一阶倒立摆含观测器的状态反馈控制系统综合与设计

一阶倒立摆含观测器的状态反馈控制系统综合与设计
一阶倒立摆含观测器的状态反馈控制系统综合与设计

广 西 大 学 实 验 报 告

实验容:一阶倒立摆含观测器的状态反馈控制系统综合与设计 凯强 (0902100202) 、毛世博(0902100110)、季(0902100206)

一、 实验时间:2013.3.8

二、 实验地点:综合楼702

三、 实验目的

1、理解并掌握线性状态反馈控制的原理和方法;

2、理解并掌握线性观测器的设计方法;

3、练习控制性能比较与评估的方法。

四、实验设备与软件:

1、倒立摆试验台

2、MA TLAB 软件

五、实验原理

1、被控对象模型及其线性化

根据牛顿定律建立系统垂直和水平方向的动力学方程,计及u=F ,得

u ml ml x b x m M =+-++?φφφθsin cos )(2

2 (1) 0sin cos )(12=--++?

????φφφφmgl x ml b ml J (2) 保留低阶项φ,?φ项,忽略微小的高次项,在竖直位置处进行线性化。由(1)(2)得 u ml x b x m M =-++?

?φ 2)( (3) 0sin )(12=--++?????φφφmgl x ml b ml J (4) 令T x x z )(??=φφ,T x y )(φ=,输入为?

?=x v ,则状态方程为 v ml J ml z ml J b ml J mgl

z ??????? ??++???????

??+-+=?22120100010000

0000010 (5) v z y ???

? ??+???? ??=0001000001 代入参数,忽略摩擦得

v z z ??????? ??+??????? ??=?301004.29001000000000

10 (6) v z y ???

? ??+???? ??=0001000001 该状态方程输入是加速度,输出是小车位置和摆杆角度。

2、时不变线性连续系统的状态反馈控制与观测器

对时不变线性连续系统

Cx y Bu Ax x =+=?

以系统状态为反馈变量产生控制

Kx v u +=

这种控制方式称为状态反馈控制,但状态作为系统部变量,一般很难直接测出,为此引入状态观测器。

全维状态观测器的动态方程为

Ly Bu x LC A y y L Bu x A x ++-=-++=Λ

ΛΛΛ?)()(

若输出矩阵C 为满秩时,可设计较简单的降维状态观测器,其最小维数为n-m (n 代表状态个数,m 代表输出个数)。

六、实验容

1、状态反馈及极点配置

(1) 能控性检查:

输入代码:

clear;

A = [0 1 0 0;

0 0 0 0;

0 0 0 1;

0 0 29.4 0];

B = [0 1 0 3]';

C = [1 0 0 0;

0 1 0 0];

D = [0 0]';

Uc = ctrb(A,B);

rank(Uc)

输出:

ans =

4

系统能控性矩阵满秩,即系统状态完全能控。(2)系统极点配置

选取系统主导极点:

1223

j

μ=-+,

2223

j

μ=--闭环非主导极点距虚轴的距离为主导极点的5倍以上,则

取:

310-0.0001j

μ=-,

4100.0001j

μ=-+

输入代码:

clear;

A = [0 1 0 0;

0 0 0 0;

0 0 0 1;

0 0 29.4 0];

B = [0 1 0 3]';

P = [-10-0.0001*j,-10+0.0001*j,-2-2*sqrt(3)*j,-2+2*sqrt(3)*j]; K = place(A,B,P)

输出:

K =

-54.4218 -24.4898 93.2739 16.1633

(3)极点配置系统仿真

根据系统空间表达式,搭建模型。

仿真波形如图

从仿真结果可以看出,小车最终稳定,小车速度,摆杆角度,角速度最终都稳定在0位置,小车位置超调≤5%,调整时间≤2s,基本符合控制要求。

2、采用状态观测器的状态反馈系统设计

(1)闭环观测器极点配置

<1> 判断可观性

输入代码:

A = [0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0];

B = [0;1;0;3];

C = [1 0 0 0;0 0 1 0];

D = 0;

sys = ss(A,B,C,D);

observe_matrix = obsv(A,C);

rank_of_obsv = rank(observe_matrix)

输出:

rank_of_obsv =

4

系统完全可观。

输出矩阵C的秩为2,所以降维观测器的最小维数为4-2=2。

<2> 设定降维观测器的期望极点

观测器特征值的选取一般是状态反馈配置极点2-3倍,所以选取状态观测器为-5,-5。

输入代码:

R = [0 1 0 0;0 0 0 1];

P = [C;R];

invP = inv(P);

p = [-5;-5];

<3> 求取等价系统的模型

输入代码:

AA = P*A*invP

A11 = [AA(1:2,1:2)];

A12 = [AA(1:2,3:4)];

A21 = [AA(3:4,1:2)];

A22 = [AA(3:4,3:4)];

BB = P*B

B1 = BB(1:2);

B2 = BB(3:4);

CC = C*invP

输出:

AA =

0 0 1.0000 0

0 0 0 1.0000

0 0 0 0

0 29.4000 0 0

BB =

1

3

CC =

1 0 0 0

0 1 0 0

<4> 求取矩阵L

输入代码:

syms s

system_eq = expand((s-p(1))*(s-p(2)))

syms L_1L_2L_3L_4

syms s

L = [L_1 0;0 L_4];

eq = collect(det(s*eye(2)-(A22-L*A12)),s)输出:

system_eq =

s^2 + 10*s + 25

eq =

s^2 + (L_1 + L_4)*s + L_1*L_4

选取

L= LL = [5 0;0 5];

<5>求取降维观测器的动态方程

输入代码:

AW = (A22 - LL*A12)

BU = (B2 - LL*B1)

BY = (A21 - LL*A11) + (A22 - LL*A12)*LL CW = invP(1:4,3:4)

DY = invP(1:4,1:2)+invP(1:4,3:4)*LL

输出:

AW =

-5 0

0 -5

BU =

1

3

BY =

-25.0000 0

0 4.4000

CW =

0 0

1 0

0 0

0 1

DY =

1 0

5 0

0 1

0 5

(2)系统仿真

仿真波形如图

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

一级倒立摆地Simulink仿真

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中231ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θ θ )对系统进行线性化,所以 可以做如下线性化处理:32 sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中23 1ml J = 取系统的状态变量为,,,,4321θθ ====x x x x x x 输出T x y ][θ=包括小车位移和摆杆的角位移. 即X=????????????4321x x x x =????? ???????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44-+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43-+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =????????????????? ?-++-+-03)(4)(300100003)(4300 0010ml l m M g m M m m M mg ????????????4321x x x x + ???????? ??????????-+--+ml l m M m m M 3)(4303)(440 u

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

(完整版)一级直线倒立摆matlab程序

非线性作业 一 一级直线倒立摆 如图1所示 系统里的各参数变量 M :小车系统的等效质量(1.096kg ); 1m :摆杆的质量(0.109kg ); 2m :摆杆的半长(0.25m ); J :摆杆系统的转动惯量(0.0034kg*m ); g :重力加速度(9.8N/Kg ); r :小车的水平位置(m ); θ:摆角大小(以竖直向上为0起始位置,逆时针方向为正方向); h F :小车对摆杆水平方向作用力(N )(向左为正方向),h F ’是其反作用力; v F :小车对摆杆竖直方向作用力(N )(向上为正方向),v F ’是其反作用力; U :电动机经传动机构给小车的力,可理解为控制作用u’(向左为正方向); p x :摆杆重心的水平位置(m );p y :摆杆重心的竖直位置(m )。 1.1一级倒立摆的数学建模 定义系统的状态为[r,r, θ, θ] 经推导整理后可以达到倒立摆系统的牛顿力学模型: θθθsin cos )(2mgl l r m ml I =-+ (1) u ml r m M ml -?=+-?2sin )(cos θθθθ& (2) 因为摆杆一般在工作在竖直向上的小领域内θ=0,可以在小范围近似处理: 0,0sin ,1cos 2==≈θθθ&,则数学模型可以整理成: θθmgl l r m ml I =-+&&&&)(2 (3) u r m M ml =++-&&&&)(θ (4) 系统的状态空间模型为

??????????????θθ&&&&&&r r =????????????????+++++0)() (0010000)(0000102222Mml m M I m M mgl Mml m M I gl m ??????????????θθ&&r r +???????? ??????????+++++222)(0)(0Mml m M I ml Mml m M I ml I u (5) u r r r y ??????+?????? ??????????????=??????=0000101000θθθ&& (6) 代人实际系统的参数后状态方程为: ????????????? ?θθ&&&&&&r r =????????????08285.2700100006293.0000010??????????????θθ&&r r +u ????????????3566.208832.00 (7) u r r r y ??????+????????????? ???????=??????=0000101000θθθ&& (8) 1.2滑模变结构在一级倒立摆系统的应用 主要包括切换函数的设计、控制率的设计和系统消除抖振的抑制。基于线性二次型最优化理论的切换函数设计,定义系统的优化积分指标是: Qxdt x J T ?∞ =0 Q>0, 本文采用指数趋近律:)sgn(S kS S ε--=&,其中k 和ε为正数。将其代人S=Cx=0中,可以得到: )sgn(S kS CBu CAx x C S ε--=+==&& (9) 控制率为:))sgn(()(1S kS CAx CB u ε++-=- (10) ε的选取主要是为了抑制系统的摩擦力和近似线性化所带来的误差和参数摄动等因素,从而使得系统具有良好的鲁棒性。文中k=25, ε=0.8。取变换矩阵T 。

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=-2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

一级直线倒立摆系统模糊控制器设计---实验指导书

一级直线倒立摆系统模糊控制器设计 实验指导书

目录 1 实验要求................................................................................. . (3) 1.1 实验准备................................................................................. . (3) 1.2 评分规则................................................................................. . (3) 1.3 实验报告容................................................................................. .. (3) 1.4 安全注意事项................................................................................. .. (3) 2 倒立摆实验平台介绍................................................................................. .. (4) 2.1 硬件组成................................................................................. . (4) 2.2 软件结构................................................................................. . (4) 3 倒立摆数学建模(预习 容) .............................................................................. (6) 4 模糊控制实验................................................................................. (8) 4.1 模糊控制器设计(预习容)............................................................................... (8) 4.2 模糊控制器仿真................................................................................. (12) 4.3 模糊控制器实时控制实验................................................................................. .. (12) 5 附录:控制理论中常用的MATLAB 函

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

直线一级倒立摆控制系统设计(1)

内蒙古科技大学课程设计 内蒙古科技大学 控制系统仿真设计说明书 题目:直线一级摆的PID控制与校正 学生姓名:罗鹏飞 学号:0967112208 专业:测控技术与仪器 班级:2009-2班 指导教师:张勇

摘要 倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。 本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。 本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。 关键词:一级倒立摆,PID,MATLAB仿真

目录 摘要...................................................................I 目录..................................................................II 第1章 MATLAB仿真软件的应用.. (1) 1.1 MATLAB的基本介绍 (1) 1.2 MATLAB的仿真 (1) 1.3 控制系统的动态仿真 (2) 1.4 小结 (4) 第2章直线一级倒立摆系统及其数学模型 (5) 2.1 系统组成 (5) 2.1.1 倒立摆的组成 (6) 2.1.2 电控箱 (6) 2.1.4 倒立摆特性 (7) 2.2 模型的建立 (7) 2.2.1 微分方程的推导 (8) 3.2.2 传递函数 (10) 3.2.3 状态空间结构方程 (10) 2.2.4 实际系统模型 (12) 2.2.5 采用MATLAB语句形式进行仿真 (13) 第3章直线一级倒立摆的PID控制器设计与调节 (16) 3.1 PID控制器的设计 (16) 3.2 PID控制器设计MATLAB仿真 (18) 结论 (21) 参考文献 (22)

基于PID控制的一级倒立摆系统的研究

本科生毕业设计(论文) 论文题目:基于PID控制的一级倒立摆系统的研究 姓名: 学院: 专业: 班级、学号: 指导教师:

摘要 本文的研究对象为一级倒立摆系统,主要是基于PID控制的一级倒立摆控制系统的设计。利用PID参数整定的多种方法对PID的三个参数进行调节,并对其优化,然后用利用Matlab对其进行仿真,并对最后仿真图的结果进行分析与比较。 倒立摆是一种典型的非线性、多变量、强耦合、快速的、自然不稳定的系统。在实际生产生活中有很多类似的系统,故研究一级倒立摆系统的PID控制具有很大的实际意义。本文介绍了多种PID参数整定算法,主要采用了的是Z-N整定法,并详细介绍了PID参数整定算法的相关理论和具体操作方法。在本文中还建立了一级倒立摆的数学模型和物理模型。本文着重讲述了Z-N整定法和试凑法对PID三个参数的进行优化的具体方法。用Matlab对一级倒立摆系统进行了仿真,并且比较这些方法的优缺点,对最后的仿真图结果研究和分析。得出PID参数整定方法的优缺点。 关键词: PID控制器参数整定一级倒立摆 Matlab仿真

Abstract Object of this paper is an inverted pendulum system is mainly based on PID control an inverted pendulum control system design. Use a variety of PID parameter tuning method to adjust the three parameters of PID, and its optimization, and then use them using matlab simulation, and the results of the last simulation diagram analysis and comparison. Inverted pendulum is a typical non-linear, multi-variable, strong coupling, fast, naturally unstable system. In real life there are a lot of similar production systems, it is of an inverted pendulum system PID control has great practical significance. This article describes a variety of PID parameter tuning algorithm, the main use of the Z-N entire titration, and details of the PID parameter tuning algorithms related theory and specific methods of operation. In this article, also established a mathematical model of the inverted pendulum and physical models. This paper focuses on the ZN Tuning Method for PID and genetic algorithms to optimize the three parameters of specific methods. Using Matlab on an inverted pendulum system is simulated, and compare the advantages and disadvantages of these methods, drawing on the final results of the simulation study and

相关文档
最新文档