分享动力电池的性能参数

分享动力电池的性能参数

分享动力电池的性能参数

作为一篇入门的文章,笔者先跟大家分享一下动力电池的性能参数,虽然这些个参数都比较偏理论叙述,但是却是动力电池最基本的元素,就像一把钥匙,通过它们才能评价动力电池的好坏,才能打开这扇大门。

我们先来复习一下高中知识...

电压(V)

开路电压,顾名思义,即电池外部不接任何负载或电源,测量电池正负极之间的电位差,即为电池的开路电压。工作电压,与开路电压相对应,即电池外接上负载或电源,有电流流过电池,测量所得的正负极之间的电位差。

由于电池内阻的存在,放电状态时(外接负载),工作电压低于开路电压,充电时(外接电源)的工作电压高于开路电压。

电池容量(Ah)

能够容纳或释放的电荷Q,Q=It,即电池容量(Ah)=电流(A)x 放电时间(h),单位一般为Ah(安时)或mAh(毫安时)。

比如车内蓄电池标注16Ah,那么在工作时电流为1A的时候,理论上可以使用16小时。电池能量(Wh)

电池储存的能量,单位为Wh(瓦时),能量(Wh)=电压(V)×电池容量(Ah)。

如下图,为标识为3.7V/10000mAh的电池,其能量为37Wh,而如果我们把4节这样的电池串联,就组成了一个电压是14.8V,容量为10000mAh的电池组,虽然没有提高电池容量,但总能量确提高了4倍。

(写到这儿笔者看了一下自己的充电宝标识,特意搜索了下民航规定不能携带超过160Wh…)

复习了高中知识,我们下面来一点干货...

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

动力电池基础知识普及

动力电池基础知识普及 动力电池是纯电动汽车的唯一能量来源,同时也是整车成本较高的一个关键动力总成部件。自电动汽车诞生以来,铅酸电池、镍氢电池以及锂电池等具有较为广泛的应用。 1)最早应用于电动汽车上的是铅酸电池,并且在较长的一段时间内都是电动汽车的主要能源方案,其主要特点是原材料易得、安全耐用、价格低廉,并且技术较为成熟。尤其是20 世纪70 年代以后,密封免维护铅酸电池的出新极大提升了性能水平和使用方便程度,在市场中占据了较大的份额。但是比能量和比功率低是铅酸电池的最大缺点,能量密度大概在35Wh/kg 左右,一般400 次左右的循环寿命也在一定程度上制约了铅酸电池的应用。目前虽然在电动汽车市场上仍有应用,但一般都是局限在对整车性能水平要求不高且注重成本的车型上,如电动自行车以及一些场地用车等。 2)镍氢电池的比能量和比功率均在一定程度上优于铅酸电池,但其价格是同容量铅酸电池的5~8 倍,特性与镍镉电池相似,但不存在镍镉电池的重金属污染问题。快速充电和深度放电的性能较好,效率较高,且无需维护,目前主要是在混合动力汽车中应用较多。不过镍氢电池自放电率较高,且对环境温度较为敏感,尤其是单体电压较低约为 1.2V 左右,对于纯电动汽车来说,往往需串联大量的电池才能满足其高压系统需求,所以在纯电动汽车上的应用相对较少。 3)锂离子电池与其他电池相比,在单体电压、容量、比功率方面具有较大的优势,且可进行大电流充放电、循环充放电性能好、较为安全,目前在纯电动汽车、混合动力汽车以及燃料电池车上均有应用。随着锂电池材料技术以及加工工艺的进一步发展,已逐渐成为国内外电动汽车用动力电池的首选方案。 三类主要电池的性能对比

电动汽车动力电池PACK组件结构以及市场情况分析

电动汽车动力电池PACK组件结构以及市场情况分析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 自1990年问世以来,锂电池因其能量密度高、电压高、环保、寿命长以及可快速充电等优点,深受3C数码、动力工具等行业的追捧,特别是对新能源汽车行业的贡献尤为突出。 作为提供新能源汽车动力来源的锂电池产业市场潜力巨大,不仅仅是国家战略发展的重要一环,预计未来5到10年,其产业链将实现行业生态的自我完善和发展,产业规模有望突破1600亿元。

众所周知,从锂电池单体电芯到自动化模组再到PACK生产线的整个过程中,组装线的自动化程度是决定产品质量与生产效率的重要因素。 PACK是包装、封装、装配的意思,其工序分为加工、组装、包装三大部分。 在讲动力电池PACK制造技术之前,我们可以简单了解下,动力电池PACK总成由哪些系统组成,每个系统又由哪些零件组成? 目前,汽车用动力电池基本上由以下5个系统组成: 1)动力电池模块 2)结构系统 3)电气系统 4)热管理系统 5)BMS 为了让大家更直观的了解电池PACK,以奥迪A3 Sportback-etron混合动力车的PACK为例。

一般来说,电动汽车动力电池PACK由以下几个部分构成: 1)动力电池模块系统 这个不用多说,如果把电池PACK比作一个人体,那么模块就是“心脏”,负责储存和释放能量,为汽车提供动力。锂电池模组是由几颗到数百颗电池芯经由并联及串联所组成的多个模组,除了机构设计部分,再加上电池管理系统和热管理系统就可组成一个较完整的锂电池包系统。 2)结构系统

用电设计容量

凯旋华府用电规划 凯旋华府小区用电功率9700KVA将由定军变电站接专线引来。 1.供配电系统设计(一期)负荷估算及KB所安装: 预测设备安装总容量:pe=3753w计算容量pj=1463kw,预计选用SGB10-10/0.4kv型干式变压器的安装总容量为2000kva,设计平均负荷率21w/m 2,变压器装机率29va/m2,负荷率为81%,(补偿后功率因数cosφ=0.9以上)。预计安装两台600kva变压器(住宅用单)和一台500kva变压器(商业用电)供电电源及配变电房设置: 依据本工程建设规模及内部功能,将在本区内设一座市政10KV开闭所,其作用给各期的变电所提供10KV电源。 KB所只有40m2左右,可以把地下室KB所预留房间缩小,以节省空间。(见附图)把配电室的地面做法高出其它地面100mm-150mm。 依据本期地形及建设规模,拟将在规划区域内建设约1座10/0.4kv变配电所,其高压侧进线采用放射式或内环网方式由本区10kv开闭所供给。 2.供配电系统设计(二期): 预测设备安装总容量:pe=3800w计算容量pj=1300kw,预计选用SGB10-10/0.4kv型干式变压器的安装总容量为1600kva,设计平均负荷率20w/m 2,变压器装机率27va/m2,负荷率为80%,(补偿后功率因数cosφ=0.9以上)。预计安装2台800kva变压器 供电电源及变配电房设置:依据本期地形及建设规模,拟将在规划区域内建设约2座10/0.4kv变配电所,其高压侧进线采用放射式或内环网方式由本区10kv

开闭所供给。 3.供配电系统设计(三期) 预测设备安装总容量:pe=9721w计算容量pj=3305kw,预计选用SGB10-10/0.4kv型干式变压器的安装总容量为4500kva设计平均负荷率21w/m2,变压器装机率29va/m2,负荷率为82%,(补偿后功率因数cosφ=0.9以上)。预计安装2台1000kva变压器和2台1250kva变压器(其中已包含幼儿园供电)供电电源及变配电房设置: 依据本期地形及建设规模,拟将在规划区域内建设约2座10/0.4kv变配电所,其高压侧进线采用放射式或内环网方式由本区10kv开闭所供给。 4.供配电系统设计(四期) 预测设备安装总容量:pe=3400w计算容量pj=1005kw,预计选用SGB10-10/0.4kv型干式变压器的安装总容量为1600kva设计平均负荷率21w/m2,变压器装机率29va/m2,负荷率为82%,(补偿后功率因数cosφ=0.9以上)。预计安装2台800kva变压器 供电电源及变配电房设置: 依据本期地形及建设规模,拟将在规划区域内建设约2座10/0.4kv变配电所,其高压侧进线采用放射式或内环网方式由本区10kv开闭所供给。 由于四期供电是由二期分出来的所以并不影响整体规划,可以直接从小区KB 所供电。除一期变压器放在地下室、二、三、四期均在景观区内设置箱变以节省地下室空间。

介绍动力电池的类型、关键性能指标

新能源汽车发展得如火如荼的今天,相信大家都对纯电动汽车的商家如数家珍,比如国外品牌比较出名的有特斯拉电动汽车、宝马i3等、国内新能源汽车有号称电动汽车领头羊的比亚迪纯电动汽车、还有吉利纯电动汽车及奇瑞电动汽车等。但是,电动汽车最为关键的核心部件——动力电池,大家又了解多少呢? 关于动力电池,由于内容比较多,我们这里先介绍动力电池的类型、关键性能指标以及三种典型动力电池。 1、动力电池的类型 从系统的角度来说,电池分为化学电池、物理电池和生物电池三大类。 对于我们比较熟悉的化学电池,则是按正负极材料分为锌锰电池系列、镍镉镍氢系列、铅酸系列、锂电池系列等,也就是铅酸电池、镍氢电池、锂离子电池等目前车辆比较常用的动力电池。 另外,物理电池是利用光、热、物理吸附等物理能量发电的电池,如太阳能电池、超级电容器、飞轮电池等。生物电池是利用生物化学反应发电的电池,如微生物电池、酶电池、生物太阳电池等。 2、动力电池的关键性能指标 电池的性能指标主要有电压、容量、内阻、能量、功率、输出效率、自放电率、使用寿命等,根据电池种类不同,其性能指标也有差异。 这么多个性能指标,我们这里暂且介绍一下电压、容量、能量以及功率。 电压

首先,我们介绍一下电池的电压,因为可以电池的电压的大小,判断我们的电池的电量状态。所以电池电压是非常关键的一个性能指标,那么电压分为端电压、开路电压、额定电压、充电终止电压和放电终止电压。这么多电压我们看一下是什么意思。 那么工作电压与开路电压的关系又是什么呢?在电池放电工作状态下,当电流流过电池内部时,需要克服电池的内阻所造成阻力,故工作电压总是低于开路电压,充电时则与之相反。锂离子电池的放电工作电压在3.6V左右。 容量 电池在一定的放电条件下所能放出的电量称为电池的容量。常用单位为安培小时,它等于放电电流与放电时间的乘积。可以分为理论容量、实际容量、标称容量和额定容量等。 例如,锂离子电池规定在常温、恒流(1C)、恒压(4.2V)控制的充电条件下,充电3h、再以0.2C放电至2.75V时,所放出的电量为其额定容量。 能量

动力电池基础知识

动力电池PACK总成的系统组成: 1)动力电池模块; 2)结构系统; 3)电气系统; 4)热管理系统; 5)BMS; 动力电池PACK四大工艺: 1)装配工艺:通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。 2)气密性检测工艺: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测;国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK必须要达到IP67等级。 3)软件刷写工艺:软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU 和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。 4)电性能检测工艺:电性能检测分三个环节: 1)静态测试:绝缘检测、充电状态检测、快慢充测试等; 2)动态测试;通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。3)SOC调整:将电池PACK的SOC调整到出厂的SOC。 SOC: State Of Charge,通俗的将就是电池的剩余电量。 PACK装配工艺中最最最重要的技术: 1、连接方式其实有三种 1)用螺栓、螺帽将线束与继电器等核心零件连接; 2)用抛钉将线束和金属支架连接; 3)用卡扣将低压线束与模组连接 其中靠螺栓、螺帽拧紧连接是动力电池PACK装配过程中用到的最多的连接方式。而拧紧技术也是装配中最最最重要的技术。 拧紧技术是很大的一个课题,本文先讲下拧紧技术的基础知识。 拧紧原理:螺栓插入被连接件,利用螺母或内螺纹拧紧使螺栓拉伸变形,这种弹性变形产生了轴向的拉力,将被夹零件挤压在了一起,称为预紧力,又称夹紧力。 高压线是动力电池PACK的“大动脉血管”,用来传输电流。高压线与模组连接的螺栓若因为拧紧过程异常导致松动或者螺栓断裂,会导致电流无法输出,动力中断,汽车急停。 夹紧力是我们制造过程中想要得到的参数,但是在制造现场直接去测量力是很难操作的。而扭矩(Torque)是很容易测量出的。真正转化为加紧力的扭矩其实只有10%,90%的扭矩用于克服摩擦力。即传说中的:50-40-10原则。

定压补水系统的设计计算含实例说明

定压补水系统的设计计算<含实例说明> 空调冷水膨胀、补水、软化设备选择计算: 已知条件:建筑面积:90000 m2,冷水水温:7.0/12.0℃, (一)空调系统: 风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量Vc = 0.7~1.30(L/m2)(外线长时取大值):1.30 *90000/1000=117 m3 2. 空调系统膨胀量Vp =a*⊿t*Vc:0.0005*15*117=0.88 m3 (冷水系统) 3. 补水泵选择计算 系统定压点最低压力:81+0.5=81.5(m)=815(kPa) (水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上) 补水泵扬程:≥815+50=865(kPa) (应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力) 补水泵总流量:≥117*0.05=5.85(m3/h)=1.8(L/s) (系统水容的5-10%) 选型:选用2台流量为1.8 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。 4. 气压罐选择计算 1)调节容积Vt应不小于3min补水泵流量采用定频泵Vt≥5.8m3/h*3/60h=0.29m3=290 L 2)系统最大膨胀量:Vp=0.88 m3 此水回收至补水箱 3)气压罐压力的确定: 安全阀打开压力:P4=1600(kPa)(系统最高工作压力1200kPa) 电磁阀打开压力:P3=0.9*P4=1440(kPa) 启泵压力:(大于系统最高点0.5m)P1= 865kPa 停泵压力(电磁阀关闭压力): P2=0.9*1440=1296kPa 压力比αt= (P1+100)/( P2+100)=0.69,满足规定。 4)气压罐最小总容积Vmin=βVt/(1-αt)=1.05*290/(1-0.69)=982 L 5)选择SQL1000*1.6隔膜式立式气压罐,罐直径1000mm,承压1.6Mpa,高 2700mm,实际总容积VZ=1440 (L) 5.空调补水软化设备 自动软化水设备(双阀双罐单盐箱)软水出水能力:(双柱)0.03Vc=0.03*117=3.5m3/h 租户24小时冷却膨胀、补水设备选择计算: 已知条件:建筑面积:90000 m2,冷却水温:32/37.0℃, 系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量45m3

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

动力电池包试验心得

对于客户来说,购买新能源汽车考虑的重要因素之一就是安全。 在电池包的开发过程中,如何确保其在质保期内安全可靠?该问题的答案 是个系统工程,需要电芯设计、BMS研发、结构设计、安全策略、质量控制等 各个方面协同努力才能达成。企业为了确保自己的产品能够做到安全可靠,都 会根据新国标做一系列的测试,在产品送到客户手中之前,测试成为企业检验 自己产品的最后一道关口。在这里简单描述一下新国标测试项目之振动和冲击。 机械冲击测试的目的是评价在加速、减速、车轮掠过有凹坑或者石头路面 等工况下的电池包机械结构强度。 随机振动测试的目的主要是模拟汽车行驶时,路面的凹凸不平造成Pack经 历这种随机振动的载荷工况时的疲劳寿命。 如何进行测试,需要关注哪些参数,如何判定结构是否通过测试? 在冲击&振动之前做一个温度冲击测试,主要是检验箱体的焊接位,及螺 栓扭力在温度冲击过程中受到的损伤程度,相当于测试前的准备工作。 由于测试过程中,不允许开箱(有严重异常除外),扫频成为评估结构是 否发生破坏的检验方法,在每个方向冲击振动之前,会进行扫频,扫频是为了 检验样品的固有频率,如果某个方向测试完成后,测试前后固有频率偏差值在 10HZ以内,则认为可以往下进行,大于10Hz则需要开箱检查,视Pack受到的损伤程度,判断是否继续测试。如下图所示,绿色为冲击前的扫频曲线,红色 是冲击后的扫频曲线,黑色为振动后的扫频曲线,可知冲击完后,结构主频下 降了3Hz,随机振动完后主频继续下降了7Hz,结合实际的经验来看,结构是 Ok的,可以继续做其他方向的测试。

测试完成之后,需要对扭力进行测定,在生产组装时,会对箱体内的每个螺栓打一个固定的扭力值,同时以红线标注,这个扭力值视为初始扭力值,测试前后开箱确认红线偏移量与扭力值保持率,保持率<60%(供参考,各企业、不同项目的要求不一样)则认为螺栓松动,视为异常。 此外,气密性、绝缘电阻、电压温度采样等也是需要进行测试以便对比测试前后的数据,判定产品是否合格。 气密性主要针对IP等级在IP67以上箱体进行测试,气密性包含箱体的气密性和水冷系统的气密性。 绝缘电阻测试总正、总负对箱体的绝缘电阻,一般参考GB/T18384.3。 电压温度采样,主要检验Pack前后的BMS基本功能是否正常。 如果Pack前后的机械损伤不大,要求做两个标准的充放电循环,以检测Pack的容量值未受明显影响,基本功能也未受明显影响。 Pack测试的过程,如无特殊要求,则按下面顺序进行: 1.Z方向:初始检验、预处理、扫频,冲击、扫频、振动、扫频 2.Y方向:扫频,冲击、扫频、振动、扫频 3.X方向:扫频,冲击、扫频、振动、扫频 在这里解释一下,为什么会从Z方向开始振动,因为Z方向的条件一般比Y方向严酷,Y方向的条件一般比X方向严酷,参考GBT31467.3第7章节随机振动测试,Z、Y、X的振动RMS值分别为ZRMS:1.44G,YRMS:0.95或

光伏系统的容量设计

光伏系统的容量设计 光伏系统的设计包括两个方面:容量设计和硬件设计。 光伏系统容量设计的主要目的就是要计算出系统在全年内能够可靠工作所需的太阳电池组件和蓄电池的数量。同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量地减少系统成本。光伏系统硬件设计的主要目的是根据实际情况选择合适的硬件设备包括太阳电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,防雷设计和配电系统设计等。在进行系统设计的时候需要综合考虑系统的软件和硬件两个方面。 针对不同类型的光伏系统,软件设计的内容也不一样。独立系统,并网系统和混合系统的设计方法和考虑重点都会有所不同。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的

太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 1.4.1 独立光伏系统软件设计 光伏系统软件设计的内容包括负载用电量的估算,太阳电池组件数量和蓄电池容量的计算以及太阳电池组件安装最佳倾角的计算。因为太阳电池组件数量和蓄电池容量是光伏系统软件设计的关键部分,所以本节将着重讲述计算与选择太阳电池太阳电池组件和蓄电池的方法。 需要说明的一点是,在系统设计中,并不是所有的选择都依赖于计算。有些时候需要设计者自己作出判断和选择。计算的技巧很简单,设计者对负载的使用效率和恰当性作出正确的判断才是得到一个符合成本效益的良好设计的关键。 1.设计的基本原理 太阳电池组件设计的一个主要原则就是要满足平均天气条件下负载的每日用电需求;因为天气条件有低于和高于平均值的情况,所以要保证太阳电池组件和蓄电池在天气条件

动力电池基础知识普及

锂电池基础的方方面面介绍 目录 1. 锂电池的构成 2. 锂电池的优缺点 3. 锂电池的分类 4. 常用术语解释 5. 锂电池命名规则 6. 锂电池工艺 7. 锂电池成组和串并联 8. 各种动力电池对比 9. 锂电池模型 10. 锂电池电气特性与关键参数 11. 锂电池保护和管理系统 12. 锂电池应用领域 13. 锂电池相关标准

(一)锂电池的构成 锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。 电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。 锂电池的产业链结构如下图: 电芯的构成如下面两图所示:

锂电池的PACK的构成如下图所示:

●(二)锂电池优缺点 锂电池的优点很多,电压平台高,能量密度大(重量轻、体积小),使用寿命长,环保。锂电池的缺点就是,价格相对高,温度范围相对窄,有一定的安全隐患(需加保护系统)。 ●(三)锂电池分类 锂电池可以分成两个大类:一次性不可充电电池和二次充电电池(又称为蓄电池)。 不可充电电池如锂二氧化锰电池、锂-亚硫酰胺电池。 二次充电电池又可以分为下面根据不同的情况分类。 1.按外型分:方形锂电池(如普通手机电池)和圆柱形锂电池(如电动工具的18650);2.按外包材料分:铝壳锂电池,钢壳锂电池,软包电池; 3.按正极材料分:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、三元锂(LiNixCoyMnzO2)、磷酸铁锂(LiFePO4); 4.按电解液状态分:锂离子电池(LIB)和聚合物电池(PLB); 5.按用途分:普通电池和动力电池。 6.按性能特性分:高容量电池、高倍率电池、高温电池、低温电池等。

电池包强度分析报告

电池包强度分析报告 项目名称: 编制:日期:校对:日期:审核:日期:批准:日期:

目录 1分析目的 ---------------------------------------------------------------------------------------- 1 2使用软件说明 ---------------------------------------------------------------------------------- 1 3电池包强度分析模型的建立 ---------------------------------------------------------------- 1 4电池包强度分析边界条件 ------------------------------------------------------------------- 3 5分析结果 ---------------------------------------------------------------------------------------- 3 5.1电池包强度分析结果----------------------------------------------------------------- 3 5.2车身端支架强度分析结果----------------------------------------------------------- 4 6分析结论 ---------------------------------------------------------------------------------------- 5

全面详细的 光伏系统设计

全面详细的光伏系统设计---总设计思路 光伏系统的容量设计 光伏系统的设计包括两个方面:容量设计和硬件设计。 光伏系统容量设计的主要目的就是要计算出系统在全年内能够可靠工作所需的太阳电池组件和蓄电池的数量。同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量地减少系统成本。光伏系统硬件设计的主要目的是根据实际情况选择合适的硬件设备包括太阳电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,防雷设计和配电系统设计等。在进行系统设计的时候需要综合考虑系统的软件和硬件两个方面。 针对不同类型的光伏系统,软件设计的内容也不一样。独立系统,并网系统和混合系统的设计方法和考虑重点都会有所不同。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 4.4.1.独立光伏系统软件设计 光伏系统软件设计的内容包括负载用电量的估算,太阳电池组件数量和蓄电池容量的计算以及太阳电池组件安装最佳倾角的计算。因为太阳电池组件数量和蓄电池容量是光伏系统软件设计的关键部分,所以本节将着重讲述计算与选择太阳电池太阳电池组件和蓄电池的方法。 需要说明的一点是,在系统设计中,并不是所有的选择都依赖于计算。有些时候需要设计者自己作出判断和选择。计算的技巧很简单,设计者对负载的使用效率和恰当性作出正确的判断才是得到一个符合成本效益的良好设计的关键。 1.设计的基本原理 太阳电池组件设计的一个主要原则就是要满足平均天气条件下负载的每日用电需求;因为天气条件有低于和高于平均值的情况,所以要保证太阳电池组

动力电池性能参数

动力电池性能参数 一、电性能 (1) 电动势 电池的电动势,又称电池标准电压或理论电压,为电池断路时正负两极间的电位差。电池的电动势可以从电池体系热力学函数自由能的变化计算而得。 (2) 额定电压 额定电压(或公称电压),系指该电化学体系的电池工作时公认的标准电压。例如,锌锰干电池为 1.5V ,镍镉电池为1.2V ,铅酸蓄电池为2V ,锂离子电池为 (3) 开路电压 电池的开路电压是无负荷情况下的电池电压。开路电压不等于电池的电动势。必须指出,电池的电动势是从热力学函数计算而得到的,而电池的开路电压则是实际测量出来的。 (4) 工作电压 系指电池在某负载下实际的放电电压,通常是指一个电压范围。例如,铅酸蓄电池的工作电压在2V ?1.8V ;镍氢电池的工作电压在 1.5V?1.1V ;锂离子电池的工作电压在 3.6V?2.75V。 (5) 终止电压 系指放电终止时的电压值,视负载和使用要求不同而异。以铅酸蓄电池为例:电动势为2.1V,额定电压为2V,开路电压接近2.15V,工作电压为2V?1.8V,放电终止电压为1.8V?1.5V( 放电终止电压根据放电率的不同,其终止电压也不同)。 (6) 充电电压

系指外电路直流电压对电池充电的电压。般的充电电压要大于电池的开路电压,通常 在一定的范围内。例如,镍镉电池的充电压在1.45V?1.5V ;锂离子电池的充电压在4.1V?4.2V ;铅酸蓄电池的充电压在2.25V?2.5V。 (7) 内阻 蓄电池的内阻包括:正负极板的电阻,电解液的电阻,隔板的电阻和连接体的电阻等。 a. 正负极板电阻 目前普遍使用的铅酸蓄电池正、负极板为涂膏式,由铅锑合金或铅钙合金板栅架和活性物质两部分构成。因此,极板电阻也由板栅电阻和活性物质电阻组成。板栅在活性物质内层,充放电时,不会发生化学变化,所以它的电阻是板栅的固有电阻。活性物质的电阻是随着电池充放电状态的不同而变化的。 当电池放电时,极板的活性物质转变为硫酸铅(PbSO4) ,硫酸铅含量越大,其电阻越大。而电池充电时将硫酸铅还原为铅(Pb) ,硫酸铅含量越小,其电阻越小。 b. 电解液电阻 电解液的电阻视其浓度不同而异。在规定的浓度范围内一旦选定某一浓度后,电解液电 阻将随充放电程度而变。电池充电时,在极板活性物质还原的同时电解液浓度增加,其电阻下降;电池放电时,在极板活性物质硫酸化的同时电解液浓度下降,其电阻增加。 c. 隔板电阻 隔板的电阻视其孔率而异,新电池的隔板电阻是趋于一个固定值,但随电池运行时间的延长,其电阻有所增加。因为,电池在运行过程中有些铅渣和其他沉积物在隔板上,使得隔板孔率有所下降而增加了电阻。

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

纯电动汽车动力电池包结构静力分析及优化设计..

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

动力电池重要参数定义及测量计算方法总结模板计划模板.doc

1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚 地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态 SOC,电池健康状态SOH,内阻 R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态 SOC及估算方 法电池荷电状态 SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中 将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件 下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus )定义 SOC如下: SOC=剩余容量/(额定容量-容量衰减因子) 其中剩余容量 =额定容量 - 净放电量 - 自放电量 - 温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的 主要因素,准确的 SOC估算可以提高电池的能量效率,延长电池的使 用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池

内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要 实现良好的 SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路 电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外 界影响因素缺乏考虑而导致适应性差,难以满足 BMS对估算精度不断提高的要求。所以在考虑 SOC受到多种因素影响后,一些较为复杂的算法被提出 , 例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池 SOC的基础。假设当前电池 SOC初始值为 SOC0,在经过 t 时间的充电或放电后 SOC为: Q0是电池的额定容量, i(t)是电池充放电电流(放电为正)。 事实上, SOC定义为电池的荷电状态,而电池荷电状态就是电池 电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下: 在电池实际工作中使用安时法计算SOC,受到测量误差和噪声干

(完整版)华为-电源系统设计与计算

电源设备配置和容量计算 主要介绍了固网接入层局点供电系统的组成,蓄电池、交流配电屏、整流器、逆变器的配置和容量计算,并介绍了交直流电缆线径的计算方法,为局点电力配置提供计算的依据。 供电系统示意图 通信机房供电系统如下所示: 接入层局点供电系统相对比较简单,如下所示: 一般蓄电池容量的确定的主要依据是:

市电供电类别; 蓄电池的运行方式; 忙时全局平均放电电流。 ■电池的工作方式 按蓄电池组的运行制式划分,分为充放电、半浮充、全浮充。 充放电工作方式:两组蓄电池交替对通信设备放电供电,当其中一组投入放电供电时,另一组由整流器充电备用。 半浮充工作方式:用一组或两组蓄电池与整流器并联对通信设备浮充供电,部分时间由蓄电池组单独放电供电。在蓄电池与整流器并联浮充工作时,整流器除提供通信设备用电外,还要对蓄电池由于放电供电或自放电引起的容量损失予以补充,后者单独进行充电备用。 全浮充工作方式:在市电供电时,蓄电池与整流器并联浮充对通信设备供电;在市电停电或必须时,由蓄电池组放电供电。蓄电池放电供电或自放电引起的容量损失,在浮充时全部补足。 ■市电供电类别 市电供电类别分为四类,对于不同的供电类别,蓄电池的运行方式和容量的选择是不同的。例如,一类市电供电的单位,可采用全浮充方式供电,其蓄电池容量可按1小时放电率来选择;二类市电供电的单位,可采用全浮充或半浮充方式供电,其蓄电池容量可按3小时放电率来选择;三类市电供电的单位,可采用充放电方式供电,其蓄电池容量可按8~10小时放电率来选择。放电率与电池容量的关系可见下表。 市电类别与蓄电池放电时间要求表

放电率与电池容量关系表 ■蓄电池组的配置与计算 交换机房必须配两组,站点配一组或两组(每组容量为总容量的1/2),蓄电池容量计算如下: Q= I fzmax×t K n〔1+0.008(T-25)〕 =K保险系数×C×I fzmax K保险系数 Q:蓄电池容量(AH〕 K 保险系数 :取值范围1.2-1.67 I fzmax :忙时最大负荷电流〔A〕, t:电池放电时间(H〕 T:蓄电池电解液的平均温度 K n :蓄电池在不同放电率时的容量系数C:蓄电池的容量计算系数 为了便于计算,可将上述公式简化为Q=K n·I fzmax

相关文档
最新文档