必修五——线性规划无数个最优解问题、乘1问题-答案

必修五——线性规划无数个最优解问题、乘1问题-答案
必修五——线性规划无数个最优解问题、乘1问题-答案

必修五——线性规划无数个最优解问题、乘1问题

答案和解析

【答案】

【解析】

1. 解:作出不等式组表示的平面区域,

得到如图的△ABC及其内部,其中A(1,0),B(0,1),C(3,4)

设z=F(x,y)=ax+by(a>0,b>0),将直线l:z=ax+by进行平移,

当l经过点C时,目标函数z达到最大值

∴z最大值=F(3,4)=3a+4b=7,可得(3a+4b)=1因此,+=(3a+4b)(+)=(25+)∵≥2=24∴(25+24)≥×49=7,

即当且仅当a=b=1时,+的最小值为7故选:D

作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=ax+by对应的直线进行平移,可得当x=3,y=4时,z最大值为3a+4b=7.然后利用常数代换结合基本不等式,可得当且仅当a=b=1时,+的最小值为7.

本题给出二元一次不等式组,在已知目标函数z=ax+by最大值为7的情况下求+的最小值.着重考查了运用基本不等式求最值和简单的线性规划等知识,属于中档题.

2. 解:满足约束条件的可行域如下图所示

∵表示可行域内一点(x,y)与P(1,5)连线的斜率

又∵k PA==1,k PB==-3,

∴的范围是(-∞,-3)∪(1,+∞)

故选A

画出满足约束条件的可行域,分析目标函数的几何意义,数形结合即可分析出目标函数的取值范围.

本题考查的知识点是简单线性规划的应用,其中分析出目标函数的几何意义是表示可行域内一点(x,y)与P(1,5)连线的斜率是解答的关键.

3. 解:由约束条件作出可行域如图,

由z=y-ax(a≠0),得y=ax+z,

∵a≠0,

∴要使z=y-ax(a≠0)取得的最优解(x,y)有无数个,

a不能为负值,当a>0时,直线y=ax+z与线段AC所在直线重合时,使z=y-ax取得最大值的最优解有无数个;

直线y=ax+z与线段BC所在直线重合时,使z=y-ax取得最小值的最优解有无数个.

综上,要使z=y-ax(a≠0)取得的最优解(x,y)有无数个,则a=1或2.

故选:C.

由约束条件作出可行域,化目标函数为直线方程的斜截式,结合可行域即可看出使z=y-ax (a≠0)取得的最优解(x,y)有无数个的a值.

本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

4. 解:依题意,满足已知条件的三角形如下图示:

令z=0,可得直线x+my=0的斜率为-,

结合可行域可知当直线x+my=0与直线AC平行时,

线段AC上的任意一点都可使目标函数z=x+my取得最小值,

而直线AC的斜率为=-1,

所以-=-1,解得m=1,

故选C.

增加网友的解法,相当巧妙值得体会!请看:

依题意,1+3m=5+2m<3+m,或1+3m=3+m<5+2m,或3+m=5+2m<1+3m

解得m∈空集,或m=1,或m∈空集,

所以m=1,选C.

评析:此解法妙在理解了在边界处取到最小值这个命题的内蕴,区域的三个顶点中一定有两个顶点的坐标是最优解,故此两点处函数值相等,小于第三个顶点处的目标函数值,本题略去了判断最优解取到位置的判断,用三个不等式概括了三种情况,从而解出参数的范围,此方法可以在此类求参数的题中推广,具有一般性!

将目标函数z=x+my化成斜截式方程后得:y=-x+z,若m>0时,目标函数值Z与直线族:y=-x+z截距同号,当直线族y=-x+z的斜率与直线AC的斜率相等时,目标函数z=x+my 取得最小值的最优解有无数多个;若m<0时,目标函数值Z与直线族:y=-x+z截距异号,当直线族y=-x+z的斜率与直线BC的斜率相等时,目标函数z=x+my取得最小值的最优解

有无数多个,但此时是取目标函数取最大值的最优解为无数个,不满足条件.

目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式;②分析Z与截距的关系,是符号相同,还是相反;③根据分析结果,结合图形做出结

论④根据斜率相等求出参数.

5. 解:由题意,使目标函数Z=ax-y(a>0)取得最大值,而y=ax-z

即在Y轴上的截距最小;

所以最优解应在线段AC上取到,故ax-y=0应与直线AC平行.

∵k AC==,

∴a=,

故选:A.

由题设条件,目标函数Z=ax-y(a>0),取得最大值的最优解有无数个知取得最优解必在边界上而不是在顶点上,故最大值应该在边界AB上取到,即ax-y=0应与直线AB平行;进而计算可得答案.

本题考查线性规划最优解的判定,属于该知识的逆用题型,知最优解的特征,判断出最优解的位置求参数.

6. 解:∵目标函数P=ax+y,

∴y=-ax+P.

故目标函数值Z是直线族y=-ax+P的截距,

当直线族y=-ax+P的斜率与边界AC的斜率相等时,

目标函数z=ax+y取得最大值的最优解有无数多个,

此时,-a==-,

即a=,

故选B.

给出平面区域如图所示,其中A(5,3),B(1,1),C(1,5),若使目标函数z=ax+y(a >0)取得最大值的最优解有无穷多个,则a的值为

目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式②分析Z与截距的关系,是符号相同,还是相反③根据分析结果,结合图形做出结论④根据斜率相等求出参数.

7. 解:∵z=x+ay则y=-x+z,为直线y=-x+在y轴上的截距

要使目标函数取得最小值的最优解有无穷多个,

则截距最小时的最优解有无数个.

∵a>0把x+ay=z平移,使之与可行域中的边界AC重合即可,

∴-a=-1∵a=1故选D.

先根据约束条件画出可行域,由z=x+ay,利用z的几何意义求最值,要使得取得最小值的最优解有无数个,只需直线z=x+ay与可行域的边界AC平行时,从而得到a值即可.

本题主要考查了简单线性规划的应用、二元一次不等式(组)与平面区域等知识,解题的关键是明确z的几何意义,属于中档题.

8. 解:由x,y满足线性约束条件,作出可行域.

联立,解得C(2,1).

由可行域可知:当目标函数经过点C时z取得最大值1,

∴2a+b=1(a>0,b>0),

∴+=(+)(2a+b)=≥=8,

当且仅当b=2a=时,取等号,

∴+的最小值为8.

故选B.

由约束条件作出可行域,并找出目标函数取得最大值时的条件,进而利用基本不等式的性质即可求出.

本题考查线性规划的有关内容及基本不等式的运用,确定2a+b=1,正确运用基本不等式是关键.

9. 解:由题意,z=mx+y(m>0)在平面区域内取得最大值的最优解有无数多个,

最优解应在线段AC上取到,故mx+y=0应与直线AC平行

∵k AC==-,

∴-m=-,

∴m=,

故选C.

目标函数Z=mx+y,取得最大值的最优解有无数个知取得最优解必在边界上,目标函数的截距取得最大值,故最大值应在左上方边界AC上取到,即mx+y=0应与直线AC平行;进而计算可得m的值.

本题考查线性规划的应用,目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式②分析Z与截距的关系,是符号相同,还是相反③根据分析结果,结合图形做出结论④根据斜率相等求出参数.

10. 解:满足约束条件的平面区域如图示:

因为z=mx+y在平面区域上取得最小值的最优解有无穷多个,

所以m=.

只有过点(0,0)时,z=mx+y有最小值0.

故选 B.

先有z=mx+y在平面区域上取得最小值的最优解有无穷多个找出m=.再把

对应的平面区域画出,借助与图形找到此时z的最小值即可.

本题考查的知识点是简单线性规划的应用.在取得最值的最优解有无穷多个时,目标函数通常与线性约束条件中的某一条线平行.

11. 解:作出不等式组对应的平面区域如图:

由z=ax+by(a>0,b>0)得y=-x+,

则直线的斜率k=-<0,截距最大时,z也最大.

平移直y=-x+,由图象可知当直线y=-x+,经过点A时,

直线y=-x+,的截距最大,此时z最大,

由,解得,

即A(1,1),

此时z=a+b=2,

即,

∴+=(+)()=≥2,

当且仅当,即a=b=1时取等号,此时m=2,

y=sin(mx+)=sin(2x+)的图象向右平移后的表达式为:y=sin[2(x-)+]=sin2x.

故选:B.

作出不等式组对应的平面区域,利用目标函数的几何意义,确定z取最大值点的最优解,利用基本不等式的性质,利用数形结合即可得到结论.

本题主要考查线性规划的应用,利用z的几何意义先求出最优解是解决本题的关键,利用基本不等式的解法和结合数形结合是解决本题的突破点.同时考查三角函数的图象的平移变换.

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

必修五简单线性规划典型例题

1. “平面区域”型考题 1.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x 3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题 1.设平面点集,则所表示的平面图形的面积为 A B C D 2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域 {(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1 4 3、若A 为不等式组0 02x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫 过A 中的那部分区域的面积为 . 4、 若不等式组0 3434 x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 (A ) 73 (B ) 37 (C )43 (D ) 34 高 5、若0,0≥≥b a ,且当?? ? ??≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面 区域的面积等于__________. 3. “求约束条件中的参数”型考题 1.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域内的面积等于2,则的值为 A. - 5 B. 1 C. 2 D. 3 2、若直线上存在点满足约束条件,则实数的最大值为( ) A . B .1 C . D .2 3、设二元一次不等式组2190802140x y x y x y ?+-?-+??+-? , ,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图 象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9] 4.设m 为实数,若{250(,)300x y x y x mx y -+≥??-≥??+≥? }22 {(,)|25}x y x y ?+≤,则m 的取值范围是___________. 4. “截距”型考题 1. 满足约束条件,则的最大值为( ) 2.设变量满足,则的最大值为A .20 B .35 C .45 D .55 3.若满足约束条件,则的最小值为 。 4.设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5 . “距离”型考题 1. 设不等式组x 1x-2y+30y x ≥?? ≥??≥? 所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对 称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于()A. 285 C. 12 5 2.设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A B C D 3、如果点P 在平面区域?? ???≥-≤-+≥+-012020 22y y x y x 上,点O 在曲线的那么上||,1)2(2 2PQ y x =++最小值为 (A) 23 (B) 15 4- (C)122- (D)12- 6. “斜率”型考题 1.足10,0 x y x -+≤?? >?则y x 的取值范围是( )A.(0,1) B.(]0,1 C.(1,+∞) D.[)1,+∞ 2.已知正数满足:则的取值范围是 . 7. “求目标函数中的参数”型考题 1.若x ,y 满足约束条件,目标函数仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(,

人教版高一必修五解三角形单元试题及答案

高一必修5 解三角形单元测试题 1.在△ABC 中,sinA=sinB ,则必有 ( ) A .A=B B .A ≠B C .A=B 或A=C -B D .A+B= 2 π 2.在△ABC 中,2cosBsinA=sinC ,则△ABC 是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 3.在ABC ?中,若 b B a A cos sin =,则B 的值为 ( ) A . 30 B . 45 C . 60 D . 90 4.在ABC ?中,bc c b a ++=2 2 2 ,则角A 等于 ( ) A .60° B .45° C .120° D .30° 5.在△ABC 中,b =, ,C=600,则A 等于 ( ) A .1500 B .750 C .1050 D .750或1050 6.在△ABC 中,A:B:C=1:2:3,则a:b:c 等于 ( ) A .1:2:3 B .3:2:1 C . 2: D . 7.△ABC 中,a=2,A=300,C=450,则S △ABC = ( ) A B . C 1 D .11)2 8.在ABC ?中,角A 、B 、C 的对边分别为a 、b 、c ,则acosB+bcosA 等于 ( ) A . 2 b a + B . b C . c D .a 9.设m 、m +1、m +2是钝角三角形的三边长,则实数m 的取值范围是 ( ) A .0<m <3 B .1<m <3 C .3<m <4 D .4<m <6 10.在△ABC 中,已知a=x , A=450,如果利用正弦定理解这个三角形有两个解, 则x 的取值范围为 ( ) A . B .22 D .x<2 11.已知△ABC 中,A=600, ,c=4,那么sinC= ; 12.已知△ABC 中,b=3, B=300,则a= ; 13.在△ABC 中,|AB |=3,||=2,AB 与的夹角为60°,则|AB -|=____ __; 15.在ABC ?中,5=a , 105=B , 15=C ,则此三角形的最大边的长为__________;

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值就是 。 3. 已知变量x,y 满足约束条件+201-70x y x x y -≤??≥??+≤? ,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95 ]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值 就是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( ) A. -3 B 、 3 C 、 -1 D 、 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B 、 1 C 、 5 D 、 无穷大

必修五——线性规划无数个最优解问题、乘1问题-答案

必修五——线性规划无数个最优解问题、乘1问题 答案和解析 【答案】 1.D 2.A 3.C 4.C 5.A 6.B 7.D 8.B 9.C 10.B 11.B 【解析】 1. 解:作出不等式组{x +y ≥1 x ?y ≥?12x ?y ≤2 表示的平面区域, 得到如图的△ABC 及其内部,其中A (1,0),B (0,1),C (3,4) 设z =F (x ,y )=ax +by (a >0,b >0),将直线l :z =ax +by 进行平移, 当l 经过点C 时,目标函数z 达到最大值 ∴z 最大值=F (3,4)=3a +4b =7,可得17(3a +4b )=1因此,3a +4b =17 (3a +4b )(3a +4b )=17(25+12b a +12a b ) ∵12b a +12a b ≥2√12b a ?12a b =24∴17(25+24)≥17×49=7, 即当且仅当a =b =1时,3a +4b 的最小值为7故选:D 作出题中不等式组表示的平面区域,得如图的△ABC 及其内部,再将目标函数z =ax +by 对应的直线进行平移,可得当x =3,y =4时,z 最大值为3a +4b =7.然后利用常数代换结合基本不等式,可得当且仅当a =b =1时,3a +4 b 的最小值为7. 本题给出二元一次不等式组,在已知目标函数z =ax +by 最大值为7的情况下求3a +4b 的最小值.着重考查了运用基本不等式求最值和简单的线性规划等知识,属于中档题. 2. 解:满足约束条件{x +y ?4<0y ≥x x ≥0的可行域如下图所示

∵y?5x?1表示可行域内一点(x ,y )与P (1,5)连线的斜率 又∵k PA =5?41?0=1,k PB =5?22?1=-3, ∴y?5x?1的范围是(-∞,-3)∪(1,+∞) 故选A 画出满足约束条件的可行域,分析目标函数的几何意义,数形结合即可分析出目标函数的取值范围. 本题考查的知识点是简单线性规划的应用,其中分析出目标函数的几何意义是表示可行域内一点(x ,y )与P (1,5)连线的斜率是解答的关键. 3. 解:由约束条件{y ≥0 y ?x +1≤0y ?2x +4≥0作出可行域如图, 由z =y -ax (a ≠0),得y =ax +z , ∵a ≠0, ∴要使z =y -ax (a ≠0)取得的最优解(x ,y )有无数个, a 不能为负值,当a >0时,直线y =ax +z 与线段AC 所在直线重合时,使z =y -ax 取得最大值的最优解有无数个; 直线y =ax +z 与线段BC 所在直线重合时,使z =y -ax 取得最小值的最优解有无数个.

高中数学必修五线性规划

高中数学必修五:线性规划 1. 设变量,x y 满足-10 0+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为( ) A .20 B .35 C .45 D .55 2..若直线x y 2=上存在点),(y x 满足约束条件?? ? ??≥≤--≤-+m x y x y x 0 320 3,则实数m 的最大值为( ) A .2 1 B .1 C .2 3 D . 3.在平面直角坐标系中,若不等式组10 1010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积 等于2,则a 的值为( ) A. -5 B. 1 C. 2 D. 3 4.已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组43250 22010x y x y x +-≤??-+≤? ?-≥? ,则c o s P O Q ∠的最小值为( ) A .12 B .1 5 .当实数,x y 满足不等式?? ? ??≤+≥≥220 y x y x 时,恒有3ax y + ≤成立,则实数a 的取值范围是 ( ) A .0a ≤ B .0a ≥ C .02a ≤≤ D .3a ≤ 6 .已知实数?? ?? ?≤+-≤≥.,13, 1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( ) A .3 B .2 C .4 D .3 11 7.若A 为不等式组0 02x y y x ≤?? ≥??-≤? 所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过 A 中的那部分区域面积为( )A .2 B .1 C .34 D .74 8.设实数 ,x y 满足约束条件: 360200,0x y x y x y --≤?? -+≥??≥≥? ,若目标函数(0,0)z ax by a b =+>>的最大值为 12,则2294a b + 的最小值为( )A .12 B .1325 C .1 D .2 9.设y x ,满足约束条件?? ???≤+≥≥,1434,, 0y x x y x 则2 1++x y 的取值范围是( ) A .]6 17,21[ B .]4 3,21[ C .]6 17,43[ D .) ,2 1[+∞

高中数学的必修五解三角形知识点归纳

解三角形 一.三角形中的基本关系: (1)sin()sin ,A B C += cos()cos ,A B C +=- tan()tan ,A B C +=- (2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理: 2sin sin sin a b c R C ===A B .R 为C ?AB 的外接圆的半径) 正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 两类正弦定理解三角形的问题:

①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解)) 三.余弦定理: 222 2cos a b c bc =+-A 222 2cos b a c ac =+-B 222 2cos c a b ab C =+-. 注意:经常与完全平方公式与均值不等式联系 推论: 222 cos 2b c a bc +-A = 222 cos 2a c b ac +-B = 2 2 2 cos 2a b c C ab +-= .

高中数学必修五《简单的线性规划问题》优秀教学设计

§3.3.2 简单的线性规划问题(第一课时) 【学习目标】 1. 复习掌握二元一次不等式(组)表示的平面区域; 2. 了解线性规划的意义以及线性的约束条件、线性目标函数、可行解、可行域、最优解的概念; 3. 了解线性规划问题的图解法,掌握图解法求线性目标函数的最大值、最小值。 【重点和难点】 重点、难点:掌握图解法求线性目标函数的最大值、最小值。 【课堂教学】 (一)复习:二元一次不等式(组)与平面区域 1. 满足二元一次不等式(组)的解()y x ,可以看成直角坐标平面内点的坐标。于是,二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合。 2. 平面区域:二元一次不等式表示平面区域的判定方法是:以线定界(包括边界,画实线;不包括边界,画虚线),以点定域(以0>++C By Ax 为例):(1)画边界:即画出直线0=++C By Ax 。 (2)定区域:在直线0=++C By Ax 的一侧取一个特殊点()00,y x 作为测试点代入式子C By Ax ++,由C By Ax ++00的符号判定0>++C By Ax 表示的是直线0=++C By Ax 哪一侧的平面区域,当 0≠C ,常选取()0,0作为测试点;当0=C ,常选取()0,1或()1,0作为测试点。 (3)求交集(公共部分):二元一次不等式组表示的平面区域是各不等式表示的平面区域的公共部分。 【温故而知新】 1. 在平面直角坐标系中,若点()t A ,2-在直线042=+-y x 的上方,则t 的取值范围是___________。 2. 点()2,1与点()4,3-在直线0=++a y x 的两侧,则实数a 的取值范围是____________。 3. 画出不等式(组)?? ???≤≥+≥+-3005x y x y x 表示的平面区域,并求其面积。 (二)简单的线性规划问题

六种经典线性规划例题

线性规划常见题型及解法 求线性目标函数的取值范围 2 2 2 x y A D y 2 O x x=2 求可行域的面积 y y M 5 2 x y 2 y x y 2 x y 2 x y x (3,5] y =2 ( 13 例1 x+2y 时 6 的点 C 、 x , 个 y 6 y 3 2 x + y —3 = 0 C 、 5 A 、 4 B 、 1 D 、无穷大 () 0,将 有 最小值 故选A .B A --- 作出可行域如右图 点个数为13个,选D x + y =2 则z=x+2y 的取值范围是 () 旦y =2 0 0表示的平面区域的面积为 三、求可行域中整点个数 解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6] 解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的 面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 (x 0,y 0) (x 0,y p 0) (xp 0,y 0) (xp 0,y p 0) 是正方形内部(包括边界),容易得到整 y)中整点(横纵坐标都是整数)有() D 、 14 个 2x 例2、不等式组x x 若x 、y 满足约束条件 y O C V —? x 2x + y —6= 0

简单线性规划问题教案

332简单线性规划问题 “简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简 单应用,这是《新大纲》对数学知识应用的重视?线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益?它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题?中学 所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法一一数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力 依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等 价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知 识内容定为了解层次 本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材 本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力 教学重点重点是二元一次不等式(组)表示平面的区域教学难点难点是把实际问题转化为线性规划问题,并给出解答?解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解?为突 出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化课时安排2课时 三维目标 一、知识与技能 1. 掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 2. 运用线性规划问题的图解法,并能应用它解决一些简单的实际问题I 二、过程与方法 1. 培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 三、情感态度与价值观 1. 通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、 归纳等数学能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于 创新.

必修五 简单线性规划典型例题

1. “平面区域”型考题 1.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x 3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题 1.设平面点集{} 221 (,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则A B 所表示的平 面图形的面积为 A 34π B 35π C 47π D 2 π 2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域 {(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1 4 3、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫 过A 中的那部分区域的面积为 . 4、 若不等式组0 3434 x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 (A ) 73 (B ) 37 (C )43 (D ) 34 高 5、若0,0≥≥b a ,且当?? ? ??≤+≥≥1,0, 0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面 区域的面积等于__________. 3. “求约束条件中的参数”型考题 1.在平面直角坐标系中,若不等式组10 1010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积等于2, 则a 的值为 A. -5 B. 1 C. 2 D. 3 2、若直线x y 2=上存在点),(y x 满足约束条件?? ???≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A . 21 B .1 C .2 3 D .2 3、设二元一次不等式组2190802140x y x y x y ?+-? -+??+-? ,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图 象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9] 4.设m 为实数,若{250 (,)300x y x y x mx y -+≥??-≥??+≥? }22 {(,)|25}x y x y ?+≤,则m 的取值范围是___________. 4. “截距”型考题 1. ,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) ()A 12()B 11 ()C 3()D -1 2.设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为A .20 B .35 C .45 D .55 3.若,x y 满足约束条件1030330 x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 4.设函数ln ,0 ()21,0 x x f x x x >?=?--≤?,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成

(完整版)必修五-解三角形-题型归纳

构成三角形个数问题 1在 ABC 中,已知a x,b 2,B 45°,如果三角形有两解,则x 的取值范围是( ) A. 2 x 2\f2 B. X 2 血 C . V2 x 2 D. 0x2 2 ?如果满足 ABC 60 , AC 12 , BC k 的厶ABC 恰有一个,那么k 的取值范围是 3.在 ABC 中,根据下列条件解三角形,其中有两个解的是( ) A* CJ = S J fr = 10^ A = 45" E ? 口 = 60 r £* = S1 B = 6(T * C. a — 7 > £> = 5 ? A - &0= D ? 口二 14# 6 - 20 , -4-45"心 求边长问题 A. 5 B 5?在△ ABC 中, a 1,B 450, S ABC 2,则 b = _________________ 三. 求夹角问题 6.在 ABC 中, ABC -, AB 2,BC 3,则 sin BAC () 4 10 10 3 10 5 A. 10 B 5 C 10 D 5 7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 4.在 ABC 中,角 A, B,C 所对边 a,b,c ,若 a 3,C 1200 , ABC 的面积S 15 3 4

1 2 2 2 acosB bcosA csinC, S -(b c a ),则/ B=() 4 A. 90° B . 60° C . 45° D . 30° 四.求面积问题 &已知△ ABC中,内角A,B, C所对的边长分别为a,b,c.若a 2bcosA, B -,c 1,则 3 △ ABC的面积等于( ) 书书书书 A B------ B ■ C i D i +11 8 6 4 2 A 9.锐角ABC中,角A、B、C的对边分别是a、b、c,已知cos2C j (i)求sinC的值; (n)当a 2, 2si nA si nC时,求b的长及| ABC的面积. 10?如图,在四边形ABCD 中,AB 3,BC 7J3,CD 14, BD 7, BAD 120 (1 )求AD边的长; (2)求ABC的面积.

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

高中数学必修五 第一章 解三角形知识点归纳

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

如何认识线性规划实际问题中有关最优解的精确问题

如何认识线性规划实际问题中有关最优解的精确问题 课本线性规划第二节,提到两个实际问题,一个要求将最优解精确到0.1,一个要求将最优解是整数,如果说师生们对例4的答案还可接受的话,那么,例3到最后四舍五入式的解答实在让人难以把握,况且最优解应为(12.3,34.5),那么关于这种最优解需要得到精确的题目有没有统一的解答步骤,我的回答是有。 在实际问题中,可行域一般都是一整片区域不存在间断现象,所以题目所要求的最优解无论精确到0.1还是精确到0.01,符合要求的最优解都确实存在在可行域中,我们要做的应该是把它找出来,而不是通过任何手段去精确。如何才能把它找出来呢?我的办法是,不考虑x、y需要精确的要求,先依其他条件列出不等式组,作出可行域,求出符合题中其他条件的最优解,然后看此最优解是否符合题目要求,若符合,则即为所求解.若不符合,则应继续滑动参照线,求出经过可行域内的符合要求的且与原点距离最远(或最近)的点的直线,在该线经过可行域的部分上寻找最优解即可。具体操作请看以下示范 课本例3、某工厂生产甲、乙两种产品,已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需消耗A种矿石4t、B种矿石4t、煤9t。每1 t甲种产品的利润是600元,每1 t甲种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大? 解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么

104300542004936000 x y x y x y x y +≤??+≤?? +≤??≥?≥?? Z=600x+1000y 作直线l :600x+1000y=0 即直线l :3x+5y=0 把直线l 向右上方平移,使其划过可行域,此时3x+5y>0 当直线经过点M 3601000 (,)2929时3x+5y 达到最大,即z 也达到最大, 此时3x+5y=6080 29 ≈209.655, 若要将最优解精确到0.1,需将直线向回平移到3x+5y=209.6 由35209.649360 x y x y +=??+=? 得到3x+5y=209.6与可行域左边界的交点A (12.343,34.514) 由35209.654200x y x y +=??+=? 得到3x+5y=209.6与可行域右边界的交 点B (12.431,34.462) 可知有可能成为最优解的点的横坐标为12.4 代入3x+5y=209.6得到纵坐标约为34.48,不符合题目精确到0.1要求

完整word版,人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1. 锐角△ABC 中,已知a =√3,A =π 3,则b 2+c 2+3bc 的取值范围是( ) A. (5,15] B. (7,15] C. (7,11] D. (11,15] 2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC 的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60°,b =1,S △ABC =√3,则 a?2b+c sinA?2sinB+sinC 的值等于 ( ) A. 2√39 3 B. 263 √3 C. 8 3√3 D. 2√3 4. 在△ABC 中,有正弦定理:a sinA =b sinB =c sinC =定值,这个定值就是△ABC 的外接圆 的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点 M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( ) A. λ先变小再变大 B. 仅当M 为线段EF 的中点时,λ取得最大值 C. λ先变大再变小 D. λ是一个定值 5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大 时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边, b = c ,且满足sinB sinA =1?cosB cosA .若 点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( ) A. 8+5√34 B. 4+5√34 C. 3 D. 4+5√32 7. 在△ABC 中,a =1,b =x ,∠A =30°,则使△ABC 有两解的x 的范围是( ) A. (1,2√3 3 ) B. (1,+∞) C. (2√3 3 ,2) D. (1,2) 8. △ABC 的外接圆的圆心为O ,半径为1,若AB ????? +AC ????? =2AO ????? ,且|OA ????? |=|AC ????? |,则△ABC 的面积为( ) A. √3 B. √32 C. 2√3 D. 1 9. 在△ABC 中,若sinBsinC =cos 2A 2,则△ABC 是( )

相关文档
最新文档