基于MATLAB的回波信号的产生与消除(移动13班__汪红洋)(1)

基于MATLAB的回波信号的产生与消除(移动13班__汪红洋)(1)
基于MATLAB的回波信号的产生与消除(移动13班__汪红洋)(1)

消除信号反射的匹配方式介绍

消除信号反射的匹配方式介绍 2008-03-20 12:33 (作者:上海延清电子) 在高速PCB设计中,信号的反射将给PCB的设计质量带来很大的负面影响,而要减轻反射信号的负面影响,有三种方式: 1),降低系统频率从而加大信号的上升与下降时间,使信号在加到传输线上前,前一个信号的反射达到稳定; 2),缩短PCB走线长度使反射在最短时间内达到稳定; 3),采用阻抗匹配方案消除反射; 在高速系统设计中,第1种是不可能的,而第2种也是不实际的,通常要缩短PCB布线长度,可能需要增加布线层数、增加过孔数,从而得不偿失,那么第3种是最好的方法,常用的阻匹配方式有以下几种: 1.源端串联匹配 源端串联匹配就是在输出BUFFER上串接一个电阻,使BUFFER的输出阻抗与传输线阻抗一致;此电阻在PCB设计时应尽量靠近输出BUFFER放置,常用的值为:33殴姆。 对于TTL或CMOS驱动,信号在逻辑高及低状态时均具有不同的输出阻抗,而一些负载器件可能具有不同的输入输出阻抗,不能简单的得知,所以在使用串联端接匹配时,在具有输入输出阻抗不一致的条件下,可能不是最佳的选择;在布线终端上存在集总线型负载或单一元件时,串联匹配是最佳的选择; 串联电阻的大小由下式决定: R=ZO-R0 ZO--传输线阻抗R0--BUFFER输出阻抗 串联匹配的优点:提供较慢的上升时间,减少反系量,产生更小的EMI,从而降低过冲,增加信号的传输质量; 串联匹配的缺点:当TTL/CMOS出现在同一网络上时,在驱动分布负载时,通常不能使用串联匹配方式。

2.终端并联匹配 由在走线路径上的某一端连接单个电阻构成,这个电阻的阻值必须等于传输线所要求的电阻值,电阻的另一端接电源或地;简单的并联匹配很少用于CMOS与TTL设计中; 并联匹配的优点:可用于分布负载,并能够全部吸收传输波以消除反射; 并联匹配的缺点:需额外增加电路的功耗,会降低噪声容限。 3.戴维南匹配 Vref=R2/(R1+R2)·V Vref--输入负载所要求的电压 V--电压源R1---上拉电阻R2--下拉电阻 当R1=R2时,对高低逻辑的驱动要求均是相同的,对有些逻辑系列可能不能接受; 当R1>R2时,逻辑低对电流的要求比逻辑高大,这种情况对TTL与COMS器件是不能工作的;当R1

回声产生的原因

一、回声产生的原因 在通信网络中,产生回声的原因有两类:电学回声和声学回声。 1、电学回声:在目前几乎所有的通信网络中,信号的传递都是采用4 线传输,也就是在接收和发送两个方向上,各使用两条线传输信号,其中一条是参考地,另一条是信号线。 普通PSTN: 电话用户使用的话机都是通过2 线传输的方式接入本地交换机,一条线是参考地,另一条信号线上同时传输收发双向的信号。 在本地交换机中采用2/4 线转换(hybrid)实现这两种传输方式之间的转换。 由于实际使用的2/4 线变换器中混合线圈不可能做到理想状况,总是存在一定的阻抗不匹配,不能做到将发送端和接收端完全隔离,所以从4 线一侧接收的信号总有一部分没有完全转换到2 线一侧,部分泄露到了4 线一侧的发送端,因此产生回波(红色示意),如下图所示。 这种类型的回波称为电学回波,是回波的主要来源,一般的回波抵消器主要用来消除电学回波。 2、声学回声:由于话机问题导致话机在进行放音的过程中,部分音量从收话线路中被接受,产生回声(红色示意),如下图所示。 声学回波典型现象是在空旷的山谷中高声喊叫“哟——嗬——嗬——”,就能听到远处山谷的回声,还有北京天坛的回音壁与三音石也是同样道理。在通信网中,声学回波是因为在某些电话设备中,扬声器和传声器没有良好地隔离,发出的声音经空间多次反射回传到传声器而产生的,比如在空旷的房间或者汽车里使用免提电话就有这种情况。 从上述产生回音的原因可以看出,本端听到的回声是由对端造成的。 电学回声是1、本端说话的声音转换成电信号 2、传送到对端后从对端的二四线转换器 3、从对端的二四线转换器泄漏回来的; 声学回声是1、信号一直到达对端话机 2、转换成声音信号后从对方话机的麦克泄漏回来的。 二、感知回声的条件 通信网中的回声主要是由于电学回声导致的, 由回声产生的原理可以知道回声在电话网中总是存在的,但需要满足以下条件电话用户才能感受到回声:1、回波通路延时足够长 从发话者发出声音,到回波返回发话者,所经过的时间叫做回波通路延时。 如果回波通路延时很小,回波和用户发出的声音重叠在了一起,人是感觉不到回声的。对于大多数电话用户来说,如果回波通路延时时间:

解密回声消除技术汇总

因为工作的关系,笔者从2004年开始接触回声消除(Echo Cancellation)技术,而后一直在某大型通讯企业从事与回声消除技术相关的工作,对回声消除这个看似神秘、高端和难以理解的技术领域可谓知之甚详。 要了解回声消除技术的来龙去脉,不得不提及作为现代通讯技术的理论基础——数字信号处理理论。首先,数字信号处理理论里面有一门重要的分支,叫做自适应信号处理。而在经典的教材里面,回声消除问题从来都是作为一个经典的自适应信号处理案例来讨论的。既然回声消除在教科书上都作为一种经典的具体的应用,也就是说在理论角度是没有什么神秘和新鲜的,那么回声消除的难度在哪里?为什么提供回声消除技术(不管是芯片还是算法)的公司都是来自国外?回声消除技术的神秘性在哪里? 二、回声消除原理 从通讯回音产生的原因看,可以分为声学回音(Acoustic Echo)和线路回音(Line Echo),相应的回声消除技术就叫声学回声消除(Acoustic Echo Cancellation,AEC)和线路回声消除(Line Echo Cancellation, LEC)。声学回音是由于在免提或者会议应用中,扬声器的声音多次反馈到麦克风引起的(比较好理解);线路回音是由于物理电子线路的二四线匹配耦合引起的(比较难理解)。 回音的产生主要有两种原因: 1.由于空间声学反射产生的声学回音(见下图): 图中的男子说话,语音信号(speech1)传到女士所在的房间,由于空间的反射,形成回音speech1(Echo)重新从麦克风输入,同时叠加了女士的语音信号(speech2)。此时男

子将会听到女士的声音叠加了自己的声音,影响了正常的通话质量。此时在女士所在房间应用回音抵消模块,可以抵消掉男子的回音,让男子只听到女士的声音。 2.由于2-4线转换引入的线路回音(见下图): 在ADSL Modem和交换机上都存在2-4线转换的电路,由于电路存在不匹配的问题,会有一部分的信号被反馈回来,形成了回音。如果在交换机侧不加回音抵消功能,打电话的人就会自己听到自己的声音。 不管产生的原因如何,对语音通讯终端或者语音中继交换机需要做的事情都一样:在发送时,把不需要的回音从语音流中间去掉。 试想一下,对一个至少混合了两个声音的语音流,要把它们分开,然后去掉其中一个,难度何其之大。就像一瓶蓝墨水和一瓶红墨水倒在一起,然后需要把红墨水提取出来,这恐怕不可能了。所以回声消除被认为是神秘和难以理解的技术也就不奇怪了。诚然,如果仅仅单独拿来一段混合了回音的语音信号,要去掉回音也是不可能的(就算是最先进的盲信号分离技术也做不到)。但是,实际上,除了这个混合信号,我们是可以得到产生回音的原始信号的,虽然不同于回音信号。 我们看下面的AEC声学回声消除框图(本图片转载)。

电子科技大学雷达原理与系统期末考题

大四上学期雷达原理与系统期末考题(大部分) 一.填空选择: 1下列不能提高信噪比的是(B) A,匹配滤波器B,恒虚警C,脉冲压缩D,相关处理 2,若一线性相控阵有16个阵元,阵元间距为波长的一半,其波束宽度为(100/16) 3,模糊图下的体积取决于信号的(能量) 4,对于脉冲多普勒雷达,为了抑制固定目标,回拨方向加入对消器,这措施对运动目标的检测带来的影响是出现了(盲速) 5,雷达进行目标检测时,门限电平越低,则发现概率(越大),虚警概率(越大),要在虚警概率保持不变的情况下提高发现概率,则应(提高信噪比) 6,对于脉冲雷达来说,探测距离盲区由(脉冲宽度)参数决定。雷达接受机灵敏度是指(接收机接收微弱信号的能力,用接收机输入端的最小可探测信号功率Smin表示) 7,不属于单级站脉冲雷达系统所必要的组成部分是(B) A收发转换开关B分立两个雷达 8,若要求雷达发射机结构简单,实现成本低,则应当采用的结构形式是(单级振荡式发射机) 9,多普勒效应由雷达和目标间的相对运动产生,当发射信号波长为3m,运动目标与雷达的径向速度为240m/s,如果目标是飞向雷达,目标回波信号的频率是(100MHz+160Hz) 注:多普勒频率2drfv 10,在雷达工作波长一定情况下,要提高角分辨力,必须(增大天线间距d),合成孔径雷达的(方向分辨力)只与真实孔径的尺寸有关 11,只有同时产生两个相同且部分重叠的波束才能采用等信号法完成目标方向的测量 12,当脉冲重复频率fr和回波多普勒频率fd 关系满足(fr)》fd)时,不会出现(频闪和盲速) 13,只有发射机和接受机都是(相参系统),才能提取出目标多普勒信息14,大气折射现象会增加雷达(直视距离) 15,奈曼尔逊准则是在检测概率一定的条件下,使漏警概率最小,或者发现概率最大。16,相控阵雷达随着扫描角增加,其波束宽度(变大) 17,雷达波形模糊函数是关于(原点)对称的。

短路恢复过冲原因及解决方法

汽车电子Buck变换器短路恢复输出过冲分析 刘松, 丁宇, 杨启峰 (万代半导体元件上海有限公司, 上海201203) 摘要:本文详细分析了MOSFET开通延时、电流取样信号延时和前沿消隐时间所决定的系统最小导通时间是峰值电流模式下脉宽限流不能起作用的原因;探讨了用于汽车电子系统降压型Buck变换器在输出短路保护后恢复时输出电压产生过冲的问题,响应慢CCM模式导致COMP脚电压不能迅速放电;讨论了短路时输出二极管和引线电压使电感逐渐饱和的过程。输出过冲前沿尖峰产生于电感和输出电容的谐振,功率管直通导致稳定后输出电压等于输入电压。最后给出了解决此问题的电路和测试结果。实验的结果表明:此电路有效的抑止了短跑恢复中的输出电压过冲。 关键词:变换器,输出过冲,短路恢复,最小导通时间 Analysis of Output Overshooting During Short Circuit Recovery of Buck Converter in Automobile Electronic System Liu Song, Ding Yu, Yang Qifeng (AOS Semiconductor Co., Ltd., Shanghai 201203) Abstract: The reason why cycle by cycle current limit can not function even at peak current mode PWM is analyzed in detail. Output overshooting during short circuit recovery of Buck converter in automobile electronic system is discussed in this paper. The process of the inductor going into saturation gradually owing to drop voltage of catch diode and trace during output short circuit is also discussed. Spike voltage of output at leading edge is caused by the inductor and output capacitance. Power Mosfet holding always on makes output voltage equal to input voltage. The solution to treat this issue and test results are given in the end. Key words: converter; output overshoot, short circuit recovery, minimum on duration 1 引言 目前在汽车电子系统中,输入使用12V/24V的电压[1],然后采用Buck 降压变换器,得到5V、3.3V,2.5V,1.8V,1.2V等多种电压以提供给系统的各种逻辑数字芯片,模拟芯片,MCU或DSP的内核、I/O口等负载。系统要求电源芯片在输出短路时要有保护功能,暂态的输出短路状态消除后系统可以恢复。在一些Buck变换器应用中发现,在输出短路恢复的过程中,输出产生过冲,稳定后输出电压等于输入电压,由于汽车电子系统的输入电压高,这样就会损坏后面所带的芯片负载。本文将探讨这些问题及其产生的原因,并给出相应的电路以解决这些问题。 2 短路恢复过程输出过冲 通常在汽车电子系统中的Buck 降压变换器采用纹波电流小、传输功率大和EMI特性好的CCM峰值电流模式控制,同时具有过流和输出短路保护的功能,通过对电感峰值电流的逐周期自动控制,直接限定了电感峰值电流以及电感的平均电流。在输出短路时,保护电路就将其工作频率降到正常频率的1/8左右。因为工作频率较低,电感的平均电流也很低;当瞬态的输出短路状态撤除,变换器经过软启动电路重新启动。在实际的应用中发现,将输出短路再去除短路时,输出会出现较大过冲尖峰,超过输入电压,而且最后稳定到输入电压值。

富迪语音芯片在新型应用中的回音降噪问题解决

富迪语音芯片在新型应用中的回音降噪问题解决 视听在数码娱乐中的应用越来越广,产品同质化严重已经是一个很普遍的问题。于是对产品的差异化设计需求越来越突出。每家方案设计公司,都绞尽脑汁的在挖掘新创意。 我所在公司是做一些数码方面的应用方案,每每遇到客户聚会聊天,都是讨论如何打破常规,找出卖点的思路,最近在做的两个案子就是基于老常规功能上,花了蛮多时间和精力,找到一些新的方向,得到客户和市场的认可。 其实产品大家都很熟悉,一个是机顶盒,一个是网络监控产品。 先说机顶盒,传统的机顶盒只是下行数据的看电视而已,所以在应用方面很单调,也一直无法突破啥,持续着这么多年。 但ARM芯片的发展越来越高端,处理能力越来越强悍,随之智能型的机顶盒也出现了, 近些年高速网络的普及,也为这类产品的智能化提供了完美的铺垫,通过机顶盒看电视已经是最简单的诉求了,查资讯,点播视频,看网页,也成了新的主力功能。 而安卓系统的开源,更始给机顶盒产品注入了新活力,市场上目前几家主要的主流芯片,都推出了针对安卓平台的支持,但安卓应用的通用性,最终大家做出来的产品除了外观不一样,无法从APK应用上做到更多的差异出来。 在经过多次使用和评估中,发现安卓平台上提供的通话功能,比如QQ视频,SKYPE聊天,网络免费电话等等,是智能机顶盒应用的一个不错的方向,但平台本身对一些通话过程中的缺点,比如通话中的回音问题,环境的噪音问题,另外还有就是三米之外的声音大小问题,始终无法完善。

通话当然是对话筒电路的处理最重要,我们也做了很多实验,在机顶盒加上麦克风始终无法做到理想化,当然有些产品方案在设计中采用变通的方式,比如把麦克风设计在遥控器上,然后通过对着遥控器讲话,再无线传输给机顶盒。 这种方式虽然看似解决了问题,但带来的另一些问题又来了,抛开成本方面不说,光从使用习惯上已经是一种很不方便的问题处理。那有没有一种解决办法,就是把麦克风装在机顶盒上面,使用者不需要任何的附件东西,直接坐在客厅沙发上对着电视,与远方的亲戚朋友自由畅谈呢,,于是这个思路陷入困境,, 然后在多次的找芯片原厂和一些供应商的交流后,获悉,美国富迪科技的语音芯片就具有解决的思路,当然做之前我们也没把握,联系原厂后,原厂提供了一家代理商(代理商名叫深圳市高智创电子)让我们联络过去咨询。 这里必须谢谢他们的商务郭银光先生,和FAE王喻先生,按他们之前的推广市场,是没有针对机顶盒做应用的,但当我们提到需要解决的问题时,最初是帮我们推荐了FM1188,而后在具体了解到我们的使用环境后,王工说让我们直接选用新型号FM34,虽然在硬件连接上需要做些改进,但完全可以解决我所提出的问题,而后在设计中,根据王工的要求,把机顶盒上的麦克风位置做了一些结构优化,并在调试中,做了多次尝试性的设计思路,经过多次的评测调试,,最终把配置参数和性能找到了一个比较完美的平衡。 从产品图上,大家可以看到,这两款产品功能已经相当完善,产品带有摄像头,带有麦克风,系统为安卓4.0,除了保证常规的上网,看视频,看点播,视频语音聊天,已经很方便了。 而且能保证在5米的拾音距离不受影响,这是以前很多机器不敢想象的,关于这点,有做过的工程师就知道的,远距离拾音的话,使用者本人的声音必须保证足够清晰和足够大,但又不能被环境中的噪音给淹没,所以这就是富迪芯片的大作用了,富迪的FM34在进行AGC自动增益控制的基础上,再进行噪音压制,把不需要的环境噪音给消除掉,而保留需要的人声,这样整个产品的功能实用性出出来了,也是一个非常不错的感受体验,

基于DSP平台的回声消除技术

一、前言 因为工作的关系,笔者从2004年开始接触回声消除(Echo Cancellation)技术,而后一直在某大型通讯企业从事与回声消除技术相关的工作,对回声消除这个看似神秘、高端和难以理解的技术领域可谓知之甚详。 要了解回声消除技术的来龙去脉,不得不提及作为现代通讯技术的理论基础——数字信号处理理论。首先,数字信号处理理论里面有一门重要的分支,叫做自适应信号处理。而在经典的教材里面,回声消除问题从来都是作为一个经典的自适应信号处理案例来讨论的。既然回声消除在教科书上都作为一种经典的具体的应用,也就是说在理论角度是没有什么神秘和新鲜的,那么回声消除的难度在哪里?为什么提供回声消除技术(不管是芯片还是算法)的公司都是来自国外?回声消除技术的神秘性在哪里? 二、回声消除原理 从通讯回音产生的原因看,可以分为声学回音(Acoustic Echo)和线路回音(Line Ech o),相应的回声消除技术就叫声学回声消除(Acoustic Echo Cancellation,AEC)和线路回声消除(Line Echo Cancellation, LEC)。声学回音是由于在免提或者会议应用中,扬声器的声音多次反馈到麦克风引起的(比较好理解);线路回音是由于物理电子线路的二四线匹配耦合引起的(比较难理解)。 回音的产生主要有两种原因: 1.由于空间声学反射产生的声学回音(见下图): 图中的男子说话,语音信号(speech1)传到女士所在的房间,由于空间的反射,形成回音speech1(Echo)重新从麦克风输入,同时叠加了女士的语音信号(speech2)。此时男子将会听到女士的声音叠加了自己的声音,影响了正常的通话质量。此时在女士所在房间应用回音抵消模块,可以抵消掉男子的回音,让男子只听到女士的声音。 2.由于2-4线转换引入的线路回音(见下图): 在ADSL Modem和交换机上都存在2-4线转换的电路,由于电路存在不匹配的问题,会有一部分的信号被反馈回来,形成了回音。如果在交换机侧不加回音抵消功能,打电话的人就会自己听到自己的声音。 不管产生的原因如何,对语音通讯终端或者语音中继交换机需要做的事情都一样:在发送时,把不需要的回音从语音流中间去掉。 试想一下,对一个至少混合了两个声音的语音流,要把它们分开,然后去掉其中一个,难度何其之大。就像一瓶蓝墨水和一瓶红墨水倒在一起,然后需要把红墨水提取出来,这恐怕不可能了。所以回声消除被认为是神秘和难以理解的技术也就不奇怪了。诚然,如果仅仅单独拿来一段混合了回音的语音信号,要去掉回音也是不可能的(就算是最先进的盲信号分离技术也做不到)。但是,实际上,除了这个混合信号,我们是可以得到产生回音的原始信号的,虽然不同于回音信号。 我们看下面的AEC声学回声消除框图(本图片转载)。

回声信号的产生与消除

回声信号的产生与消除

信号与系统 姓名:苏小平 班级:电网13-1 学号:1305080116 学院:电气与控制工程学院

回声信号的产生与消除 第一部分:阐述回声产生与消除的步骤、原理。 1.步骤: (1)利用软件GOLDWAVE录取一段音频来自陈学冬的“不再见”。(2)将音频导入MATLAB中,通过编写程序,在音频里加入回声,得到了‘加回声的音乐’。 (3)通过编写程序,将加入回声的音频通过滤波器,将回声滤除,得到了‘去掉回声的音乐’。 2.原理: 无线通信中,当接收机从正常途径收到发射信号时,可能还有其它的传输路径,例如从发射机经过某些建筑物反射到达接收端,产生所谓“回波”现象,又如,当需要完成室内录音时,除了直接进入麦克风的正常信号之外,经墙壁反射的信号也可能被采集录入,这也是一种“回声”现象,为了解决这种多径传输中的失真问题,需要消除

或削弱回声。 消除回声的系统框图如下图所示: x(n)w(n)y(n) h1(n)h2(n) 系统一系统二 第二部分:利用MATLAB对音频进行处理: 1.将音乐导入MATLAB后画出加回声之前的时域波形图、幅值和相位图,见一下图形:

2.将音乐导入MATLAB 后画出加回声之前的时域波形图、幅值和相位图,见一下图形: 01234567 8 x 10 5 -0.05 -0.04-0.03-0.02-0.0100.010.020.030.04原信号波形 01234567 8 x 10 5 100200300原信号幅值 1 2 3 4 5 6 7 8 x 10 5 -4-2024原信号相位

过冲及振铃现象实验分析

过冲及振铃实验现象分析 1.测试电路及过冲、振铃现象 测试电路如下图所示,A点为电压输出口,B点为为了接入电阻而切开的口,C点为同轴电压监测点。 B A C 在B点出用导线连接时,在C点引同轴线到示波器(示波器内阻1M),观察到上升沿有过冲及振铃现象,如下图所示。

1.2 振铃产生的原因分析 1.2.1 振铃现象的产生 那么信号振铃是怎么产生的呢? 前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。下图为反射示意图。

第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆PCB 特性阻抗的分压,实际加到PCB走线上的信号为A点电压3.3*50/(10+50)=2.75V。传输到远端B点,由于B点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V。此时B点测量电压是2.75+2.75=5.5V。 第2次反射:2.75V反射电压回到A点,阻抗由50欧姆变为10欧姆,发生负反射,A点反射电压为-1.83V,该电压到达B点,再次发生反射,反射电压-1.83V。此时B点测量电压为5.5-1.83-1.83=1.84V。 第3次反射:从B点反射回的-1.83V电压到达A点,再次发生负反射,反射电压为1.22V。该电压到达B点再次发生正反射,反射电压1.22V。此时B 点测量电压为1.84+1.22+1.22=4.28V。 第4次反射:……第5次反射:…… 如此循环,反射电压在A点和B点之间来回反弹,而引起B点电压不稳定。观察B点电压:5.5V->1.84V->4.28V->……,可见B点电压会有上下波动,这就是信号振铃。下图为B点电压随反射次数的变化示意图。

回声消除技术介绍

回声消除技术介绍 “在PBX或局用交换机侧,有少量电能未被充分转换而且沿原路返回,形成回声。如果打电话者离PBX或交换机不远,回声返回很快,人耳听不出来,这种情况下无关紧要。但是当回声返回时间超过10ms时,人耳就可听到明显的回声了。为了防止回声,一般需要回声消除技术,在处理器中有特殊的软件代码监听回声信号,并将它从听话人的语音信号中消除。对于IP电话设备,回声消除技术是十分重要的,因为一般IP网络的时延很容易就达到40~50ms。” 一、因特网语音通信中回声的特点 与传统电话相比,因特网上进行语音的实时传输,有其致命的弱点,那就是语音质量较差,影响因特网语音质量的因素是多方面的,最关键的因素之一是回声的影响。因此,要提高因特网的语音质量,就必须在因特网的语音传输过程中进行消回声的处理,也就是说,IP电话网关作为因特网的语音接入设备,几须具有回声的消除功能。由于因特网的语音传输是采用分组交换技术实现的一种全新的电信业务,传送的语音信号要经过编码、压缩、打包等一系列处理,这不仅造成回声路径的延迟较大,而且延迟抖动也较大。因此,在因特网的语音传输过程中,回声问题显得尤其突出,并具有如下特点。 1、回声源复杂 在传统电话系统中,存在着一种所谓的"电路回击"。该回声产生的主要原回是在系统中存在2-4线的转换。完成2-4转换的混合器因阻抗匹配,造成"泄漏",从而导致了"电路回声"。从因特网IP电话网关的连接方式可以看出,IP电话网关一端连接PSTN,另一端连接因特网。 尽管电路回声产生于PSTN中,但同样会传至于IP电话网关,是因特网语音传输中的回声源之一,因特网语音传输中的第二种回声源是所谓的"声学回声"。声学回声是指扬声器播放出来的声音被麦克风拾取后发回远端,这就使得远端谈话者能听到自己的声音。声学回声又分为直接回声和间接回声。直接回声是指扬声器播放出来的声音未经任何反射直接进入麦克风。这种回声延迟最短,它与远端说话者的语音能量,扬声器与话筒之间的距离、角度、扬声器的播放音量以及话筒的拾取灵敏度等因素相关。间接回声是指扬声器播放的声音经不同的路径一次或多次反射后进入麦克风所产生的回声集合。因为周围物体的变动,例如人的走动等,都会改变回声的返回路径,因为这种回声的特点是多路径、时变的。另外,背景噪声也是产生回声的因素之一。 2、回声路径的延迟大 在因特网中的语音传输中,延迟来源有三种:压缩延迟、分组传输延迟和处理延迟。语音压缩延迟是产生回声的主要延迟,例如在G.723.1标准中,压缩一帧

如何解决音频会议回声消除

如何解决音频会议回声消除 声学回声消除(AEC)是通过声音链路使房间内各个位置声音产生相关性的一种技术。只要是一个有多个房间同时参与的、无障碍的、全双工会议,并且会议话筒会拾取到音箱中的声音时,就需要用到AEC。 一、声学回声产生的原因 在一个典型的会议形式中(图1),从房间B中通过电话线或者其他音频网络传输到房间A的声音,又通过音频网络传了回去。在房间B里的人就会听到了一个经过音频网络和房间A之后有了延时的自己的声音。如果人们在交谈时听到了自己的回声,那么就很容易被分散注意力,而且也很难有一个非常自然的交谈。对于有效的沟通来说,消除回声是非常重要的。 消除声学回声有许多种方法。有一种方法是在话筒和音箱之间加入选择开关,使它们不能同时启用(图2)。这样就打破了声音产生回声的信号通路。但它也破坏了交流,使会话的进行一点都不自然,因为听者必须等到另一端的发言人讲完。在这一系统中的声音是半双工的。这种方法通常用于对讲机系统和双通道广播,但是由于交流的自然性受到限制,所以最

好不要在音频会议系统中使用。 另一种方法是在物理上把音箱和话筒隔离开来。一个简单的例子就是电话的听筒。因为听筒中的小喇叭离人耳非常近,所以就可以把声音的电平做的很小,这样既能够听清楚又不会被话筒拾取到。因为在听筒的喇叭与话筒之间没有联结,所以在远端也就不会有回声。当然,为每个人配发听筒也就无法兼顾会议的自然交流和正常活动。 AEC已经成为会议系统中提供全双工音频的标准方法。AEC是通过消除或者移除本地话筒中拾取到的远端的音频信号来阻止远端的声音返回去的一种处理方法。这种音频的移除都是通过数字信号处理来完成的。 二、回声消除的工作原理 尽管回声消除是非常复杂的技术,但我们可以从简单的描述中来了解一下这种处理方法: 1、房间A的音频会议系统接收到房间B中的声音

回声信号的产生与消除

M=4001; fs=8000; [B,A]=cheby2(4,20,[0.1 0.7]); Hd=dfilt.df2t([zeros(1,6) B],A); hFVT=fvtool(Hd); set(hFVT,'Color',[1 1 1]) H=filter(Hd,log(0.99*rand(1,M)+0.01).*sign(randn(1,M)).*exp(-0.002*(1:M))); H=H/norm(H)*4; plot(0:1/fs:0.5,H); xlabel('Time[sec]'); ylabel('Amplitude'); title('Room Impulse Response'); set(gcf,'Color',[1 1 1]); load nearspeech n=1:length(v); t=n/fs; plot(t,v); axis([0 33.5 -1 1]); xlabel('Time[sec]'); ylabel('Amplitude'); title('Near-End Speech Signal'); set(gcf,'Color',[1 1 1 ]); p8=audioplayer(v,fs); playblocking(p8); load farspeech x=x(1:length(x)); dhat=filter(H,1,x); plot(t,dhat); axis([0 33.5 -1 1]); xlabel('Time[sec]'); ylabel('Amplitude'); title('Far-End Echoed Speech Signal'); set(gcf,'Color',[1 1 1]); p8=audioplayer(dhat,fs); playblocking(p8); d=dhat+v+0.001*randn(length(v),1); plot(t,d); axis([0 33.5 -1 1]); xlabel('Time[sec]'); ylabel('Amplitude');

信号过冲及消除方法

信号过冲及消除方法 在组合逻辑电路中,信号要经过一系列的门电路和信号变换。由于延迟的作用使得当输入信号发生变化时,其输出信号不能同步地跟随输入信号变化,而是经过一段过渡时间后才能达到原先所期望的状态。这时会产生小的寄生毛刺信号,使电路产生瞬间的错误输出,造成逻辑功能的瞬时紊乱。在FPGA内部没有分布电感和电容,无法预见的毛刺信号可通过设计电路传播,从而使电路出现错误的逻辑输出。 任何组合电路、反馈电路和计数器都可能是潜在的毛刺信号发生器。毛刺并不是对所有输入都有危害,如触发器的D输入端,只要毛刺不出现在时钟的上升沿并满足数据的建立保持时间,就不会对系统造成危害。而当毛刺信号成为系统的启动信号、控制信号、握手信号,触发器的清零信号(CLEAR)、预置信号(PRESET)、时钟输入信号(CLK)或锁存器的输入信号就会产生逻辑错误。任何一点毛刺都可能使系统出错,因此消除毛刺信号是FPGA设计中的一个重要问题。毛刺问题在电路连线上是找不出原因的,只能从逻辑设计上采取措施加以解决。消除毛刺的一般方法有以下几种: (1)利用冗余项消除毛刺 函数式和真值表所描述的是静态逻辑,而竞争则是从一种稳态到另一种稳态的过程。因此竞争是动态过程,它发生在输入变量变化时。此时,修改卡诺图,增加多余项,在卡诺图的两圆相切处增加一个圆,可以消除逻辑冒险。但该法对于计数器型产生的毛刺是无法消除的。 (2)取样法 由于冒险出现在变量发生变化的时刻,如果待信号稳定之后加入取样脉冲,那么就只有在取样脉冲作用期间输出的信号才能有效。这样可以避免产生的毛刺影响输出波形。 (3)吸收法 增加输出滤波,在输出端接上小电容C可以滤除毛刺。但输出波形的前后沿将变坏,在对波形要求较严格时,应再加整形电路,该方法不宜在中间级使用。 (4)延迟办法 因为毛刺最终是由于延迟造成的,所以可以找出产生延迟的支路。对于相对延迟小的支路,加上毛刺宽度的延迟可以消除毛刺。但有时随着负载增加,毛刺会继续出现,因而这种方法也是有局限性的。而且采用延迟线的方法产生延迟更会由于环境温度的变化而使系统变不可靠。 (5)锁存办法 当计数器的输出进行相"与"或相"或"时会产生毛刺。随着计数器位数的增加,毛刺的数量和毛刺的种类也会越来越复杂。毛刺在计数器电路输出中的仿真结果如图4所示,从图中可发现有毛刺出现。此时,可通过在输出端加D触发器加以消除。。 数据中的毛刺被明显消除。当FPGA输出有系统内其它部分的边沿或电平敏感信号时,应在输出端寄存那些对险象敏感的组合输出。对于异步输入,可通过增加输入寄存器确保满足状态机所要求的建立和保持时间。对于一般情况下产生的毛刺,可以尝试用D触发器来消除。但用D触发器消除时,有时会影响到时序,需要考虑很多问题。所以要仔细地分析毛刺产生的来源和毛刺的性质,采用修改电路或其它办法来彻底消除。

楼宇对讲回音消除解决办法

楼宇对讲回音消除解决方法 近年,随着大数据时代的来临,很多楼宇对讲系统也相应的进入改造行列。传统的双线四线制对讲慢慢地进入衰老淘汰期,新兴的以太网传输网络一遍火热。但是在改造的过程中工程师们也将面临着一个新的挑战——回音消除! “回音”是通讯产品及配件在实际使用的过程中,时常遇到的问题。客观地说,无论模拟式通讯、还是数字式通讯,在使用过程中,都一定存在回音的现象。因此,回音消除器产品成为了通讯业至今不息的论题。 在设计一款“回音消除”产品、或者模块化电路的时候,设计人员首先要了解“回音”产生的机理,而后从实际的条件入手,选择适合的产品方案。以下所讨论的,仅限于视频会议行业常规的使用条件下的产品。 回音的产生,最早是人们在一个空旷的峡谷中喊话,会多次听到自己的声音,这种现象是“声学回音”,指声源产生后,声波在某个物体的表面得到发射,形成“二次声源”,如果声波得到多次的反射,就会形成在峡谷中喊话的效果了。中国北京天坛回音壁就是人为地采用了这种回音原理,建造出的历史景点。 在电话出现后,人们又发现,在通话过程中,会在一定的短暂延时之后,听到自己说的话。这种回音现象,我们称之为“网络回音”,特别是采用两线式的电话系统,在两条铜线上要承载双向的语音信号,在电波延时后,就会出现“二次信号”了。 通讯中的回音,如果造成“多谐波”,就会发生“自激啸叫”,影响通讯效果。但是在电话通讯中,一定水平的“网络回音”(侧音)是有利于通话双方的沟通感觉。 目前楼宇对讲中所讨论的回音,同时包含了电路的信号延时产生的侧音和会场环境造成的声学回音两种因素,以下主要是由于声学回音Acoustic Echo造成,在下图中,解释了产生的原因: 在通讯中,室内机用户和本端用户形成了通讯的环路(Loop),一个双向的通信线路组成了一个封闭的环路。 图中所示:室内机用户的语音信号经过话筒的采集后,以数据信号的方式通过通信线路传递到室外机设备,通过扬声器播放出来;播放出来的声音和室外机用户讲话的声音同时进入话筒,

回声消除

回声消除 1.回声消除原理 从通讯回音产生的原因看,可以分为声学回音(Acoustic Echo)和线路回音(Line Echo),相应的回声消除技术就叫声学回声消除(Acoustic Echo Cancellation,AEC)和线路回声消除(Line Echo Cancellation, LEC)。声学回音是由于在免提或者会议应用中,扬声器的声音多次反馈到麦克风引起的(比较好理解);线路回音是由于物理电子线路的二四线匹配耦合引起的(比较难理解)。 回音的产生主要有两种原因: 1.由于空间声学反射产生的声学回音(见下图): 图中的男子说话,语音信号(speech1)传到女士所在的房间,由于空间的反射,形成回音speech1(Echo)重新从麦克风输入,同时叠加了女士的语音信号(speech2)。此时男子将会听到女士的声音叠加了自己的声音,影响了正常的通话质量。此时在女士所在房间应用回音抵消模块,可以抵消掉男子的回音,让男子只听到女士的声音。 2.由于2-4线转换引入的线路回音(见下图):

在ADSL Modem和交换机上都存在2-4线转换的电路,由于电路存在不匹配的问题,会有一部分的信号被反馈回来,形成了回音。如果在交换机侧不加回音抵消功能,打电话的人就会自己听到自己的声音。 不管产生的原因如何,对语音通讯终端或者语音中继交换机需要做的事情都一样:在发送时,把不需要的回音从语音流中间去掉。 试想一下,对一个至少混合了两个声音的语音流,要把它们分开,然后去掉其中一个,难度何其之大。就像一瓶蓝墨水和一瓶红墨水倒在一起,然后需要把红墨水提取出来,这恐怕不可能了。所以回声消除被认为是神秘和难以理解的技术也就不奇怪了。诚然,如果仅仅单独拿来一段混合了回音的语音信号,要去掉回音也是不可能的(就算是最先进的盲信号分离技术也做不到)。但是,实际上,除了这个混合信号,我们是可以得到产生回音的原始信号的,虽然不同于回音信号。 我们看下面的AEC声学回声消除框图(本图片转载)。 其中,我们可以得到两个信号:一个是蓝色和红色混合的信号1,也就是实际需要发送的speech和实际不需要的echo混合而成的语音流;另一个就是虚线的信号2,也就是原始的引起回音的语音。那大家会说,哦,原来回声消除这么简单,直接从混合信号1里面把把这个虚线的2减掉不就行了?请注意,拿到的这个虚线信号2和回音echo是有差异的,直接相减会使语音面目全非。我们把混合信号1叫做近端信号ne,虚线信号2叫做远端参考信号fe,如果没有fe这个信号,回声消除就是不可能完成的任务,就像“巧妇难为无米之炊”。 虽然参考信号fe和echo不完全一样,存在差异,但是二者是高度相关的,这也是echo 称之为回音的原因。至少,回音的语义和参考信号是一样的,也还听得懂,但是如果你说一

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

【CN109995333A】激励信号触发下功放过冲抑制效率提升方法、电路及功放【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910243472.2 (22)申请日 2019.03.28 (71)申请人 西北核技术研究所 地址 710024 陕西省西安市灞桥区平峪路 28号 (72)发明人 方文饶 黄文华 王璐璐 付超  邵浩 李平 章勇华 杨志强  巴涛  (74)专利代理机构 西安智邦专利商标代理有限 公司 61211 代理人 汪海艳 (51)Int.Cl. H03F 1/30(2006.01) H03F 3/24(2006.01) (54)发明名称 激励信号触发下功放过冲抑制效率提升方 法、电路及功放 (57)摘要 本发明属于固态微波功率放大器领域,涉及 一种激励信号触发下功放过冲抑制效率提升方 法、电路及功放,旨在解决功率放大器稳定度低 或者效率低的问题,本发明脉冲功率放大器在微 波激励信号前面部分工作在高效率的B类,在激 励信号的下降沿到达前通过栅压控制电路调整 栅极偏置电压,改变功率放大器工作类别,将栅 极偏置电压调整到A类,从而使功率放大器在激 励信号下降沿瞬间工作在A类,使微波激励信号 关闭瞬间漏极电压不产生过冲。权利要求书2页 说明书8页 附图4页CN 109995333 A 2019.07.09 C N 109995333 A

权 利 要 求 书1/2页CN 109995333 A 1.激励信号触发下功放过冲抑制效率提升方法,其特征在于,包括以下步骤: 1】t0时刻前: 射频信号源未产生输出信号,控制栅压控制电路给脉冲功率放大器提供B类工作点偏置电压V gb;脉冲功率放大器不工作; 2】t0时刻: 射频信号源产生输出信号; 射频信号源输出信号经过耦合检波后,产生包络检波信号; 检测包络检波信号上升沿,产生触发信号,触发漏压控制电路给脉冲功率放大器漏极提供漏极偏置电压; 射频信号源输出信号送入延迟电路,经延迟电路进行延迟,延迟时长为τ; 栅压控制电路继续给脉冲功率放大器提供B类工作点偏置电压V gb; 3】t0时刻至t1时刻之间: 脉冲功率放大器漏极偏置电压从0V逐渐上升到所需的漏极偏置电压; 栅压控制电路继续给脉冲功率放大器提供B类工作点偏置电压V gb; 4】t1时刻: 脉冲功率放大器漏极偏置电压已经稳定为所需的漏极偏置电压; 经过延迟电路延迟τ的射频信号源输出信号到达脉冲功率放大器输入端,成为脉冲功率放大器输入信号,脉冲功率放大器开始工作,并产生脉冲功率放大器输出信号; 栅压控制电路继续给脉冲功率放大器提供B类工作点偏置电压V gb; 5】t1时刻至tc时刻之间: 脉冲功率放大器工作在B类; 6】tc时刻: 检测到包络检波信号的下降沿; 给栅压控制电路提供触发信号,触发栅压控制电路开始调整栅极偏置电压; 下降沿触发信号传输到延时电路进行延时,延时时长为τ; 7】tc时刻至t2时刻之间: 脉冲功率放大器工作状态由B类逐渐转化为A类,此时处于AB类工作状态; 8】t2时刻: 栅极偏置电压已经变化为A类工作点偏置电压V ga; 经过延迟电路延迟τ的射频信号源输出信号下降沿到达脉冲功率放大器输入端; 经过延时电路延时τ的下降沿触发信号到达漏压控制电路,漏压控制电路停止给脉冲功率放大器漏极提供漏极偏置电压; 脉冲功率放大器停止工作; 9】t2时刻至t3时刻之间: 脉冲功率放大器偏置在A类; 脉冲功率放大器的漏极偏置电压逐渐降到0V; 10】t3时刻: 脉冲功率放大器的漏极偏置电压降到0V; 栅压控制电路恢复给脉冲功率放大器提供B类工作点偏置电压V gb。 2

相关文档
最新文档