型 LOWTRAN模型 ATCOR模型 6S模型等 基于简化辐射传输模型的黑暗像元法 基于统计学模型的反射率反演; 相对大气校正常见的是: 基于统计的不变目标法 直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供 参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大

行为矫正的原理与方法

行为矫正的原理与方法 行为强化 科学研究已经立了许多解释人类和其他动物行为的基本原理。行为强化就是行为学家们最早进行系统研究的基本原理之一。 行为强化的定义是: 行为被紧随其出现的直接结果加强的过程。 当一个行为被加强时,就更有可能在将来再次出现。 反应→后果 结果:行为更有可能在将来再次发生。 有人将一只饥饿的猫关进笼子,在笼子外面猫能够看得见的地方摆上食物,在笼子上安装了一个机关,只要猫用爪子击打一根杠杆,笼门就会打开。 当猫刚一被放进笼子时,它做出很多种行为,比如抓咬笼子上的栏杆,把爪子从栏杆缝隙中伸出,以及试图从栏杆之间挤出。 最后,这只猫偶然地碰到了杠杆,笼门打开了,猫于是能够走出笼子吃食。 每一次将饥饿的猫放进笼子,猫都用更短的时间击打杠杆打开笼门。最后, 只要一将猫放进笼子,它就马上去击打杠杆。桑代克将这种现象称为效果定律。 在这个例子中,当饥饿的猫被重新放回笼子的时候,这只猫就更有可能去击打杠杆,因为这个行为在此之前导致了一个直接的结果:逃出笼子和得到食物。逃出笼子和得到食物就是对猫击打杠杆的行为起到强化(增强)作用的结果。 从20世纪30代开始,斯金纳使用诸如老鼠和鸽子等实验动物进行了大量的行为强化原理研究。 例如,在用老鼠作的实验中,斯金纳将动物放进一个试验用的盒子里,每次当老鼠压下安置在盒子一面内壁上的一个杠杆时,斯金纳就给它一小块食物。起初,老鼠在盒子里到处察看活动,用鼻子嗅,用后腿支撑着向上爬等等。 当它碰巧用一只爪子压下了杠杆时,盒子里的自动装置就通过内壁上一个小洞送进一小块食物。 每次这只饥饿的老鼠压下杠杆时,它就得到一块食物。这样,每次老鼠被放进盒子的时候,它就更可能去压下杠杆。这个向下压杠杆的行为得到了加强,因为每次它发生时,都立即跟随着一块食物的出现。相对于老鼠进入笼子以后所展示出的其他所有的行为,这个压杠杆的行为增加了。 桑代克的猫和斯金纳的老鼠的例子,非常清楚地阐述了行为强化的原理。当一个行为造成了有利的结果时,这个行为更有可能在未来的相似环境中被重复。虽然行为强化原理最初是利用动物的实验结果阐述的,但是行为强化也是一个对人类行为构成影响的自然过程。 条件反射 经典条件反射

行为矫正的一些方法

行为治疗专家经过实验与临床经验,创立了许多治疗方法,现介绍十种儿童常用的行为治疗方法。 (一)系统脱敏法 系统脱敏法(systematic desensitization)是一种逐步去除不良条件性情绪反应的技术。Wolpe 1958年根据条件反射学说,通过动物实验研究,发展了这套完整的行为治疗方法。Wolpe认为恐惧或焦虑不可能与松弛同时并存。它们相互抑制或排斥,而克制焦虑(或恐惧)最有效的反应是肌肉松弛,故以逐步肌肉松弛作为阳性刺激,用于对抗焦虑(恐惧)情绪,建立系统脱敏技术。 适应证:儿童焦虑症、恐怖症、神经性厌食等。 操作方法: 分三个步骤。 1.肌肉松弛训练。 2.设计一个供想象的焦虑(恐惧)层次。 3.将松弛训练与想象层次结合。即首先教病儿学会由头部、颈肩、上肢、躯干至下肢的全身肌肉松弛法,同时根据病儿焦虑(恐惧)程度设计一个等级层次。病儿经过1~2周放松训练,达到几分钟内全身自我放松之后,便可进入系统脱敏程序。治疗开始,让病儿躺在一张睡椅上放松肌肉,并想象第一个最小焦虑(恐惧)情境(物),如体验到焦虑(恐惧),即刻举起一手指作为信号,若无焦虑(恐惧)产生,约7~1O秒钟后,让其放松,并停止想象此情境(物)。每一焦虑(恐惧)层次经过两个程序的想象,不产生焦虑(恐惧),便可进人下一层次。如此,使病儿逐渐经历最小焦虑(恐惧)到最大焦虑(恐惧)的各个层次,基本上能对实际的恐惧情境(物)不再产生焦虑。 (二)实践脱敏性 年幼儿童无法学会自我松弛,也不可能对焦虑(恐惧)情境(物)进行想象,便可采用实践脱敏法(Invivo desensltlzatlon)。适应证:儿童焦虑症、恐惧症。操作方法:将病儿不良情绪分为若干层级,让其逐级暴露于引起焦虑(恐惧)的实际情境或实物前,并在暴露同时,给予阳性刺激(如给吃喜爱的食物),使二者产生桔抗而逐步脱敏。例如,某幼儿怕狗,治疗开始,让他吃糖果的同时,看狗的照片,谈狗的趣事,之后看远处关在笼子里的狗,然后再分次逐渐走近狗笼(或将狗笼移近),直至消除害怕狗的情感反应。

北师大网络教育2012行为矫正原理与技术作业

《行为矫正》作业 本课程作业由两部分组成。第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。第二部分为“主观题部分”,由简答题和论述题组成,共15分。作业总分30分,将作为平时成绩记入课程总成绩。 客观题部分: 一、选择题(每题1分,共15题) 1、查理每天喝咖啡太多,这样的行为被认为是( B ) A.行为适当 B.行为过度 C.行为不足 D.行为不当 2、班都拉提出的行为治疗的方法是:( C ) A.厌恶法 B.系统脱敏法 C.示范-模仿疗法 D.理性情绪疗法 3、在观察学习中,只要观察者看到榜样的行为受到了强化,则等于观察者受到了间接强化,因而也能对观察者的模仿起到动机激励作用,此为( B ) A. 内部强化 B.外部强化 C.自我强化 D.替代强化 4、用猫打开迷箱的实验解释试误学习的心理学家是:( B ) A. 巴甫洛夫 B. 桑代克 C. 斯金纳 D. 班杜拉 5、赌博行为属于间歇强化的哪种?( B ) A.定比例强化 B.变比例强化 C.定时距强化 D.变时距强化 6、当儿童出现不良行为时,施予厌恶刺激或剥夺他正在享受的奖励刺激,这种行为矫正模式是( B ) A. 正强化 B.惩罚 C. 负强化 D.消退 7、当乐乐把自己弄脏的墙擦干净后,父亲又要求他将另一面墙上的污渍(这些污渍不是乐乐弄的)也擦洗干净。父亲采取的方法是:( B ) A.积极练习 B.体罚 C.体力劳动 D.过度补偿 8、某教师对喜欢打小报告的学生采取故意不理会的方式,这是一种( D ) A.正强化 B.负强化 C.惩罚 D.消退 9、武艺为了避免吃垃圾食品,每次去超市之前都先吃饱,他所采用的方法是( B )

大气校正问题

ENVI FLAASH 大气校正常见错误及解决方法(2013年7月15号更新) (2011-03-07 16:55:57) 转载▼ 标签: flaash 大气校正 分类: ENVI 本文汇总了ENVI FLAASH 大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。前面是错误提示及说明,后面是错误解释及解决方法。 FLAASH 对输入数据类型有以下几个要求: 1、波段范围:卫星图像:400-2500nm ,航空图像:860nm-1135nm 。如果要执行水汽反演,光谱分辨率<=15nm ,且至少包含以下波段范围中的一个: ??●1050-1210 nm ??●770-870 nm ??●870-1020 nm 2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW ) /(cm2*nm*sr )。 3、数据类型:浮点型(Floating Point )、32位无符号整型(Long Integer )、16位无符号和有符号整型(Integer 、Unsigned Int),但是最终会在导入数据时通过Scale Factor 转成浮点型的辐射亮度(μW )/(cm2*nm*sr )。 4、文件类型:ENVI 标准栅格格式文件,BIP 或者BIL 储存结构。 5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth )值,如果是高光谱还必须有波段宽度(FWHM ),这两个参数都可以通过编辑头文件信息输入(Edit Header )。 运行错误 1.Unable to write to this file.File or directory is invalid or unavailable 。

Flassh大气校正

[转载]大气校正(转) 大气校正是定量遥感中重要的组成部分。本专题包括以下内容: ? ●大气校正概述 ??●ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反 射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太阳光的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正的意义是一样的。 常见的绝对大气校正方法有: ●基于辐射传输模型 ? ??MORTRAN模型 ? ??LOWTRAN模型

? ??ATCOR模型 ? ??6S模型等 ●基于简化辐射传输模型的黑暗像元法 ●基于统计学模型的反射率反演; 相对大气校正常见的是: ●基于统计的不变目标法 ●直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大气校正方法。 2、如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3、如果参数缺少,没办法了只能选择较简单的方法了。 2 ENVI大气校正功能 在ENVI中包含了很多大气校正模型,包括基于辐射传输模型的MORTRAN模型、黑暗像元法、基于统计学模型的反射率反演。基于统计的不变目标法可以利用ENVI一些功能实现。其中MORTRAN 模型集成在ENVI大气校正扩展模块中。还有直方图匹配等。 2.1 简化黑暗像元法大气校正

FLAASH大气校正常见错误及解决方法

FLAASH大气校正常见错误及解决方法 本文汇总了ENVI FLAASH大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。前面是错误提示及说明,后面是错误解释及解决方法。 FLAASH对输入数据类型有以下几个要求: 1、波段范围:卫星图像:400-2500nm,航空图像:860nm-1135nm。如果要执行水汽反演,光谱分辨率<=15nm,且至少包含以下波段范围中的一个: ??●1050-1210 nm ??●770-870 nm ??●870-1020 nm 2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 3、数据类型:浮点型(Floating Point)、32位无符号整型(Long Integer)、16位无符号和有符号整型(Integer、Unsigned Int),但是最终会在导入数据时通过Scale Factor转成浮点型的辐射亮度(μW)/(cm2*nm*sr)。 4、文件类型:ENVI标准栅格格式文件,BIP或者BIL储存结构。 5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 运行错误 1.Unable to write to this file.File or directory is invalid or unavailable。

没有设置输出反射率文件名。 解决方法是单击Output Reflectance File按钮,选择反射率数据输出目录及文件名,或者直接手动输入。 2.ACC Error:convert7 IDL Error:End of input record encountered on file unit:0. 平均海拔高程太大。 注意:填写影像所在区域的平均海拔高程的单位是km:Ground Elevation(Km)。 3.ACC error:avrd: IDL error:Unable to allocate memory:to make array Not enough space ACC_AVRD

行为矫正试题及答案

行为矫正试题及答案:(题目黑色,答案为蓝色标示) 一、名词解释: 1、强化:行为受其结果影响由少而多不断增加的现象,称之为“强化”。该结果称之为“强化物”。 2、消退原理:是指某强化的行为一旦其行为之后不再给予强化物,则该行为的频率就会减少至消失。 3、区分强化原理:是指在同样的前提背景下,个体可能有很多行为表现,但只有某一种行为会得到强化,其他任何行为都得不到强化,则该情境下该行为出现的可能性增加,而其他任何行为都将减少或者消失。 4、目标行为:这个人言行中哪些容构成了行为过度或行为不足,也就是将要被改变的行为。 5、功能评估:收集与问题行为的发生有关的前提和后果的过程。这些前提和后果与问题行为的发生有着功能上的联系。 6、消退爆发:指的是在开始实施消退法时,行为反应不降反而短暂性的增加或者出现新的非预期行为的现象。 7、惩罚:一个具体的行为发生之后紧随着一个结果,于是,将来这个行为不太可能再次发生。(或是指行为者在一定情境或刺激下产生莫某一行为后,若即时使之承受厌恶刺激(又称惩罚物)或撤除正在享用的正强化物,那么其以后在类似的情境或刺激下,该行为的发生频率就会降低) 8、罚时出局:在负惩罚中,如果暂时丧失掉的是一段时间喜欢的活

动。 二、问答题及简述题:(答案仅供参考,可酌情给分) 1、简述“强化物”与“奖励”的关系? 答: 1、“奖励”是施予者认为行为者想要的。例:多发工资。 2、“强化物”是动态的后验概念,“奖励”是静态的先占概念。 3、惩罚有时可作为强化物起作用。 2、影响强化物的因素并解释或举例说明? 答:依从原则,例如,强化小明写作业的行为,选取可以玩游戏为强化物就不合适,因为玩游戏可以通过很多途径获得,不一定非要写作业才可以。 即时原则,行为出现立刻给予强化,不能隔得时间过久否则就没有效果。 匹配原则,强化物要和行为匹配,例如想让他写作业,用一片薯片或给他买游戏机都是与行为不相匹配的。 剥夺原则,空间管理时间管理。 3、运用消退法的注意事项? 答:1、消退法获得长期效果的前提:对孩子需求敏感,能够实时发现并强化孩子日常生活中建设性行为。 2、消退法快速产生效果的保证:让所有与孩子有关的人

大气校正模型简述

大气辐射校正模型简介 1、acorn模型 它是一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作的波长范围是350-2500nm。 在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。 Acorn所提供的最高级的大气校正形式是基于辐射传输理论的,大气校正的方法是基于chandrasekhar(1960,dover)公式,描述了太阳辐射源、大气、和地表对辐射的贡献关系。Caorn提供了一系列大气校正策略,包括经验法和基于辐射传输理论的方法,既可以对高光谱数据进行大气校正,也可以对多光谱图像数据进行大气校正,校正模式如下: 1)模式1:对定标后的高光谱数据进行辐射传输大气校正,输出项为地表 表观反射率。 2)模式1.5:对定标后的高光谱数据利用水气和液体水光谱你和技术进行 辐射传输大 气校正。 3)模式2:对高光谱大气校正结果进行独立的光谱增强。 4)模式3:利用经验线性法对高光谱数据进行大气校正 5)模式4:对高光谱数据进行卷积处理得到多光谱数据 6)模式5:对定标的多光谱数据进行辐射传输大气校正 7)模式6:对多光谱的大气校正结果进行独立的光谱增强 2、lowtran模型 LOWTRAN是一种低分辨率(分辨率≥20cm-1)大气辐射传输模式。它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。 lowtran7可以根据用户的需要,设置水平、倾斜、及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。 1)多次散射处理 lowtran 采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通量。再用得到的通量计算散射源函数,用二流近似解求辐射传输方程。 2)透过率计算 该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法 3)光线几何路径计算 考虑了地球曲率和大气折射效应,将大气看作球面分层,逐层考虑大气折射效应 3、modtran模型 MODTARN(ModerateResolutionTransmission)这是由美国空军地球物理实验(AFGL)开发的计算大气透过率及辐射的软件包。MODTRAN从LOWTRAN发展而来,它提高LOWTRAN的光

相关文档
最新文档