微晶玻璃

微晶玻璃
微晶玻璃

1.1微晶玻璃简介

1.1.1微晶玻璃

微晶玻璃(glass-ceramics)又称玻璃陶瓷或结晶化玻璃[1],微晶玻璃是把加有晶核剂(或不加晶核剂)的特定组成的玻璃在一定条件下进行热处理,使原有单一的玻璃相形成了由微晶相和玻璃相均匀分布的复合材料[2]。微晶玻璃的结构与性能,和陶瓷、玻璃均不同,微晶玻璃的性能由晶相和玻璃相的化学组分及他们的数量决定,所以它集中了两者的特点,成为一类特殊的材料,因其可用矿石、工业尾矿、冶金矿渣、粉煤灰等作为主要生产原料,且生产过程可以实现固体废弃物的整体利用和零排放,产品本身无放射性污染,故又被称为环保材料或绿色材料。

微晶玻璃具有原料来源广、制备工艺简单、可与金属焊接等诸多优点,可作为结构材料、光学材料、电学材料、建筑装饰材料等,广泛应用于建筑、医疗、航空、国防以及生活等各个领域。尽管微晶玻璃发展己有50多年的历史,但有关各类微晶玻璃的研究开发和应用依然十分活跃,已成为新型陶瓷材料开发应用的研究重点之一。[3]

1.1.2微晶玻璃成分

对微晶玻璃来说,它的结构由材料的组成和热处理工艺共同决定。其中组成对玻璃析晶性能和主晶相的形成有着很大的影响,对微晶玻璃的内部结构起到决定性的作用。

随着成分的变化,微晶玻璃结构及性能发生改变。实际上,玻璃成分是通过结构决定了性质,即成分、结构、性能间存在的总规律是:微晶玻璃成分通过对结构的影响而决定了其性能。微晶玻璃不同于一般系统的玻璃,其结构中既存在玻璃相,亦存在有一定晶相,玻璃相结构和晶相性质共同作用决定了微晶玻璃的性能。

从玻璃形成条件看,其组分中必须含有可以形成玻璃的氧化物,如SiO2、B2O3和P2O5,同时还必须含有一定量的中间氧化物,如CaO和MgO等。

在研究中对料方调整按下列依据进行:

(1)SiO2

SiO2是构成微晶玻璃骨架网络的主要氧化物,它的含量不仅决定玻璃的主要化学性质和性能指标,而且对玻璃的粘度影响很大,是熔化、澄清及成形的关键性因素。适当增加SiO2有利于减缓高温析晶倾向,但其含量太高,则玻璃粘度太大,制品析晶困难;而SiO2含量太低,如小于40%,则玻璃易失透,制品无法成型。

(2)A12O3

配合料中A12O3含量不能太高,否则形成的A12O3会引起补网作用,使得粘度增加,成型困难,抑制玻璃的分相与析晶;但A12O3含量太少,会造成制品结晶不均匀,晶粒较粗,也会降低玻璃的稳定性。

(3)CaO

CaO是矿渣微晶玻璃中不可缺少的组分,它能够调节玻璃的粘度,对玻璃的成型起着决定作用。CaO在高温时降低玻璃的粘度,但在低温时增大玻璃的粘度,

缩短玻璃的料性。此外,CaO还能促进玻璃分相和析晶。因此,采用浇铸法时,宜采用CaO含量高的成分,防止玻璃坯体软化变形。有研究表明,CaO含量过低时,不论其他组成如何变化,制品几乎不会析晶;CaO含量过高时,制品严重失透,成型发生困难,这主要是Ca2+离子对玻璃结构的积聚作用有关。

(4)ZnO

在硅酸盐矿物中,Zn2+多处于八面体配位[ZnO6]。在玻璃中锌氧四面体的含量一般随碱金属含量增大而增大,故氧化锌在有碱与无碱玻璃中的作用不同。变换中间体氧化物ZnO有助于玻璃的熔化。加入适量ZnO既可使玻璃脱色,又能提高浅色微晶玻璃的机械强度。此外,ZnO还具有提高玻璃的热稳定性和化学稳定性的作用。但锌用量过多将增大玻璃的析晶倾向。氧化锌与二氧化钛的混合成核剂,可使微晶玻璃呈白色。

(5)H3BO3

硼酸除了能以本身的网络结构形成玻璃外,在硅酸盐玻璃中,B3+也可占居Si4+的位置成为网络结构的一种成分。硼酸可降低硅酸盐玻璃的粘度,在玻璃中也起玻璃骨架的作用,能降低玻璃的热膨胀系数,提高玻璃的热稳定性。硼酸分解后的B2O3在玻璃中的含量,一般不大于14%。当玻璃成分中引入0.6%—1.5%的氧化硼时,即能加速玻璃的熔化和澄清,降低玻璃的熔化温度。氧化硼还能改善玻璃的成型性能。

(7)TiO2

二氧化钛可用作基础玻璃的成分外,还在微晶玻璃中含有2—5%用作核化剂。利用二氧化钛与铁共存可制得浓厚着色的玻璃。同时,二氧化钛也能使热膨胀率降低。[1]

1.1.3晶核剂对核化晶化行为的影响

微晶玻璃性能取决于基础玻璃的化学组成、析出晶相类型及其微观结构。而晶核剂对晶体的析出及微观结构起很大作用。一般情况下,微晶玻璃晶核的形成是通过晶核剂或利用液相分离而获得,即所谓的非均匀形核。界面的存在可以降低临界晶核的形成功,同时,微晶玻璃晶核的形成又都在较低温度下,也可以减少晶核形成时所需的功。二者的作用都使晶核的形成概率增大。

在微晶玻璃的生产中,为创造非均匀形核的条件,使玻璃中产生大量、均匀分布晶核,通常采用两种方法:一种是添加成核剂(晶核剂),使玻璃在热处理时出现大量晶胚或产生分相,促进玻璃的核化。另一种方法是将玻璃加工成粉末后再成型,这样制品在热处理时就会在粉末的表面上成核、晶化。

良好的晶核剂应具备如下性能:

(1)在玻璃熔融、成型温度下,应具有良好的溶解性;在热处理时应具有较小的溶解性,并能降低玻璃成核的活化能,促使整体析晶。

(2)晶核剂质点扩散的活化能要尽量小,使之在玻璃中易于扩散。

(3)晶核剂组分和初晶相之间的界面张力愈小,它们之间的晶格常数之差愈小(δ<±15%),成核愈容易。合适的晶核剂达到双碱效应促进在玻璃体中的熔解降低界面能,晶格常数匹配度非常重要。[4]

综上所述,根据晶核剂的作用不同可分为以下四种:

(1)降低晶化温度,促进析晶。如TiO2、SiC、S。

(2)在玻璃中具有两种价态,成为价电子的接受者,使玻璃结构中局部能量产生变化而引起自发核化,如Cr2O3。

(3)降低晶化活化能,促进析晶,如TiO2、CaF2、Nb2O5。

(4)改变网络结构,如BaO。

晶核剂与析出主晶相的结构越接近,则越有利于玻璃中形成稳定的晶核。晶核剂的用量对微晶玻璃的显微结构也有较大影响,晶核剂少,热处理后易形成晶粒粗大、晶相含量低的微晶玻璃;而晶核剂用量过大,引起玻璃的析晶速度过快,玻璃难以成型。因此,选择适宜的晶核剂和确定其最佳的用量是至关重要的。

目前用于制备微晶玻璃常用的成核剂有以下几种类形:

贵金属成核刑:Au、Ag、Cu、Pt和Rh等。这类贵金属在高温以离子状态存在,而在低温时分解为原子状态,经过一定热处理将形成高度分散的金属晶体颗粒,从而“诱导析晶”。

氧化物成核剂:TiO2、ZrO2、P2O5、Cr2O3、V2O5、Fe2O3等。他们易熔于硅酸盐玻璃中,但是不熔于SiO

2

,配位数较高且阳离子的场强较大,容易在热处理

过程中从硅酸盐网络中分离出来,导致结晶或分相。TiO

2

通常被认为是有效的晶核剂,它在高温下易溶于硅酸盐熔体,其阳离子电荷多,场强大,且配位数较高,在热处理过程中容易从硅酸盐网络中分离出来,导致结晶。

氟化物成核剂:茧石(CaF

2)、冰晶石(Na

3

AlF

6

)、氟化镁(MgF

2

)等。引入氟离

子的结果是用两个Si-F键代替强有力的Si-O-Si键,结果是降低了玻璃网络结构的链接程度,从而诱导了玻璃的形核。

硫化物成核剂:FeS、MnS、ZnS等。

1.1.4微晶玻璃的种类

微晶玻璃的组成在很大程度上决定着其结构和性能。按照其组成,微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。

1.1.4.1硅酸盐微晶玻璃

简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。其中矿渣微晶玻璃中析出的晶体主要为硅灰石

(CaSiO

3)和透辉石(CaMg(SiO

3

)

2

)。据研究,透辉石具有交织型结构,比硅灰石具

有更高的强度、耐磨耐腐蚀性。采用工业废渣为原料制造的矿渣微晶玻璃不仅具有性能优异、成本低廉、用途广泛等优点,而且对于“三废”利用,综合治理环境污染等各方面都极为重要,因而引起了广大研究者的普遍重视。

1.1.4.2铝硅酸盐微晶玻璃

(1)Li

2-Al

2

O

3

-SiO

2

系统:

Li

2-Al

2

O

3

-SiO

2

系统是一个重要的系统,因为从这个系统可以得到低膨胀系

数的微晶玻璃。当引入4%(TiO

2 、ZrO

2

)作晶核剂时,玻璃中能够析出大量的钛酸

锆晶核。在850℃左右热处理时,这些晶核上能够析出直径小于可见光(λ<0.4um)的β-石英固溶体,这种超细晶粒结构使材料透明。由于这种微晶玻璃的膨胀系数低于7×10-7∕℃(0—500℃),因此具有优良的抗热震性。

(2)MgO-Al

2O

3

-SiO

2

系统:

这类系统的微晶玻璃具有优良的高频电性能、较高的机械强度(250—300MPa)、良好的抗热震性和热稳定性,已成为高性能雷达天线保护罩的标准材

料。这些优越的性能主要是因为微晶玻璃中析出的主晶相为堇青石。堇青石的热膨胀系数呈各向异性,随着温度的升高,c轴方向膨胀但a轴方向收缩而导致零体积膨胀,它通过TiO

2

作晶核剂可以从铝硅酸镁玻璃中析出。

(3)Na

2O-Al

2

O

3

-SiO

2

系统:

在此类系统中引入一定量的TiO

2

,可以获得以霞石为主晶相的微晶玻璃。在

配方中加入Ba,可析出钡长石(BaAl

2Si

2

O

6

)晶体,其膨胀系数(30×10-7/℃)小于

霞石,因此可改善微晶玻璃的抗热震性。

(4)ZnO-Al

2O

3

-SiO

2

系统:

玻璃组成或热处理制度不一样析出的晶体类型也不一样。在850℃以下只析出透锌石,而在950—1000℃析出锌尖晶石和硅锌矿。不同晶体的热膨胀系数差异较大,可以通过调整组成来使热膨胀系数从零变到较大的正值。

1.1.4.3氟硅酸盐微晶玻璃

(l)片状氟金云母晶体型

片状氟金云母晶体沿(001)面容易解理,而且晶体在材料内紊乱分布,使得断裂时裂纹得以绕曲或分叉,而不致于扩展,破裂仅发生于局部,从而可以用普通刀具对微晶玻璃进行各种加工。云母晶体的相互交织将玻璃基体分隔成许多封闭或半封闭的多面体,增加了碱金属离子的迁移阻力。同时,由于云母晶体本身是一种优良的电介质材料,因此云母型微晶玻璃具有优良的介电性能,其介电强度可达40kV/mm。

(2)链状氟硅酸盐晶体型

链状氟硅酸盐微晶玻璃中可析出氟钾钠钙镁闪石及氟硅碱钙石。当主晶相为针状的氟钾钠钙镁闪石晶体时,这种晶体在材料中致密紊乱分布,形成交织结构,沉淀在方石英、云母及残余玻璃相中,可使断裂时裂纹绕过针状晶体产生弯曲的路径,因而具有较高的断裂韧性和抗弯强度。

1.1.4.4磷酸盐微晶玻璃

磷酸盐微晶玻璃由于成本高和一般具有较差的耐化学侵蚀性,在商业上的重要性要比它的同类硅酸盐差。然而,许多磷酸盐具有像生物相容性这样独特的优点,使得它在某些应用上要优于硅酸盐。[5]

1.1.5制备工艺

1.1.5.1熔融法

熔融法是最早的微晶玻璃的制备方法,至今该法仍是制备微晶玻璃的主要方法。其工艺流程为:将适量的晶核剂和玻璃原料充分混均得到玻璃配方料,将配料在高温下熔制得到熔融玻璃液,待其澄清均化后进行成型,经退火后在一定的热处理制度下进行核化和晶化,就可获得晶粒细小、结构均匀、致密的微晶玻璃。其中,晶核剂的选择和热处理制度的确定是微晶玻璃生产的技术关键。该方法与传统陶瓷成型工艺相比,成型速度快,效率高。但熔融法制备微晶玻璃熔制温度过高,通常都在1400℃—1600℃,能耗大;热处理制度在现实生产中难于

操纵控制;晶化温度高,时间长,现实生产中难于实现。

1.1.5.2烧结法

烧结法制备微晶玻璃工艺可以说是玻璃熔制、陶瓷烧结、天然石材加工工艺的有机结合,是国内目前微晶玻璃生产中比较常用的方法。主要工艺流程为:配料、熔制、水淬→粉碎→过筛→成型→烧结→深加工→成品。[6]该方法熔融时间短,温度低,能耗低;一般不用晶核剂,原料成本低;生产工艺繁杂但生产过程易于控制,易于自动化生产和传统建筑陶瓷厂的转型,生产技术已趋于成熟;制品厚度及规格可变,色彩丰富,市场适应性好。但制品容易产生气泡,孔隙率有时偏高;生产异型板材受限制。[2]

1.1.5.3溶胶—凝胶法

该方法的最大好处是制备温度低,污染小,并且可以实现分子水平上的化学计量,使得制备材料具有足够的均匀性。该方法的缺点是:必要的起始物导致成本高,烧结过程伸缩大,产品易变形。

1.1.5.4浮法

从理论上这种方法是可行的,但其困难在于:核化晶化应该在什么时候什么条件下进行。需要对各种设备进行改造更新。目前,国内很多研究单位已在开展这项研究工作。

1.1.5.5压延法

将玻璃料熔化、澄清,再采用流注法,经压延机压延成形,在晶化窑中晶化。热处理制度随产品的不同而改变。这种方法的产品品种相对单一,但其产量大,效率高。

1.1.6微晶玻璃的性能优势及应用

微晶玻璃具有许多宝贵的性能:膨胀系数可调(例如可制成零膨胀系数玻璃)、机械强度高、电绝缘性优良、介电损耗小、介电常数低、耐磨、耐腐蚀、热稳定性好及使用温度高等,因而它作为结构材料、技术材料、光学和电学材料、建筑装饰材料等广泛用于国防尖端技术、工业建筑及生活等各个领域。作为建筑材料,其性能集玻璃、陶瓷、石材的优点于一身;作为功能材料和结构材料,在光、电、生、化、磁等微电子技术、生物技术、国防尖端技术、机械制造等领域得到了广泛的应用,并且具有巨大的发展前景。[7]

机械工程领域:微晶玻璃的机械强度比玻璃高出许多倍,也比大多数陶瓷材料高,其抗弯强度为150—300MPa,并且硬度高,耐磨性好。矿渣微晶玻璃能获得极其光滑的表面,故其摩擦系数低,适合作轴承。利用其强度高和耐磨性好,可取代其它材料用来制造料槽、管道、球磨机内衬以及研磨体等,使用寿命可显著提高。还可用于制造工作在腐蚀性介质或强磨损条件下的机械零件。

电子领域:一些微晶玻璃具有优良的介电和绝缘性能,可在微波、高压领域获得应用。镁铝硅系荃青石基微晶玻璃已应用于电子材料和航空领域。随着计算机市场发展,微晶玻璃光盘有良好的市场前景。极性微晶玻璃是一种新型功能材料,含有定向生长的非铁电体极性晶体具有压电性能和热释电性能,在水声、超声等领域有广泛的应用前景。

化学化工材料:微晶玻璃的化学稳定性好,对王水也有较高的稳定性,只有轻微的侵蚀。微晶玻璃几乎不被腐蚀的特性,使其广泛应用于化学化工方面。如可用于制造输送腐蚀性液体管道、阀门、泵等,还可作反应器、电解池及搅拌器内衬。在控制污染和新能源应用领域也找到了用途,如微晶玻璃用于喷射式燃烧器中消除汽车尾气中的碳氢化合物;在硫化钠电池中作密封剂;同时,也可以制造核反应堆密封剂、和废料储存材料等。生物医学领域:含有磷灰石晶相的微晶玻璃作为人工骨骼及牙齿材料具有独特的生物相容性和生物活性。含磷灰石和云母相的微晶玻璃兼有生物活性和可切削性,其主要优点是在玻璃中引入了CaO、P2O5,通过热处理可析出磷灰石晶体,组成中其它组分可析出其它类型晶体,保证材料化学稳定性、可切削性等,比金属、氧化铝等更有前途。

光电工程领域:光功能微晶玻璃主要指光敏微晶玻璃、透明微晶玻璃、红外微晶玻璃等。光敏微晶玻璃在光的照射下吸收光能,产生光电导或光伏特效应,还具有独特的光化学加工功能,可加工出高精度、复杂图案的元件。透明微晶玻璃不仅有高的光透过度,而且在机械强度、光学性能及介电特性上有优异的特性,可在光电子、激光方面取得应用。透红外微晶玻璃在红外主动导航系统、激光制导及测距方面都有应用。晶粒定向微晶玻璃是一种非铁电材料,它是从玻璃基质中长出具有择优取向的微晶体。如果择优取向刚好是晶体自发极化方向,则晶体在这个方向上的宏观物理性能和极性单晶相似。超导微晶玻璃在某一温度下具有完全导电能力,可用于制造高磁场超导磁体,高灵敏的电子器件等。

其它领域:微晶玻璃在航天工业、化学工业、核工业方面的应用也常见报道。现在研究的一些功能材料在功能晶体析出量不够时,性能会有“稀释”效应,材料虽有某功能效应,但功能指标差,不能实用。应此,如何提高功能晶体材料的晶化率和使材料尽可能成为单一相或最少杂相是该类材料研究中的重要问题。

1.1.7微晶玻璃的研究现状

自从微晶玻璃出现以后,由于其组成、结构决定其具有所需的不同性能,因此在短短的两三年时间里,广泛应用于电子、化工、生物医学、机械工程、军事和建筑等领域,其中建筑装饰用微晶玻璃的使用量最大,经济效益最显著。

在欧美国家,微晶玻璃的研究起步较早。目前,主要是用矿渣及其它玻璃原料混合熔化后浇注成平板晶化玻璃、再经磨抛而成为具有漂亮花纹的微晶玻璃板用于建筑装饰。

在亚洲,日本是开发微晶玻璃最早的国家,主要用烧结法生产微晶玻璃装饰板,产品色泽艳丽,美观大方,具有棕红、大红、橙、黄、绿、蓝、紫、白、灰、黑等基色,任意组合色调,纹理清晰,代表了当前这种产品的世界水平。目前日本墙面积约1/3装有这种微晶玻璃装饰板,而且正进一步开发微晶玻璃作为建材的新产品。

我国在微晶玻璃装饰材料产品的开发研制方面起步较晚,始于80年代中后期,但发展迅速。起初,国内的开发研制者们多采用整体晶化法来制作微晶玻璃装饰板,由于在晶化过程中易出现变形与开裂,产品的质量得不到保证,成品率很低,成本高。

近年来,采用粉末烧结法研制开发的微晶玻璃装饰板已取得突破性进展,经过科研人员的刻苦攻关,现已解决了玻璃的成分设计、玻璃的熔化制度、玻璃颗粒析晶能力的控制等多项关键技术难题。例如,武汉工业大学玻璃科学技术研究所对采用烧结法生产微晶玻璃装饰板技术进行了深入研究,目前已将技术转让给

了几个研究,都很成功,其中广东茂名市中辰集团有限公司采用武汉工大的技术,投资8000多万元,现已投产,年产微晶装饰平面板和弧面板20万平方米,有30多个花色品种,产品成品率较高,基本上没有气泡、色差、翘板等缺陷,生产稳定。

清华大学研制的微晶玻璃装饰板已在内蒙古华孚玻璃厂投入生产,产品质量已达到国际先进水平。河北晶牛集团攻克了压延微晶玻璃技术难关,其产品主要技术性能经国家建材局技术检测中心鉴定,远远高于花岗石、大理石。

目前国内从事微晶玻璃装饰板的生产研究已达20多家。同时,武汉工业大学、清华大学、中科院上海硅酸盐研究所等单位的科研人员,经过艰苦的努力,已成功地掌握了用粉煤灰、煤矸石、金属尾矿、黄河泥沙以及工业废弃物作为基本原料生产微晶玻璃装饰板先进技术。这一方面可以大大降低生产成本,另一方面可以变废为宝,化害为利,节能降耗,保护环境,造福子孙后代。因此,微晶玻璃装饰材料也是一种迎合时代潮流的绿色建材。

在我国,微晶玻璃板已大量用作建筑装饰材料,如代替大理石或花岗石等材料用作外墙、地板、楼面、楼梯踏板、贴柱、大厅柜台面、电梯门边、卫生间台面、炊事案板等处的装饰材料及结构材料,也用作阳台和门窗材料,各种高档家具、高档珍贵工艺品制作及各种用途的其它室内装饰材料。现已用于机场、办公大楼、地铁、宾馆、酒店、别墅以及家庭居室等场合。

我国建材装饰业现已步入黄金时期,现代建筑业的发展对高档装饰材料的市场需求量越来越大,集多种优良性能于一体、晶莹闪烁的新型高档微晶玻璃装饰材料的市场需求量越来越大,应用范围越来越广,它被誉为当今世界建筑装饰的新型顶尖材料。专家预言,它将领导21世纪装饰材料新潮流。

1.2冶金渣

1.2.1冶金渣的产生

冶金渣,顾名思义,就是在冶炼生产过程伴随产品一同产出的固体混合物。现阶段,我国钢铁一年产能达到9.5亿吨,产量达7.02亿吨。大量钢铁以及其他金属的冶炼,产生了大量难以处理的渣。我国冶炼过程中产生的冶金渣利用率约为72%。利用的途径主要为水泥掺合料、道路材料、回填材料、砖和砌块等建筑制品,少量用于冶金原料。其利用的经济效益不显著。

大部分冶金渣中含有硅酸二钙(C

2S)、硅酸三钙(C

3

S)。不含C

3

S的酸性渣急

冷后生成具有潜在活性的玻璃体,这些成份均具有水硬胶凝性。但与硅酸盐水泥熟料相比,活性仍较低。20世纪90年代以来,冶金部建筑研究总院工业渣处理利用研究室对冶金渣的活性激发进行了系统的研究和实践。研究结果指出,冶金渣的颗粒粒径在O~30μm,颗粒形态呈圆形时,其活性才充分发挥出来。为高价值的利用创造了条件。

2l世纪,随着建筑技术的发展和建筑工程的需要,强度等级在C60以上的高性能混凝土将迅速发展。该种混凝土不用掺合料将难以配制,而冶金渣粉正是配制高性能混凝土的优质材料。因此用冶金渣生产掺合料是本世纪冶金渣高价值利用的重要途径。冶金渣的资源化利用对减少渣占地和环境污染、节能降耗、减少CO2排放及对企业可持续发展都具有现实意义,同时也具有显著的经济效益和社会效益。

1.2.2 冶金渣的分类

冶金渣主要分为两大类:钢铁冶炼过程产生的渣和有色冶金过程产生的渣。钢铁渣又可分为高炉渣、转炉渣、电炉渣、铁合金渣等等。

1.2.3 冶金渣的利用

我国冶金企业每年排出固体废弃物1.53亿t,利用率为43%。就冶金渣而言,每年产生量为6700万t,利用率为83%;钢渣为1600万t,利用率为79%;铁合金渣和有色渣为1000万t,利用率为20%,每年约有1800万t冶金渣继续排放。

我国的粒化高炉矿渣主要用于生产矿渣硅酸盐水泥。少量作建筑工程、道路工程的骨料。从20世纪90年代开始,冶金部建筑研究总院等科研单位利用粒化高炉矿渣生产高性能混凝土掺合料取得成功,国内一些钢铁企业已建成或正在建设矿渣粉生产厂。国家已发布实施了“用于水泥和混凝土中的粒化高炉矿渣粉”国家标准(GB/T18046—2000)。

目前我国钢渣主要用于生产钢渣水泥,钢渣代替部分铁粉、石灰石、粘土配烧硅酸盐水泥熟料,钢渣作道路基层材料和沥青混凝土面层材料,用作炼铁烧结矿原料,用于生产道面砖和砌块砖,用于地基回填材料等。金属锰渣水淬后可作水泥和混凝土掺合料。金属镁渣可作水泥和混凝土掺合料。硅锰渣水淬后可作水泥和混凝土掺合料。铬铁渣可作混凝土掺合料。铜渣经水淬后可作砌筑水泥,代替黄砂作砂浆和混凝土骨料。

1.3钢渣微晶玻璃

钢渣的成分属于CaO-MgO-Al

2O

3

-SiO

2

四元系统,该系统的微晶玻璃主晶相为

硅灰石、透辉石、堇青石等,但建筑微晶玻璃主要以透辉石和硅灰石为主,这主要是因为以这2种晶相为主的微晶玻璃有很好的机械性能和化学性能,足以满足建筑及装饰的要求。[8]

1.3.1钢渣

钢渣是炼钢过程中排放出来的固体废弃物,钢渣一般呈黑色,外观像结块的水泥熟料,其中夹带部分铁粒,硬度大,密度为1700—2000kg/m3。钢渣排放量约为粗钢产量的10—15Wt%,在冶金工业渣中,仅次于高炉矿渣的排放量,但其利用率远低于高炉渣,仅为10Wt%左右。钢渣的形成温度在1500—1700℃,主要由氧化硅、氧化铝、氧化铁、氧化钙、氧化镁等组成。不同的钢厂其化学成分含量也有所不同,一般情况下,氧化钙占30%—60%,氧化铁占15%—26%,氧化铝占3%—8%,氧化硅占8%—23%,氧化镁占4%—11%。[9]

目前钢渣主要应用这冶金、建筑材料、农业利用、工程应用等几个领域。在冶金领域我们可以利用钢渣回收废钢铁,还可直接作为烧结矿溶剂使用;在建筑材料方面钢渣主要用于生产水泥、筑路等;由于钢渣的主要成分为Ca、Mg、P、Si,还可以充当农肥和酸性土壤改良剂。

但这些方法都存在钢渣利用率低或附加值低的问题。如利用钢渣回收废钢铁,其利用率势必将大大降低,而且回收铁用于制备钢材会降低钢材的质量;而用于生产水泥和筑路则技术含量太低,产生的附加值不高;当其作为农肥使用时,其中的微量重金属将严重污染农田,而且生产农肥的成本也很高。

1.3.2钢渣微晶玻璃制备的可行性

制备玻璃的原料必须含有玻璃的基本化学成份,如SiO

2、Al

2

O

3

、CaO、MgO等。

从钢渣的成份含量分析知,钢渣中钙的含量高,其配合料中CaO必定偏高,CaO可

使玻璃析晶倾向增大,降低熔制质量,Al

2O

3

熔点高(2070℃)使配合料难熔化,势必

提高能耗,所以选择原料时既要使SiO

2

成份达到一定含量能形成玻璃网络结构,

又要使组成中CaO和Al

2O

3

含量符合工艺要求,因此,还必须选用辅助原料如SiO

2

等改善料性,提高微晶玻璃的力学性能。从原料配比知,配合料中钢渣、比例较大,可用CaF

2

作为晶核剂。

郑州大学、武汉理工大学等单位已成功利用钢渣制备了微晶玻璃,用实践证明了利用钢渣制备微晶玻璃的可行性。

1.4选题目的和意义

随着我国钢铁产业的快速发展,钢铁废渣的排放量也日益增加。但目前,我国冶金渣资源化综合利用水平偏低、存在利用率低和产品附加值低的严重问题,因此提高我国冶金渣资源化利用水平特别是钢渣高附加值利用,可以实现资源的可持续发展,具有十分重要的现实意义和深远的历史意义。

利用工业废渣制备微晶玻璃是一种高附加值的资源化技术,近十来年利用矿渣制备微晶玻璃在国内外已做了大量研究。将冶金渣等固体废物加以利用,不仅能解决环境污染和对土地占用等问题,而且能实现废物的资源化利用,为冶金渣等固体废物的资源化利用开辟了一条崭新的方向。[9]

本课题以太钢钢渣为主要原料,利用其硅、铝、钙互补的特点制备微晶玻璃,大大提高了包钢工业固体废弃物的综合利用率:一方面以钢渣微晶玻璃替代天然矿产资源,避免了因矿山开采而造成的环境破坏;另一方面变废为宝,减小了因其堆放而造成的环境污染,节省的大量人力、物力和财力。通过固体废弃物整体利用方式,可以实现冶金渣等固体废弃物高附加值利用,并可以解决其零排放问题,达到资源循环利用的目的,促进产业的良性循环,提升企业的竞争力。

1.5研究内容

(1)以钢渣为主要原料,添加少量的石英砂、刚玉粉、氧化钙、纯碱等化工原料,以氟化钙、二氧化钛为晶核剂,利用正交实验设计基础玻璃组分。采用熔融法制备基础微晶玻璃。

(2)通过对基础微晶玻璃不同热处理制度,如核化温度,核化时间,晶化温度和晶化时间的研究最终确定比较合适的热处理机制。

(3)通过对微晶玻璃试样的抗折强度、差热分析、显微形貌、物相、密度等研究,最终确定合理的玻璃配方及制备工艺。

微晶玻璃板材的主要缺陷

。微晶玻璃板材的主要缺陷有气泡、变形、色脏、坑洞、缺棱、缺角等。其中以气泡和变形较为常见。 气泡的形成是:该板材在晶化、烧成时表面会生成1—2mm厚的玉脂层。玉脂层下即隐藏有大量直径为1mm左右的气泡,气泡是装料堆积空隙内的气体,在表面熔融封闭前未能全部选出而滞留在板内的。如对板材的磨削深度超出该玉脂层时,就会使气泡外露成为开口气孔。 变形的形成是: 一、熔块料化学成分不均匀。熔块料化学成分偏差过大时易导致板材热膨胀系数不一致,产生局部内应力出现翘曲变形,这种现象并不常见。熔块料化学成分不均匀的因素有:(1)配合料未经过筛选,部分单一原料吸湿或受压结成团块入窑; (2)混料时间过短导致原料混合不均匀; (3)原料在熔窑内熔制时间过短,使得高温混熔不完全; (4)熔窑内隔墙侧塌,熔液表面浮渣随熔液料流出。 二、冷却阶段的过大温差会使板材的收缩不一致而产生翘曲变形。即便是出窑后鼓风强制冷却也会产生翘曲变形。在冷却的各个阶段应采用不同的合理的降温速率,缓慢、均匀地冷却方式最为合理 另外还有一、耐磨性较差,由于微晶石的表面是玻璃质的东西居多,容易磨花,所以在人流大的场合不适合铺地面(家庭装修由于保养好,容易克服这个缺点。工程地面应用则比较麻烦),因此微晶石的使用范围受到了限制,不主张用于地面铺贴。 二、第二次抛光难度大。再加上由于部分厂家在微晶石的烧制过程中偷工减料,致使产品根本无法进行第二次抛光,这些在一定程度上也使一些用户在选择微晶石做装修时慎之又慎。 三、花色呆板,缺乏变化,少有天然石材自然之美。和天然石材相比,微晶石人为的控制了色差,使色差变得极小,这是其优点。但是任何事物都有两面性,微晶石在追求整齐划一的同时却无法营造天然石材那种清秀、灵动、飘逸和装饰氛围,更无法达到那种天人合一、返朴归真、回归自然的至高境界,这不能不说是一大遗憾。 四、由高温烧制,大规格板容易变形,平整度差于抛光砖,应配备专门的铺贴工,有平整度问题可以通过有效的施工克服。 五、清洁后难以干燥,加之表面光洁,所以容易打滑,安全隐患大。

浅谈微晶玻璃

浅谈微晶玻璃 摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。微晶玻璃具有很多优异的性能,这些特性一般都超过了普通的金属材料、有机材料及无机非金属材料。这些优异的性能使微晶玻璃受到了极大的欢迎。 关键词微晶玻璃组成结构制备工艺应用发展 1引言 微晶玻璃(Glass-ceramic)又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。同原始玻璃相比,微晶玻璃的特点是无脆性、强度高、化学稳定性好、热稳定性和硬度比较高,并具有一些特殊的性能;与大理石、花岗岩相比,由于其组成是均匀细小晶体,因此其机械性能、耐化学腐蚀、硬度等主要物化性能均优于大理石、花岗岩,因此具有广泛的发展前途和应用价值,用它来代替天然和人造大理石已逐步成为时代的趋势[1]。我国对微晶玻璃的研究起步于上世纪的八十年代初,经过二十多年的开发,微晶材料的生产工艺基本上已趋于成熟,进人了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 2 微晶玻璃的组成与结构 2.1 组成 与一般玻璃不同,微晶玻璃的组成应分解为: (1)玻璃的总体化学组成,它应未微晶化的玻璃的化学组成一致; (2)各相的化学组成,它包括析出的各晶相和残余玻璃组的化学组成。首先应指出,仅有一定范围的组成能符合制备微晶玻璃的要求。一般都应含有一定量的玻璃形成剂。SiO2 ,B2O8等。其作用在于使玻璃易于晶化而易于引起分,以间接促进核化与晶化。虽然对分相的作用见解分岐,但一般认为,选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,会起到晶核剂的作用,促进玻璃的整体晶化。晶核剂及其作用机理的研究是微晶玻璃组成研究的一个重要问题。而在网络外体中往往需引入具有小离子半径、大场强的Li+,Mg2+和Zn2+等。其作用在于使玻璃易于晶化或易于引起分相,以间接促进核化与晶化,同时选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,如TiO2、ZrO2、Cr2O3等,会起到晶核剂的作用,促进玻璃的整体晶化。为了保证重新热处理过程中易于整体晶化,在组成设计时必须使玻璃具有适合的粘度—温度曲线[2]。 2.2 结构 材料的外观性能取决于它的内在结构。微晶玻璃的结构包括晶相和玻璃相的组成、数量和它们的相对比例,因此其性能既取决于玻璃的组成又取决于它的晶化工艺,因为晶体的种类

装饰材料调查报告

装饰材料调查报告 9月30日姚老师带我们去材料市场学习材料,通过这次的学习我收获了不少,总结如下: (一)天然石材: 目前市场上常见的用于居室装修的天然石材品种繁多。但按建材市场上的俗称,只分为两大类:大理石和花岗石。各种灰岩、白云岩和大理岩等统称为大理石;花岗岩、闪长岩、辉绿岩、片麻岩等统称为花岗石(个别商家将砂岩也称为花岗石)。然后再根据颜色和花纹的差异命名不同的品种,如印度红、黑金砂、珍珠黄、蓝麻、白麻等。普通消费者从名称上根本不能了解石材的性能。 花岗岩 是一种岩浆在地表以下凝却形成的火成岩,主要成分是长石和石英。花岗岩的语源是拉丁文的granum,意思是谷粒或颗粒。因为花岗岩是深成岩,常能形成发育良好、肉眼可辨的矿物颗粒,因而得名。花岗岩不易风化,颜色美观,外观色泽可保持百年以上,由于其硬度高、耐磨损,除了用作高级建筑装饰工程、大厅地面外,还是露天雕刻的首选之材。花岗岩为粒状结晶质岩石,主要的成分矿石为碱性长石及石英。花岗岩得天独厚的物理特性加上它美丽的花纹使他成为建筑的上好材料,素有“岩石之王”之称,还有人用一观、二量、三听、四试来评价好坏。在建筑中花岗岩从屋顶到地板都能使用,人行道的路缘也是,若是把它压碎还能制成水泥或岩石填充坝。许多需要耐风吹雨打或需要长存的地方或物品都是由花岗岩制成的。 大理石 又称云石,是重结晶的石灰岩,主要成分是CaCO3。石灰岩在高温高压下变软,并在所含矿物质发生变化时重新结晶形成大理石。主要成分是钙和白云石,颜色很多,通常有明显的花纹,矿物颗粒很多。大理石有美丽的颜色、花纹,有较高的抗压强度和良好的物理化学性能,资源分布广泛,易于加工,随着经济的发展,大理石应用范围不断扩大,用量越来越大,在人们生活中起着重要作用。特别是近10几年来大理石的大规模开采、工业化加工、国际性贸易,使大理石装饰板材大批量地进入建筑装饰装修业,不仅用于豪华的公共建筑物,也进入了家庭的装饰。大理石还大量用于制造精美的用具,如家具、灯具、烟具及艺术雕刻等。有些大理石(包括石灰岩、白云

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

微晶玻璃花岗岩石材装饰板介绍

微晶玻璃花岗岩石材装饰板介绍 微晶玻璃花岗岩装饰板是目前际上开始流行的高级建筑装饰材料,较天然花岗岩石材更能进行灵活设计,而且装饰效果更佳。是21世纪的绿色建材,是内、外墙及地面的理想装饰材料。 微晶玻璃花岗岩是应用受控晶化新技术生产的新型装饰材料,其结构致密、高强、耐磨、耐蚀,在外观上纹理清晰、色彩鲜艳、无色差、不褪色。是天然花岗岩石材最理想的替代产品,与天然花岗岩比,具有以下优点。 (1)色泽可根据要求生产各种色彩、色调和混合色的各种装饰材料,颜色有白、绿、灰、黄、红、蓝、黑等,而且装饰效果更佳。 (2)材质微晶玻璃花岗岩装饰板的成分与天然花岗岩相同,均属硅酸盐质,在材料内部结构中,生长有硅灰石的主晶相,所以耐磨、耐蚀、强度上均优于天然花岗岩石材。 (3)环保微晶玻璃花岗岩板材无任何类型的放射性物质,符合环保要求,有益人体。 (4)规格可生产各种厚度、尺寸的平板,,弧形板。另外还可生产30多种混合色和多种规格异型微晶玻璃花岗岩装饰板。是机场、银行、地铁、宾馆、酒楼、别墅及居室的首选理想装饰材料。 一、绪言

优质花岗岩饰面材料具有优异的硬度和耐磨性、并具优美的外观花纹,一直是人们首选的建筑饰面材料。然而,天然花岗岩因:(1)含有一定量地放射性元素---氡,长期接触会对人身体造成一定伤害,国外一些发达国家及国内很多大城市都已明令禁止有放射性地天然石材用于室内装饰。(2)内部组成与结构的原因,机械强度和化学稳定性较差,造成抗风化能力和耐久性较差。(3)一些优质石材蕴藏量有限,价格昂贵。(4)天然石材的颜色花纹变化较大,整体装饰效果较差等本身固有的原因。市场迫切需要开发天然石材代用品。特别是近几年人们环境保护意识的增强,人们更加迫切地需要不含放射性物质的天然石材替代品。近二十年来,各科研单位及生产企业纷纷研制开发了许多种仿大理石、花岗岩产品,如:无机胶凝和有机胶结的“仿大理石”,陶瓷仿大理石釉面砖和渗花砖,等等。所有这些虽然有一些具有大理石或花岗岩的花纹,但质感和性能却远远不及天然石材。 本世纪六十年代后期,微晶玻璃的研究取得突破性进展,各种具优异性能的微晶玻璃制品开始工业化生产,一些国家的科学家开始研究开发微晶玻璃饰面材料,如前苏联开发成功地“矿渣微晶玻璃”、捷克斯洛伐克以玄武岩作原料生产地“人造玄武岩”和美国开发成功地“人造蛋白石”等等。所有这些制品其理化性能都远优于天然石材,但没有天然石材那漂亮的外观花纹。很难作为天然石材的理想替代品。 到了七十年代,日本电器硝子株式会社的科学家率先突破技术难关,研制出了具天然大理石外观、且性能远优于天然石材的“结晶化玻璃大理石”,并于 1974年开始工业化生产,商品名为“新型玻璃大理石(Neoparies)”。 我们于1982年开始研究“结晶化玻璃大理石”,次年就研究成功了具花岗岩外观的“微晶玻璃花岗岩”,但在进行工业化试生产过程中,因气泡和变形缺陷无法解决,成品率极低,技术推广和产品商品化就此搁浅了。 直到1994年南方某厂投资近亿元人民币建成了年产40万平米的生产线,他们经过近半年试生产,也同样遇到了气泡问题无法解决而造成成品率极低,委托我们帮助解决;为此我们对过去的技术资料进行了认真分析讨论,认为气泡的来源主要有以下三点: 1.玻璃融化不完全,残存有未排除之气泡,在二次烧结过程中膨胀形成。 2.玻璃料水淬及淬碎料处理过程中混入的吸附水及杂质所为。 3.由于热传递温度梯度的存在,烧结过程中板材表面先受热熔融,将气体封 接在板材中,随着温度地升高,玻璃料黏度的降低,气泡浮向表面造成 缺陷。 在后来我们借助高温显微镜证实气泡也确实是由上述第二、三点原因造成地,遂产生了这样一个设想:如果我们研究这样一种添加剂即或者具有吸收气体的作用或者具较小黏度和表面张力能在烧结过程中使气泡顺利排出。问题不就解决了吗? 1994年我们成立专门地技术开发课题小组,集中对以下技术课题深入地研究开发并取得了突破性进展: 1.研制出了微晶玻璃花岗岩消泡剂,基本彻底地解决了气泡问题。

关于编制微晶玻璃面板项目可行性研究报告编制说明

微晶玻璃面板项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/db10443332.html, 高级工程师:高建

关于编制微晶玻璃面板项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国微晶玻璃面板产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5微晶玻璃面板项目发展概况 (12)

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃

透明微晶玻璃、黑色微晶玻璃、耐高温微晶玻璃 耐高温玻璃——透明微晶玻璃、黑色微晶玻璃(英文名Glass Ceramic,也称玻璃陶瓷) 材料提供:国产微晶玻璃,常规最大尺寸350*450*4mm,也可以选择进口微晶玻璃,常规最大尺寸1954*1100,2100*1266,厚度4\5。 透明微晶玻璃介绍: 由于其极低的热膨胀度,透明微晶玻璃不会受高温(760℃)的影响,也不受显著温度变化或温度差异的影响,且十分优越的耐热冲击性能。另外,透明微晶玻璃具有良好的热辐射,特别是短波红外辐射透过性。而正是在为火炉燃烧过程中释放的强烈热辐射为我们带了舒适暖意。 因此,微晶玻璃特别知合应用在既有高热能又需要良好透光性的场合,作为室内加热装置(如壁炉和火炉)的观察窗。 图 1 透明微晶玻璃 150 999 63668

产品应用: ?室内加热/取暖器的视窗面板(燃油/燃气室内取暖器/炉、传 统燃料的室内取暖器/炉) ?红外辐射加热/取暖器的面板 ?加热电暖炉的盖板玻璃 ?反光杯和高性能泛光照明灯的盖板 ?红外烘干器的盖板 ?投影仪的保护盖片 ?隔紫外线护罩 ?烤肉/烧烤设备的面板 ?大功率泛光灯和反射器上耐高温的面板 加工:①切割、②倒角、③钻孔、④丝印、⑤镀膜 黑色微晶玻璃面板说明: 由特殊微晶玻璃制成,该材料的最大特点是:可耐高达750℃的急剧升温。微晶玻璃面板非常环保,不含砷、锑等有毒重金属。它的主要原料是石英,这种原料在自然界取之不尽、用之不竭。 黑色微晶玻璃灶具面板非常坚固、耐受冲击,经久耐用。灶具面板横向热传导低,靠近烹调区的地方温度相对较低,热量会直接传导至烹饪锅具。 图 2 黑色微晶玻璃 150 999 63668

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

关于编制微晶玻璃陶瓷复合板项目可行性研究报告编制说明

微晶玻璃陶瓷复合板项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/db10443332.html, 高级工程师:高建

关于编制微晶玻璃陶瓷复合板项目可行性 研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国微晶玻璃陶瓷复合板产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (12) 2.5微晶玻璃陶瓷复合板项目发展概况 (12)

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

微晶玻璃

微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。 现在,我们做一个微晶玻璃与天然石材的对比实验。我们把墨水分别倒在大理石和微晶玻璃上,稍等片刻,微晶玻璃上的墨汁可以轻易的擦掉,而大理石上的墨迹却留了下来。这是为什么呢?大理石、花岗岩等天然石材表面粗糙,可以藏污纳垢,微晶玻璃就没有这种问题。大家都知道,大理石的主要成分是碳酸钙,用它做成建筑物,很容易与空气中的水和二氧化碳发生化学反应,这就是大理石建筑物日久变色的原因,而微晶玻璃几乎不与空气发生反应,所以可以历久长新。专家介 微晶玻璃陶瓷复合板材[1] 绍说,这项发明的突破点主要有两个,分别是原料的配比和工艺的设计。其中,工艺的设计是技术的关键。置备微晶玻璃首先要把原材料按照比例配好,放到窑炉里烧熔,等全部融化之后,把熔液倒在冰冷的铁板上,这叫做淬火,淬火之后,原料已经变成了一块晶莹的玻璃,这一步是烧结的过程。现在,我们把玻璃捣碎,装入模具,抹平,再次放入窑炉,这次煅烧使它的原子排列规则化,是从普通玻璃到微晶玻璃的过程。 一般的废渣土中都含有制作微晶玻璃的大多数成分,我们通过电脑检测,确定现有原料的化学组成,添加所缺部分,大大降低了成本。微晶玻璃利用废渣、废土做原材料,有利于环境治理,可以变废为宝,与各地环保工作同步进行。 低膨胀系数的微晶玻璃可用于激光导航陀螺、光学望远镜等重要科技领域,我国目前生产激光导航陀螺所用微晶玻璃基本依赖进口,日前,厦门航空工业有限公司称已研制出可适用激光导航陀螺的微晶玻璃,质量可与德国等进口玻璃相媲美。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 目前建筑用微晶玻璃均采用烧结法,而且不加入晶核剂。它的基本原理是,玻璃是一种非晶态固体,从热力学观点看,它处于一种亚稳状态,较之晶体有较高的内能,所以在一定条件下,可以转化为结晶态。从动力学观点来看,玻璃熔体在

微晶玻璃板项目可行性研究报告

微晶玻璃板项目 可行性研究报告 xxx有限责任公司

微晶玻璃板项目可行性研究报告目录 第一章项目总论 第二章建设背景及必要性分析第三章市场分析预测 第四章建设规划 第五章项目建设地分析 第六章项目工程设计说明 第七章工艺可行性 第八章项目环保分析 第九章安全管理 第十章建设及运营风险分析 第十一章项目节能说明 第十二章项目进度方案 第十三章投资计划方案 第十四章盈利能力分析 第十五章招标方案 第十六章总结评价

第一章项目总论 一、项目承办单位基本情况 (一)公司名称 xxx有限责任公司 (二)公司简介 公司致力于一个符合现代企业制度要求,具有全球化、市场化竞争力 的新型一流企业。公司是跨文化的组织,尊重不同文化和信仰,将诚信、 平等、公平、和谐理念普及于企业并延伸至价值链;公司致力于制造和采 购在技术、质量和按时交货上均能满足客户高标准要求的产品,并使用现 代仓储和物流技术为客户提供配送及售后服务。 公司已拥有ISO/TS16949质量管理体系以及ISO14001环境管理体系, 以及ERP生产管理系统,并具有国际先进的自动化生产线及实验测试设备。 公司将继续坚持以客户需求为导向,以产品开发与服务创新为根本, 以持续研发投入为保障,以规范管理为基础,继续在细分领域内稳步发展,做大做强,不断推出符合客户需求的产品和服务,保持企业行业领先地位 和较快速发展势头。 (三)公司经济效益分析

上一年度,xxx投资公司实现营业收入4396.82万元,同比增长25.73%(899.92万元)。其中,主营业业务微晶玻璃板生产及销售收入为 3896.78万元,占营业总收入的88.63%。 根据初步统计测算,公司实现利润总额1207.71万元,较去年同期相 比增长120.65万元,增长率11.10%;实现净利润905.78万元,较去年同期相比增长184.63万元,增长率25.60%。 上年度主要经济指标

微晶玻璃成分

微晶玻璃的化学组成 微晶玻璃的化学组成包括基础玻璃成分和成核剂两部分.为了满足玻璃的形成和工艺要求,基础玻璃成分一般都含有一定量的SiO2、B2O3、P2O5和以【AlO4】形式存在的Al2O3等玻璃网络形成体,以【AlO6】形式存在的Al2O3和ZnO等玻璃网络中间体及包括碱金属与碱土金属氧化物在内的玻璃网络调整体。而为了获得无气泡的基础玻璃,通常在基础玻璃组分中引入一定量的澄清剂(如Na2SO4/C、Sb2O3、Na2SiF6等)。此外,为了诱导或促进基础玻璃在热处理过程中的晶核形成,促进玻璃的整体晶化,通常需要引入成核剂。根据基础玻璃成分,可将微晶玻璃分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐和磷酸五大系统。成核剂可以分成三大类:一类是Au、Ag、Cu、Pt、Ru等贵金属盐类物质,当这里物质与玻璃配合料一起熔融时,贵金属元素在高温时以离子状态存在,而在低温下则分解还原成贵金属原子,这些原子经过一定的热处理将在玻璃结构中形成高度分散的金属晶体颗粒,从而实现诱导析晶。另一类是阳离子电荷高、场强大、积聚作用强的氧化物,如ZrO2、TiO2、P2O5等,这三种物质对玻璃的成核作用有所不同。一般认为,ZrO2的成核作用是先从母体玻璃中析出富含锆氧的微不均匀区,进而诱导母体玻璃成核;TiO2的成核作用是先从母体玻璃中析出富含钛酸盐相(无定形态),在一定条件下,这种液相将转变成结晶相,进而使母体玻璃形成晶核;P2O5与前两种成核剂的作用机制不同,由于P5+的场强比Si4+大,有加速硅酸盐玻璃分相的作用,从而促使玻璃核化。ZrO2、TiO2与P2O5是制备微晶玻璃最常用的三种成核剂,除此之外,Cr2O3、Fe2O3等也可作为成核剂使用,但由于它们能使玻璃着色,故很少采用。还有一类成核剂是氟化钙(CaF2)、冰晶石(Na2AlF6)、氟硅酸钠(Na2SiF-6)和氟化镁(MgF2)等氧化物。一般认为氟的加入起减弱玻璃结构的作用,用F-取代O2-造成硅氧网络结构的断裂,这是氟化物诱导玻璃成核的主要原因。另外,当氟含量大于2%~4%时,氟化物就会在冷却(或热处理)过程中从熔体中分离出来,形成细结晶状的沉淀物而引起玻璃乳浊(分相),从而促使玻璃成核。

微晶玻璃

海南大学2012-2013学年度第2学期《功能材料学》论文 题目:微晶玻璃的光学应用 姓名: 学号: 20100607310014 学院:材料与化工学院 专业班级: 10理科实验班

微晶玻璃的光学应用 刘涛 20100607310014 摘要:微晶玻璃也叫做玻璃陶瓷,是玻璃经过晶化处理得到的部分结晶态的物质,它兼具玻璃和陶瓷的优良性质,比陶瓷的亮度高,比玻璃韧性强,因而广泛用于建筑、航天等各个领域。中国稀土资源丰富,由于稀土离子特殊的4f电子层结构使其具有许多优越的性能,目前稀土发光材料引起了全世界的广泛关注。微晶玻璃的高透过性和优越的机械性能使其能够做为稀土元素的良好基质,制成的稀土掺杂发光微晶玻璃广泛应用于荧光设备、激光、波导激光、上转换材料等领域,具有重要的现实意义。 关键词:微晶玻璃稀土元素光学应用 一、固体发光过程 发光是物体不经过热阶段而将其内部以某种方式吸收的能量直接转换为非平衡辐射的现象。当物质受到外界能量(如光照、外加电场或电子束轰击等)的激发后,吸收外界能量而处于激发态,它在跃迁返回基态的过程中,吸收的能量会通过光或热的形式释放出来,如果这部分能量以光的电磁波形式辐射出来,即为发光。图1所示即为发光的过程[1]: 图1:发光的过程示意图 激活剂A吸收激发光的能量被激发(EXC),由基态A变为激发态A*,然后又回到基态(R),并发出光(EM)[2]。 二、发光材料的应用及稀土掺杂微晶玻璃的优点

发光材料在人们日常生活中有着重要的应用,从照明、显像到医学、放射学等领域,无不存在着发光材料的身影。在发光材料的发展中,稀土掺杂的发光材料格外引人注目,由于稀土离子特殊的4f电子层结构,决定其具有许多优越的性能:物理化学性质稳定、耐高温、可承受大功率电子束、高能辐射和强紫外光的作用;荧光寿命宽泛,可以跨越纳秒到毫秒6个数量级;发光颜色度纯、转换效率高、发射波长分布区域宽等。这些优异的性能使得稀土发光材料广泛应用于荧光设备、激光、波导激光、上转换材料等领域[3]。 稀土掺杂的基质材料一般为晶体,也可以是非晶态玻璃材料,晶体和玻璃作为稀土掺杂发光材料的基质各有优缺点,发光玻璃保证了发光光材料的稳定性,但是与同组成的晶体材料相比,发光玻璃的发光强度弱,转换效率也比较低[4],而微晶玻璃作为一种晶态和非晶态共存的材料,兼具了晶体发光材料优异的发光性能及玻璃材料的优异特性,其内部晶相能够保持发光晶体材料原有的发光性能,其熔制时的液体状态亦能够保证其均匀性,微晶玻璃亦具有良好的稳定性及可加工性,具有重要的研究价值。 三、微晶玻璃的分类、制备及显微结构 1、微晶玻璃的分类 按照玻璃陶瓷的化学组成来讲,玻璃陶瓷分为四大类:硅酸盐玻璃陶瓷、铝硅酸盐玻璃陶瓷、氟硅酸盐玻璃陶瓷、磷酸盐玻璃陶瓷[12] 。 1.1 硅酸盐玻璃陶瓷 硅酸盐玻璃陶瓷主要是由碱金属和碱土金属两部分组成,主晶相为硅酸盐,晶相可以决定玻璃陶瓷的性能[13]。硅酸盐玻璃陶瓷可分为两种:光敏玻璃陶瓷和 矿渣玻璃陶瓷。光敏玻璃陶瓷是以二硅酸锂(Li 2Si 2 O 5 )为主晶相的,这种晶体是 一种骨架结构[14],形貌像树枝,因为它的晶体生长方向是沿某些晶面,或者晶格 方向。而矿渣玻璃陶瓷主晶相则为硅灰石(CaSiO 3)和透辉石[Ca Mg(SiO 3 ) 2 ]。透 辉石因为其结构的特殊性,比硅灰石更加耐磨,耐腐烛,强度也更高。 1.2 铝硅酸盐玻璃陶瓷 铝硅酸盐玻璃陶瓷包括Li 2O—Al 2 O 3 —SiO 2 系统、MgO—Al 2 O 3 —SiO 2 系统、Na 2 O

微晶玻璃及微晶玻璃幕墙

微晶玻璃及微晶玻璃幕墙 一、什么是微晶玻璃 微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃、石材技术发展起来的一种新型建材。因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 二、微晶玻璃的组成 把加有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理,使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。微晶玻璃和普通玻璃区别是:前者部分是晶体,后者全是非晶体。微晶玻璃表面可呈现天然石条纹和颜色的不透明体,而玻璃则是各种颜色、不同程序的透明体。 微晶玻璃的综合性能主要决定三大因素:原始组成的成份、微晶体的尺寸和数量、残余玻璃相的性质和数量。 后两种因素是由微晶玻璃晶化热处理技术决定。微晶玻璃的原始组成不同,其晶相的种类也不同,例如有β硅灰石、β石英、氟金云母、二硅酸锂等,各种晶相赋予微晶玻璃的不同性能,在上述晶相中,β硅灰石晶相具有建筑微晶玻璃所需性能,为此常选用CaO-Al2O3-SiO2系统为建筑微晶玻璃原始组成系统,其一般成分如表一所示。

表一: CaO-Al2O3-SiO2微晶玻璃组成 颜色\组成SiO2 Al2O3 B2O3 CaO ZnO BaO Na2O K2O Fe2O3 Sb2O3 白色59.0 7.0 1.0 17.0 6.5 4.0 3.0 2.0 0.5 黑色59.0 6.0 0.5 13.0 6.0 4.0 3.0 2.0 6.0 0.5 上述玻璃成份在晶化热处理后所析出的主晶相是:β——硅灰石(β——CaO、SiO2)。 三、建筑微晶玻璃性能 建筑用微晶玻璃装饰面板材与天然大理石、花岗岩性能列表二(见下页)。 材料微晶玻璃大理石花岗岩 特性 机械性能抗弯强度①(Mpa) 40~50 5.7~15 8~15 抗压强度(Mpa) 341.3 67~100 100~200 抗冲击强度(Pa) 2452 2059 1961 弹性模量(×104MPa) 5 2.7~8.2 4.2~6.0 莫氏硬度6,5 3~5 ~5.5 维氏硬度(100g)600 130 130~570 比重2.7 2.7 2.7 化学性能耐酸性②(1%H2SO4)0.08 10.0 0.10 耐碱性②(1%NaOH) 0.05 0.30 0.10 耐海水性③(mg/cm2) 0.08 0.19 0.17 吸水率④(%)0 0.3 0.35 抗冻性(%)⑤0.028 0.23 0.25

微晶玻璃

微晶玻璃的生产制备 1.微晶玻璃概述 新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。其颜色多种多样。生产方法可分为烧结法、压延法、浇铸法。产品按配方可分为两大类,一类是矿渣类。所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。 由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。由于其结构极为致密并用作表面装饰材料。因此,又有人将其归为实体面材。与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。 1.1微晶玻璃的分类 微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。 2.微晶玻璃的性质及应用 2.1力学性质 (1)机械强度,微晶玻璃的机械强度比一般玻璃、陶瓷材料以及某些金属材料高很多。抗压强度为0.59~1.02GPa,弯曲强度为88.2~220.5GPa,拉伸强度为49~137.2MPa;特殊的或增强的微晶玻璃,弯曲强度高达411.6~548.5MPa。微

触摸屏用盖板材料研究报告

触摸屏用盖板材料研究报告 一、综述 1.触摸屏的结构 电容式触摸屏的结构较为复杂,由于技术进步和厂商技术选择的不同,有多种结构形式,典型的触摸屏结构如图1所示。包括保护膜、防反射层、盖板、粘接层、透明导电膜、显示屏等。本文中关心的是其中的盖板(Protective Cover)的材料性能和新型盖板材料的选择。 图1电容触摸屏的典型结构 对于这层盖板材料而言,目前所使用的最为成熟的材料是康宁(Corning)公司的大猩猩玻璃(Gorilla Glass),目前已经发展到第4代。其基本性能见表1。 对于康宁大猩猩玻璃而言,已经具备了良好的综合性能,如其维氏硬度指标已经较高,但仍然不能抵抗日常使用中如沙粒(主要成分为SiO2)等的磨损破坏,同时由于断裂韧性较低,仍不能满足抗跌落

性能的要求。 表1 康宁大猩猩4代玻璃盖板材料性能 除了上面所列指标外,透光率、表面应力状态、折射率和厚度等 基本参数也必须作为盖板材料选择时的重要参考依据。 2.可行的技术路线汇总 分析认为,目前潜在的提高盖板材料性能的技术路线有以下几条, 可通过深入分析从而选择技术上可行及低成本可产业化的路线进行: 1.织构化透明陶瓷(Textured T ransparent C eramics)技术路线 2.织构化微晶玻璃(Textured G lass C eramics)技术路线 3.织构化低温镀膜(Textured & L T C oating)技术路线 4.非晶化镀膜技术路线 为实现几条技术路线,需要突破的关键技术有透明陶瓷取向制备 技术;微晶玻璃晶化过程控制技术;低温(室温)织构化镀膜技术。 这几条技术路线各有优缺点,各自需要面对的技术难点问题是不 同的:

微晶玻璃简述

微晶玻璃简要概述 刘帅聪 (无机非金属材料工程1301班,湖南工学院材料与化学工程学院 湖南衡阳 421002) 摘要 微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。 关键词微晶玻璃特点制备工艺应用发展 Brief Introduction of Glass - Ceramics Shuai Cong Liu (Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002) Abstract: Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields. Key words: glass - ceramics, characteristics, preparation technology, application development

相关文档
最新文档