mach3如何提高步进电机的转速

mach3如何提高步进电机的转速
mach3如何提高步进电机的转速

1.Sbeps per如何计算?

Sbeps per=360度(圆周度)*8(细分)/1.8(步进电机的度数)/5(丝杆螺距)=320mm/s。

2.如知道驱动器的细分?

1600/200=8细分,所以调到1600

3.速度如何确定?

速度这里指的是快速进给F0,

每单位步数经(1)计算为 320

假设设定MACH的频率为25000Hz

速度:V = f/nt= 25000/320 = 78mm/s

所以安你可以这样设置,所以说想提高速度,则在驱动器上降低细分,重新计算。比如说调到800档,调到400档。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与

关注!)

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

步进电机的计算与选型---实用计算

步进电机的计算与选型 对于步进电动机的计算与选型,通常可以按照以下几个步骤: 1) 根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J ; 2) 计算不同工况下加在步进电动机转轴上的等效负载转矩eq T ; 3) 取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据; 4) 根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。 1. 步进电动机转轴上的总转动惯量eq J 的计算 加在步进电动机转轴上的总转动惯量eq J 是进给伺服系统的主要参数之一,它对选择电动机具有重要意义。eq J 主要包括电动机转子的转动惯量、减速装置与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。 2. 步进电动机转轴上的等效负载转矩eq T 的计算 步进电动机转轴所承受的负载转矩在不同的工况下是不同的。通常考虑两种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大工作负载。 (1)快速空载起动时电动机转轴所承受的负载转矩eq1T eq1amax f 0T =T +T +T (4-8) 式中 amax T ——快速空载起动时折算到电动机转轴上的最大加速转矩,单位为N ·m ; f T ——移动部件运动时折算到电动机转轴上的摩擦转矩,单位N ·m ; 0T ——滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位为N ·m 。 具体计算过程如下: 1)快速空载起动时折算到电动机转轴上的最大加速转矩: amax eq 2T =J =60eq m a J n t πε (4-9) 式中 eq J ——步进电动机转轴上的总转动惯量,单位为2kg m ?; ε——电动机转轴的角加速度,单位为2/rad s ; m n ——电动机的转速,单位r/min ; a t ——电动机加速所用时间,单位为s ,一般在0.3~1s 之间选取。 2)移动部件运动时折算到电动机转轴上的摩擦转矩: f T =2F i πη摩h P (4-10)

步进电机的速度控制

步进电机的速度控制 步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技术的发展,使步进电机获得更为广泛的应用。 步进电机的速度特性 步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10倍之多。 为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。 图1 步进电机的速度曲线 步进电机控制系统结构 PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。步进电机运动方向的改变及启动和停止均由计算机控制硬件控制电路实现。 图2 步进电机控制系统 软件和硬件结合起来一起进行控制,具有电路简单、控制方便等优点。在这种控制中,微机软件占用的存储单元少,程序开发不受定时限制。只要外部中断允许,微机就能在电机的每一步之间自由地执行其他任务,以实现多台步进电机的运动控制。 定时器初值的确定 步进电机的实时控制运用PC机,脉冲方波的产生采用8253定时器,其计数器0工作于方式0以产生脉冲方波,计数器 1工作于方式1起记数作用,8253计数器0的钟频由2MHz晶振提供。设计算机赋给8253计数器0的初值为D1,则产生的脉冲方波频率为f1=f0/D1,周期为T1=1/f1=D1/f0,D1=f0T1=f0/f1。其中,f1为启动频率,f0为晶振频率。步进电机升降速数学模型为使步进电机在运行中不出现失步现象,一般要求其最高运行频率应小于(或等于)步进响应频率fs。在该频率下,步进电机可以任意启动、停止或反转而不发生失步现象。步进电机升降速有两种驱动方式,即三角形与梯形驱动方式(见图1),而三角形驱动方式是梯形驱动的特例,因而我们只要研究梯形方式。电机的加速和减速是通过计算机不断地修改定时器初值来实现的。在电机加速阶段,从启动瞬时开始,每产生一个脉冲,定时器初值减小某一定值,则相应的脉冲周期减小,即脉冲频率增加;在减速阶段,定时器初值不断增加,

步进电动机控制方法

<<技能大赛自动线的安装与调试>>项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

基于单片机步进电机速度控制研究(正式版)

文件编号:TP-AR-L2541 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 基于单片机步进电机速 度控制研究(正式版)

基于单片机步进电机速度控制研究 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 本文对步进机一个全面的介绍,再基于单片机对 步进电机的控制。本文采用硬件控制系统,通过单片 机MC9S12XS128与光电编码器对步进电机进行速度的 控制。最后对步进电机的速度曲线进行研究。 步进电机又称为脉冲电动机或者阶跃电动 机,作为执行元件,是机电一体化的关键产品之一, 广泛应用于各种自动化控制系统之中,比如当今电子 钟表、工业机械手、包装机械和汽车制动元件的测试 中等。步进电机在未来应用前景会往更加小型化、从 圆形电动机往方形电动机和四相、五相往三相电动机

发展。而这便需要对步进电机的控制提出了更高的要求。 1.步进电机综合介绍 1.1.步进电机分类 步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。目前使用最为广泛的为反应式和混合式步进电机。 1.1.1.反应式步进电机 反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。一般为三相,可实现大扭矩的输出,步进角一般为1.5度。它的结构简单,成本低,但噪音大。

步进电机升降速曲线控制方法

步进电机升降速曲线控制方法 技术分类:电机与运动控制发表时间:2007-07-09 在一些控制简单或要求低成本的运动控制系统中,经常用步进电机做执行元件。步进电机在这种应用场合下最大的优势是:可以开环方式控制而无需反馈就能对位置和速度进行控制。但也正是因为负载位置对控制电路没有反馈,步进电机就必须正确响应每次励磁变化。如果励磁频率选择不当,电机不能够移到新的位置,那么实际的负载位置相对控制器所期待的位置出现永久误差,即发生失步现象或过冲现象。因此步进电机开环控制系统中,如何防止失步和过冲是开环控制系统能否正常运行的关键。 失步和过冲现象分别出现在步进电机启动和停止的时候。一般情况下,系统的极限启动频率比较低,而要求的运行速度往往比较高。如果系统以要求的运行速度直接启动,因为该速度已超过极限启动频率而不能正常启动,轻则可能发生丢步,重则根本不能启动,产生堵转。系统运行起来以后,如果达到终点时立即停止发送脉冲串,令其立即停止,则由于系统惯性作用,电机转子会转过平衡位置,如果负载的惯性很大,会使步进电机转子转到接近终点平衡位置的下一个平衡位置,并在该位置停下。 &nbs p; 为了克服失步和过冲现象,应在步进电机启停时进行如图1所示的升降速控制。 从图 1 可以看出,L2段为恒速运行,L1 段为升频,L3段为降频,按照“失步”的定义,如果在 L1 及 L3 段上升及下降的控制频率变化大于步进电机的响应频率变化,步进电机就会失步,失步会导致步进电机停转,经常会影响系统的正常工作,因此,在步进电机变速运行中,必须进行正确的升降速控制。

以下按不同的控制单元,介绍几种常用的步进电机升降速控制方法。 1、运动控制卡作上位控制单元——以MPC01系列运动卡为例 MPC01系列运动控制卡可以作为PC机运动控制系统的核心控制单元。卡上的专用运动控制芯片可自动进行升降速计算。其运动控制函数库中也有专门进行梯形升降速运动参数设置的函数——set_profile(int ch, double ls, double hs, double accel)。其参数定义如下: ch: 设定的轴号。 ls:?设定低速(起始速度)的值。单位为pps(脉冲/秒) hs: 设定高速(恒速段)的值。单位为pps(脉冲/秒) accel:设定加速度大小。单位为ppss(脉冲/秒/秒) 用户在调用运动指令函数时,只需指定总的脉冲数,运动控制卡上的专用运动控制芯片便按照set_profile函数设置的运动参数自动进行升降速计算,而不会占用PC机的CPU 资源。 2、用具有运动控制功能的PLC做上位控制单元——以松下FP0系列PLC为例 松下FP0系列PLC具有专用的运动控制指令,其CPU单元可自动进行图1所示的升降速计算。和MPC01系列运动控制卡相似,用户只需设置梯形速度的初速度ls、恒速hs、加速时间t和所需发的脉冲数P。运行此程序段,当PLC检测到输入端X2的一个上跳变时,便自动执行如图1所示的升降速脉冲输出功能。

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

步进电机脉冲数量与运动距离的计算 (1)

步进电机一个脉冲运动距离怎么算? 步进电机一个脉冲运动距离怎么算?能不能给个公式在举个例子? 答案: 用360度去除以步距角,就是电机转一圈的脉冲数,当然如果细分的话,还要乘以细分倍数。电机转一圈丝杠前进一个导程,用导程除以一圈的脉冲数就是脉冲运动距离。 第一步确定步进电机的步距角,这个电机上会标明的。比如说,1.8度,则一个圆周360/1.8=200,也就是说电机旋转一周需要200个脉冲。 第二步确定电机驱动器设了细分细分没有,查清细分数,可以看驱动器上的拨码。比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。第三步确定电机轴一周的长度或者说导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/脉冲个数=一个脉冲的线位移。 什么是细分呢?和几相是一个意思吗?和几相没关系吗? 细分和相数没关系。以1.8度为例,原来一个脉冲走1.8度,现在改为4细分,那么现在一个脉冲只能走1.8/4度了。细分越多,每个脉冲的步进长度越短。细分的多少可由驱动器设置。 控制步进电机转多少最主要你得通过步进电机步距角度计算出电机转一圈需要多少脉冲,比如步距角度为0.9°则电机转一圈需要给步进电机驱动器360/0.9=400个脉冲,转半圈就是200个脉冲。步进电机驱动器资料你先了解下! 步进电机转速则通过改变脉冲频率来控制,用plc的pwm输出控制是比较方便的,速度的快慢不影响步进电机的行程,行程多少取决于脉冲数量。 注意一点步进电机速度越快转矩越小,请根据你的应用调节速度以防失步,造成走位不准确。步进电机是接收步进驱动器给过来的脉冲信号,比如两相的步进,AB相分别轮流输出正反脉冲(按一定顺序),步进电机就可以运行了,相当于一定的脉冲步进马达对应走一定旋转角度。而PLC也可以发出脉冲,但脉冲电压不够,所以需要把PLC输出的脉冲给步进驱动器放大来驱动步进驱动器,相当于PLC的脉冲就是指令脉冲。一般PLC驱动步进时候有两路信号,一路是角度脉冲,另外一路是方向脉冲,PLC里边一般配所谓位移指令,发梯形脉冲给步进驱动器,这样可以缓冲启动带来的力冲击。 51单片机控制两相四线步进电机的问题 单片机为AT89S52。。步进电机为:57HS5630A4步进电机。链接:Error! Hyperlink reference not valid.步进电机驱动器为:M542中性步进电机驱动器。链接:Error! Hyperlink reference not valid. 现在的问题是:步进电机我已经和驱动器连接好了,现在步进电机驱动器有6 个线和51单片机相连,分别是PUL+、PUL-、DIR+、DIR-、ENA+、ENA- 。我想知道的是,比如这六个和单片机的P1.X口相连。怎么在单片机上控制步进电机正转反转,转的角度,转的速度。 答案: 首先,六根线的三根负线可以全部接地..和单片机P1相连的只需三根即可..这三根线为了保证能驱动起步进电机驱动器,应该分别上拉2K电阻.. 然后,在驱动器上的拨码处设置细分,,所谓细分是指电机转一圈所需多少脉冲..例如设置为800细分,即为电机转一圈需要800个脉冲..那么一个脉冲就会对应0.45度..单片机发出的脉冲频率高,那么电机转的就快..让电机转多少角度,就发出相应的脉冲数即可,例如转45度,就发出100个脉冲即可,在0.125s内发出100个脉冲,那转速就为1转/s。。

步进电机调速

摘要 本文介绍的是在DICE-AT2型自控原理实验箱上,通过编写汇编语言实现对步进电机转速的调节以及正转—停止—反转的控制。 在试验箱上将电路搭好,打开软件,输入程序,将宏汇编程序经过汇编,连接后形成.EXE文件装入系统,运行程序观察电机转速及转向的变化。 程序运行后电机的变化跟预期相符,各项步骤运行正常。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 关键词:步进电机;汇编编程;8088cpu;计算机控制

Abstract Is introduced in this paper on the DICE - AT2 control principle experiment box, by writing assembly language implementation of the stepping motor speed regulation and control forward, stop, reverse. In test chamber, general layout is good, open software, input program, the macro assembler after assembly, connection formation. EXE file into the system, run the program to observe the changes of motor speed and steering. Program is running after the change of the motor with expectations, the various steps to run normally. Stepper motor is the electrical pulse signal into angular displacement or linear displacement of open loop control stepping motor. Stepper motor as the executive element, it is one of the key products of electromechanical integration, widely used in all kinds of automation control system. With the development of microelectronics and computer technology, step ? Keywords:Stepping motor; Assembler programming; 8088 CPU; The computer control

步进电机全闭环控制

半导体器件应用网 https://www.360docs.net/doc/da4338176.html,/news/194498.html 步进电机全闭环控制 【大比特导读】步进电机由于体积精巧、价格低廉、运行稳定,在低端行业 应用广泛,步进电机运动控制实现全闭环,是工控行业的一大难题。 步进电机由于体积精巧、价格低廉、运行稳定,在低端行业应用广泛,步进电机运动控 制实现全闭环,是工控行业的一大难题。 主要问题有两个,原点的不确定性和失步,目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度, 步进系统的驱动采用多细分,有的大于16,假如用在往复运动过程中,误差大的惊人。已 经不能适应加工领域。 为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。 1、硬件连接 硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。 2、原点控制 根据编码器的Z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解 析度×4。 3、失步控制 根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。 下图是电路原理 4、电路原理描述

半导体器件应用网 电路采用超大规模电路FPGA,输入、输出可以达到兆级的相应频率,电源3.3V,利用2596 开关电源,将24V转为3.3V,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。 5、应用描述 本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。 在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的Z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。 在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,假如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。 6、技术指标 (1)输入输出相应频率:≤1M; (2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us) (3)重定位电气精度:≥2/编码器解析度×4/马达解析度×细分) (4)重定位原点电气精度≥2/编码器解析度×4/马达解析度×细分) (5)适应PNP,NPN接口 (6)适应伺服脉冲控制 (7)适应各种编码其接口 步进电机运动控制一旦解决上述问题,增加数百元成本的情况下可以实现全闭环控制,毫不逊色于伺服系统。特别是其价格低廉、控制简单、寿命长久的特点在某些场合,可能优于伺服系统。

西门子200系列PLC直流步进电机控制方法

直流步进电机plc控制方法 系统功能概述: 本系统采用PLC通过步进电机驱动模块控制步进电机运动。当按下归零按键时,电机1和电机2回到零点(零点由传感器指示)。当按下第一个电机运行按键时,第一个电机开始运行,直到运行完固定步数或到遇到零点停止。当按下第二个电机运行按键时,第二个电机开始运行,运行完固定步数或遇到零点停止。两电机均设置为按一次按键后方向反向。电机运行时有升降速过程。 PLC输入点I0.0为归零按键,I0.1为第一个电机运行按键,I0.2为第二个电机运行按键,I0.3为第一个电机传感器信号反馈按键,I0.4为第二个电机传感器信号反馈按键。 PLC输出点Q0.0为第一个电机脉冲输出点,Q0.1为第二个电机脉冲输出点,Q0.2为第一个电机方向控制点,Q0.3为第二个电机方向控制点,Q0.4为电机使能控制点。 所用器材: PLC:西门子S7-224xpcn及USB下载电缆。编程及仿真用软件为V4.0 STEP 7 MicroWIN SP3。 直流步进电机2个,微步电机驱动模块2个。按键3个。24V开关电源一个。导线若干。 各模块连接方法: PLC与步进电机驱动模块的连接:

驱动模块中EN+、DIR+、CP+口均先接3k电阻,然后接24V 电源。 第一个驱动模块CP-接PLC的Q0.0,DIR-接PLC的Q0.2,EN-接PLC的Q0.4 第二个驱动模块CP-接PLC的Q0.1,DIR-接PLC的Q0.3,EN-接PLC的Q0.4 注意: 1、PLC输出时电压为24V,故和驱动器模块连接时,接了3k 电阻限流。 2、由于PLC处于PTO模式下只有在输出电流大于140mA时,才能正确的输出脉冲,故在输出端和地间接了200欧/2w下拉电阻,来产生此电流。(实验室用的电阻功率不足,用200欧电阻时功率至少在24*24/200=2.88w,即用3w的电阻) 3、PLC与驱动模块连接时,当PLC输出低电平时不能将驱动模块电平拉低,故在EN-和DIR-上接了200欧/2W下拉电阻 驱动模块与电机接法: 驱动模块的输出端分别与电机4根线连接 电机传感器与PLC连接: 传感器电源接24v,信号线经过240欧电阻(试验中两个470电阻并联得到)与24v电源上拉后,信号线接到PLC的I0.3和I0.4

步进电机转速与频率计算公式

步进电机转速与频率计 算公式 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

步进电机的转速可以用频率来控制,步进电机的运行频率跟转速成正比,可以通过计算公式,计算出步进电机的转速。步进电机转速=频率*60/((360/T)*x) 步进电机的转速单位是:转/分 频率单位是:赫兹 x实指细分倍数 T:固有步进角 举例说明: 步进电机采用整步,即1细分;频率1K,即1000赫兹;套用公式:1000*60/200= 300转/分 注意事项:此公式适应于两相步进电机。 步进电机空载最高转速的真正意义是什么 发布者:admin 发布时间:2010-4-12 阅读:474次 两相步进电机的空载转速最高可以达到2000转/分钟以上,不过它只是一个参考值,没有什么实际意义,因为步进电机的转矩随着转速的升高下降很快,转速高到一定程度时力矩几乎为零。步进电机在整步无细分情况下(每200个脉冲转一圈)提高时钟频率,人们往往发现电机在远未达到空载最高速度时即发生堵转,以至于搞不清最高转速到底是多少,甚至怀疑自己的系统是否正常,这就是其中的真正原因所在。 步进电机在低速下的运行性能才有实际意义,一般是每分钟300转到600转,考虑到用户使用机械减速装置带负载,要使电机提供足够的力矩,电机的常态速度常常被选择在每分钟几十转,此时电机供力大、效率高、噪音低,至于振动问题,则要靠增加驱动器细分的方法加以解决了。 最高空载转速的计算公式为: 空载转速(转/分)=60 乘以时钟频率 / 200乘以细分数 (M是细分数) 假如M=16,时钟频率=150KHZ 则最高空载转速约等于2800转/分钟 即60乘以150000,再除以200与16的积,得出的结果。

基于单片机的步进电机调速系统设计论文

南京理工大学 课程设计说明书(论文) 姓名: 高建宽学号:0902030109 专业: 机电一体化 题目: 基于单片机的步进电机调速系统设计 张平 指导者: 2013 年 2 月

课程设计说明书(论文)中文摘要

课程设计说明书(论文)外文摘要

目次 1 绪论 (1) 2 步进电机简介 (2) 2.1 步进电机的概念 (2) 2.2 步进电机的分类 (2) 2.3 步进电机的基本参数 (2) 2.3.1 空载启动频率 (2) 2.3.2 电机固有步距角 (2) 2.3.3 步进电机的相数 (3) 2.3.4 保持转矩 (3) 2.4 步进电机动态指标及术语: (3) 2.5 步进电机的调速的控制原理 (4) 3 基本方案设定和硬件设计 (5) 3.1 基本方案确定 (5) 3.2 硬件设计 (5) 3.2.1 单片机的选择:AT89S52 (5) 3.2.2 驱动芯片的选择:ULN2003A (9) 3.3.3 步进电机的选择:四相反应式步进电机 (9) 4 软件设计 (10) 5 调试与仿真 (11) 5.1 keil调试 (11) 5.2 Proteus仿真 (12) 结论 (13) 致谢 (14) 参考文献 (15) 附录A (16) 附录B (17)

1 绪论 步进电动机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,在各个国民经济领域都有应用。1920年步进电机的实际应用才开始,称为VR(Variable Reluctance变磁阻)型步进电机,被英国海军用作定位控制和远程遥控。混合式HB(Hybrid 的缩写,是VR与PM复合的意思)型步进电机的产生,大约在1952年,由美国GE公司的Karl Feiertag 开发的发电机演变而来。步进电机的大规模应用是在1977年开始,两相步进电机被应用于FDD(floppy disk drive 软盘驱动器)输出轴的驱动上。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。步进电机可以直接用数字信号驱动,使用非常方便。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。因此非常适合于单片机控制。步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。步进电机可以作为一种控制用的特种电机,利用其没有积累误差精度为100的特点,广泛应用于各种开环控制。现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

单片机汇编语言步进电机转速控制系统

大连理工大学本科设计报告题目:步进电机转速控制系统设计 课程名称:单片机综合设计 学院(系):电子信息与电气工程学部 专业: 班级: 学号: 学生姓名: 成绩: 2013 年7 月20 日

题目:步进电机转速控制系统设计 1 设计要求 1)利用ZLG7290的键盘控制直流电机(或步进电机的转速、转向); 2)也可以利用ADC模块(与电位器配合),利用电位器控制转速; 3)利用ZLG7290的8位LED数码管显示电机转向、转速参数显示。 2 设计分析及系统方案设计 实验要求使用步进电机作为被控制对象,由ZLG7290做人机对话平台,利用单片机的P1(8位)和P3(部分口线)构造系统。实验最终实现功能、设计思路以及方案设计如以下几个小节所述。 2.1 系统设计实现功能 根据设计要求、现有设备以及知识储备,完成功能如下: ①由按键S1~S8实现转速切换,其中S1~S4正转,S5~S8反转 ②按键S16作为停止键,按下S10后步进电机停止转动,再按S1~S16步进电机按 照按键对应转速以及转向转动 ③按键S10作为复位键,当按下S10后,无论当前处于何种状态,系统恢复至初 始态 ④8为LED数码管显示当前步进电机转速(speed=0/1 1~4),转速前0表示正转, 1表示反转 ⑤若按下停止键,数码管显示当前转速;若按下复位键,数码管显示初始态speed=00 2.2 设计思路 本次的设计是LED显示与步进电机相结合以及若干功能键的组合的一种设计。根据之前学习的按键中断显示实验和定时器实验,使用INT0和INT1,INT0作为按键中断,INT1作为定时器。在主程序中实现LED初始显示、定时器计时初始、按键中断初始。INT0中断调用中断服务子程序实现对按键键值的判断,并根据相应的按键值实现对应步进电机的变化,并显示该按键对应的转速。INT1定时器中断根据INT0的按键键值,对定时器设定相应的初值,实现步进电机按规定的转速转动。对于按键停止,则是利用中断优先级,当INT0的中断优先级高时,系统进入中断,此时INT1停止计时,也就实现了步进电机的停止,当改变定时器与按键中断的优先级时,即把INT0设为低优先级,INT1设为高优先级,步进电机重新开始转动。此时添加一个对INT0位地址的查询,若有按键即正/反转的4档转速所对应的按键,步进电机开始重新转动。对于复位功能,则同样是利用按键键值的判断,在对应键值下控制电机初始化。

步进电机运动控制器设计

一、项目概述: 用步进电机作为X-Y移动平台的执行机构,实现开环位置控制。采用四相步进电机,一相激励时步距角为1.8°,由步进电机驱动器接受控制器的控制信号,采用单四拍方式,每拍为一步,可正反转。步进电机的转动带动丝杆,将旋转运动转换为直线运动,步进电机的每一走步传递到X或Y方向的移动距离为0.02mm.系统中步进电机工作频率为500Hz--4KHz。运动要求是: (1)当按键K1按下时,X方向步进电机正向运转,X正向移动1mm; 当按键K2按下时,X方向步进电机反向运转,X反向移动1mm; 当按键K3按下时,Y方向步进电机正向运转,Y正向移动1mm; 当按键K4按下时,Y方向步进电机反向运转,Y反向移动1mm;(2)按键按住不放,连续运动直到按键释放,停止运转。 (3)控制器实时显示步进电机转过的步数和X或Y向移动的距离。(4)系统供电电源为36 VDC。 二、系统设计: 设计思想: 1、用两台步进电机分别控制x、y方向的运动; 2、采用动态显示方式,实时显示步数和距离; 3、采用4个并行口输出控制信号以及采集开关输入信号。 总体方案: 采用AT89C51作为控制器: P0口读入开关输入信号;P1口接步进电机驱动器ULN2003A;P2、

P3口控制动态显示电路。 三、硬件设计: 1、AT89C51晶振电路和手动复位电路: 晶振电路:采用12MHz的晶振,其中电容C1,C2可在5—60pF之间选择,这两个电容的大小对振荡频率有微小的影响,可起频率微调的作用。 复位电路:当按键弹起时,相当于一个上电复位电路;当按键压下时,相当于RST端通过电阻与+5V的电源相连,提供足够宽度的阈值电压完成复位。 2、开关量读入: 由P0口的低4位读入开关量信号。 3、步进电机控制电路:

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

步进电机转速与频率计算公式

-- -------- 步进电机的转速可以用频率来控制,步进电机的运行频率跟转速成正比,可以通过计算公式,计算出步进 电机的转速。 步进电机转速 = 频率 * 60 /((360/T)*x) 步进电机的转速单位是: 转 / 分 频率单位是:赫兹 x 实指细分倍数 T: 固有步进角 举例说明: 步进电机采用整步,即 1 细分;频率 1K ,即 1000 赫兹;套用公式: 1000 * 60/200=300 转/ 分 注意事项:此公式适应于两相步进电机。 步进电机空载最高转速的真正意义是什么 发布者: admi n 发布时间: 2010-4-12 阅读: 474 次 两相步进电机的空载转速最高可以达到 2000 转 /分钟以上,不过它只是一个参考值,没有什么实际意义,因为步进电机的转矩随着 转速的升高下降很快,转速高到一定程度时力矩几乎为零。步进电机在整步无细分情况下(每 200 个脉冲转一圈)提高时钟频率, 人们往往发现电机在远未达到空载最高速度时即发生堵转,以至于搞不清最高转速到底是多少,甚至怀疑自己的系统是否正常,这 就是其中的真正原因所在。 步进电机在低速下的运行性能才有实际意义,一般是每分钟 300 转到 600 转,考虑到用户使用机械减速装置带负载,要使电机提供足够的力矩,电机的常态速度常常被选择在每分钟几十转,此时电机供力大、效率高、噪音低,至于振动问题,则要靠增加驱动器细分的方法加以解决了。 最高空载转速的计算公式为: 空载转速(转 /分) =60 乘以 时钟频率 / 200 乘以 细分数 (M 是细分数) 假如 M=16 ,时钟频率 =150KHZ 则最高空载转速约等于 2800 转/ 分钟 即 60 乘以 150000,再除以 200 与 16 的积,得出的结果。

基于51系列单片机控制步进电机调速实验 (自动保存的)

基于51系列单片机控制步进电机调速实验 实验指导书 仇国庆编写 重庆邮电大学自动化学院 自动化专业实验中心 2009年2月

基于51系列单片机控制步进电机调速实验 实验目的及要求: 1、熟悉步进电机的工作原理 2、熟悉51系列单片机的工作原理及调试方法 3、设计基于51系列单片机控制的步进电机调速原理图(要求实现电机的速度反馈测量,测量方式:数字测量) 4、实现51系列单片机对步进电机的速度控制(步进电机由实验中心提供,具体型号42BYG )由按钮控制步进电机的启动与停止;实现加速、匀速、和减速控制。速度设定由键盘设定,步进电机的反馈速度由LED 数码管显示。 实验原理: 步进电机控制原理 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。因此步进电动机是一种把脉冲变为角度位移(或直线位移)的执行元件。步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所 以又称为脉冲电动机。随着数字控制系统的发展,步进电动机的应用将 逐渐扩大。 步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来 进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由 脉冲信号频率决定。步进电机的驱动电路根据控制信号工作,控制信号 可以由单片机产生。 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几 何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻 两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐, B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:(图2所示)

相关文档
最新文档