实时以太网技术的发展与应用评述

实时以太网技术的发展与应用评述
实时以太网技术的发展与应用评述

实时以太网技术的发展与应用评述

1 引言

现场总线曾经是工业自动化系统中的主流通信解决方案,但长期以来的现场总线标准之争,不仅干扰了用户选择,而且影响了现场总线的互操作性和互换性,延缓了现场总线的发展速度,影响了其发展前景[1]。同时,不断增长的用户需求已经超出了传统现场总线技术的能力范围,如分布式运动控制系统对数据通信的实时性、同步精度、通信周期时间都有着很高的要求。作为最成功的局域网技术,以太网具有高通信速率、高性价比、易于实现管控一体化等优点,近年来在工业控制网络领域得到了广泛应用,统称为工业以太网。

传统的基于IEEE802.3标准的以太网技术采用CSMA/CD MAC机制和冲突退避算法,导致了信息传送的滞后和延时非确定性,不能满足工业实时通信的要求,通过交换式以太网技术、全双工通信以及各种信息级、流量控制技术,到目前为止可以将工业以太网的实时响应时间做到5~10ms[2]。但对于响应时间小于5ms的应用,普通的工业以太网已不能胜任,如高精度多轴伺服系统中要求实时响应时间小于1ms,抖动小于1μs。为了满足高实时性能应用的需要,各大公司和标准组织提出了多种提升工业以太网实时性的技术解决方案,这就是实时以太网。本文旨在介绍实时以太网技术的发展来源和技术原理,并分析其应用状况及发展趋势。

2 工业以太网

工业以太网是以太网在工业控制领域的延伸。严格意义上说,工业以太网是现场总线的子集,但又区别于传统的现场总线。以太网技术最初是针对商用网络设计,其可靠性、实时性不能满足工业通信要求,因此早先并没有大规模应用在工业领域中。工业以太网技术的发展,是由于高速以太网技术、交换式以太网技术以及全双工通信模式技术的发展及其相互结合和应用,提高了以太网通信的可靠性和实时性。使用工业以太网技术,还可以方便的连接上层的企业管理层、中层的过程监控层以及底层的现场设备层。同现场总线情况类似,鉴于工业以太网技术的巨大商机,众多自动化厂商和组织纷纷推出自己的工业以太网技术规范,如Ethernet/IP、PROFInet、EtherCA T、Ethernet Powerlink、Modbus/TCP等。

工业以太网技术根据其软件/硬件实现方式可以分为以下三种类型[3]:

(1)类型1:采用通用以太网控制器和TCP/IP协议,如Ethernet/IP、Modbus/TCP、PROFInet/CbA 等,其结构如图1 a)所示。这种方式下,所有的实时数据和非实时数据均通过TCP/IP协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP 协议以获得更好的性能,但其实时性始终受到底层结构的限制。

(2)类型2:采用通用以太网控制器和专有过程数据传输协议,如Ethernet Powerlink、PROFInet/RT等,其结构如图1 b)所示。这种方式下定义了一种包含实时层的专有过程数据传输协议,旁路TCP/IP,用来传输对实时性要求很高的数据。非实时数据仍然使用TCP/IP协议传输,利于与通用以太网兼容。其优点是实时性较强,硬件与通用以太网兼容。

(3)类型3:采用专用以太网控制器和专有过程数据传输协议,如EtherCAT、SERCOS-Ⅲ、PROFInet/IRT等,其结构如图1 c)所示。这种方式在类型2的基础上底层使用专有以太网控制器(至少在从站侧),以进一步优化性能。其优点是实时性强,缺点是成本较高,需使用专有协议芯片或FPGA IP核。

通用以太网控制器IP

TCP/UDP IT 应用:HTTP;SNMP;FTP;……

通用以太网控制器

a) 类型1 b) 类型2 c) 类型3

图1 工业以太网结构分类

3 典型实时以太网介绍

不同的工业自动化场合对控制网络的实时性要求存在区别。对信息集成场合和要求较低的过程自动化应用场合,实时响应时间可为100ms 或更长;对绝大多数的工厂自动化应用场合和分布式I/O 设备,实时响应时间要求通常为5~10ms ;对于高性能的同步运动控制应用,特别是伺服运动控制系统,实时响应时间要求小于1ms ,抖动精度小于1μs 。通用的工业以太网技术足以满足前两者要求,对后者却无能为力,需要对其实时性机制进一步改进。1EC 于2003年专门成立了实时以太网工作组,以规范实时以太网技术标准。该工作组于2010年推出了IEC 61784-2《基于ISO/lEC8802.3的实时应用系统中工业通信网络行规》,其中包括l1种实时以太网技术。此外,许多自动化公司也开发了私有的实时以太网技术,细节未对外公开。

下面对IEC 61784-2中应用最为普及的5种实时以太网的技术原理进行介绍,包括EtherCAT 、Ethernet Powerlink 、PROFInet/IRT 、EtherNet/IP 、SERCOS-Ⅲ。 3.1 技术原理

EtherCAT 采用的实时机制是高速动态帧处理(Frame Processing on the Fly )[4]。EtherCAT 从站设备在报文经过其节点时处理以太网帧:嵌入在每个从站中的FMMU (现场总线存储管理单元)在帧经过该节点时读取相应的编址数据,同时把输入数据插入至报文中,然后将报文传输到下一个设备。整个过程中,报文只有几纳秒的时间延迟。由主站发出的帧被传输并经过所有从站,直到网段(或分支)的最后一个从站。当最后一个从站设备检测到其开放端口时,便将帧返回给主站。在通常情况下,每周期仅需要一个或两个帧即可完成所有节点的全部通信。EtherCA T 在局部网络范围内使用非常精确的、小于1微秒的、确定性的同步误差时间基,而跨接工厂等外部同步对时则采用IEEE1588标准实现。

Ethernet Powerlink 采用的实时机制称为时间槽通信管理机制(SCNM ,Slot Communication Network Management) [5]。SCNM 规定在一个EPL 网络中只有一个激活的管理节点,管理节点配置网络中所有可用的控制节点。SCNM 协议按照一定的规则预先计划并组织了消息组,一个消息组设为一个EPL 循环,开始阶段,同步阶段,异步阶段和空闲阶段。每个阶段的时间由管理节点预先配置,长度可以不同。管理节点随时监控循环时间,以保证预设的时间不发生冲突。一旦冲突发生,管理节点自动延续到下一个循环的开始位置。同步阶段每个同步节点占有固定间隔的时槽,由管理节点轮流访问,从而实现通信的确定性。异步阶段发送非实时数据,数据传送由管理节点调度。SCNM 给同步数据和异步数据分配时槽,保证了在同一时间只有一个设备可以占用网络媒介,从而杜绝了网络冲突的发生。Ethernet Powerlink 采用IEEE1588来实现网络同步对时。

PROFInet 包括3个版本,早期的PROFInet/CbA (基于标准以太网技术和TCP/IP 协议)和

PROFInet/RT(通过软件提供实时通信通道实现软实时)性能有限,最新的PROFInet/IRT使用专用控制器芯片实现同步实时,其技术原理尚未完全公开。目前已知其使用的是时间片处理机制,将一个时间片分为两部分:实时通道和TCP/IP通道,实时通道包括时钟同步和确定性通信,用来传输实时I/O数据,TCP/IP通道用来传输非周期的开放性数据。PROFInet/IRT同样采用IEEE1588来实现网络同步对时,在一个同步域内所有设备使用同一个同步传输周期。

Ethernet/IP将公共应用层协议CIP(Common Industrial Protoco1)附加在标准的TCP/IP协议之上。对于面向控制的实时I/O数据,采用UDP/IP协议来传送,其优先级较高。而对于显式信息(如组态、参数设置和诊断等),则采用TCP/IP来传送,其优先级较低。为进一步提高实时性,ODVA组织将IEEE 1588精确时间同步协议用于Ethernet/IP,制定了CIP sync标准。该标准要求每秒钟由主控制器广播一个同步化信号到网络上的各个节点,使所有节点的同步精度准确到微秒级。

SERCOS-Ⅲ采用的实时机制与EtherCAT的动态帧处理机制类似。SERCOS-Ⅲ将输入和输出数据分为两帧,即一次循环至少有两帧,因此,从站节点在数据帧经过和返回时两次处理数据。同时,SERCOS-Ⅲ采用刚性构架设计,运行时无法改变网络结构,而且不能处理位运算映像。SERCOS-Ⅲ采用其专用的延时侦测和补偿方式来实现同步对时。

3.2 技术参数比较

对上述几种主流实时以太网技术的技术参数进行纵向比较,如表1所示。

表1 几种主流实时以太网技术参数比较

EtherCA T

Ethernet

Powerlink

PROFInet/IRT Ethernet/IP SERCOS-Ⅲ

始创公司倍福(Beckhoff) 贝加莱(B&R) 西门子(Siemens) 罗克韦尔(Rockwell) 力士乐(Rexroth) 管理组织ETG EPSG PNO ODV A IGS

原始技术CANopen/SERCOS CANopen Profibus DeviceNet/ControlNet SERCOS

传输距离100m 100m 100m 100m 40m

拓扑结构任意任意任意任意受限(环形)

同步方式分布时钟/ IEEE

1588

IEEE 1588 IEEE 1588 IEEE 1588 未知

抖动<<1μs <1μs 1μs <1μs <1μs

硬件实现ASIC/FPGA FPGA ASIC ASIC ASIC

开发难度简单简单复杂复杂复杂

开放性是是需授权需授权需授权

4 实时以太网的应用现状与发展趋势

4.1 应用现状

目前,实时以太网技术的应用主要集中在高端数控机床、高精度运动控制等场合。例如,FANUC FS 30i-B系列数控系统中使用了FSSB;西门子SINAMICS S120伺服驱动器使用了PROFInet和Drive-CliQ;三菱Q173/172 CPU系列运动控制器使用了SSCNET-III;博世力士乐MTX micro紧凑型数控系统使用了SERCOS-III;欧姆龙OMNUC G5系列网络型AC伺服电机/驱动器、NUM公司的Flexium数控系统、倍福AX5000伺服驱动器均使用了EtherCAT;施耐德IclA 智能紧凑型电机、贝加莱ACOPOS系列伺服驱动器均使用了Ethernet Powerlink;广州数控GSK系列数控系统使用了EtherCAT及GSK-link。在某些流程行业DCS系统中也开始普及应用,如印刷机械、注塑机、机器人控制等领域。

根据2013年IMS Research公司发布的工业以太网技术市场研究报告,国际市场上各类工业以太网技术的市场占有率如图2所示。PROFInet和EtherNet/IP由于其主流支持厂商具有较强的市场地位,所占有的市场份额最大。Modbus/TCP作为通用工业以太网协议,虽然实时性能欠佳,但开发较为简单方便,也占据了较大市场份额。EtherCAT和Ethernet Powerlink由于其突出的实时性能与开放性,市场份额也在不断扩大。

图2 工业以太网市场份额

4.2 发展趋势

纵观实时以太网技术的起源与发展过程,表现出如下几个趋势:

(1)种类繁多,标准不统一

同现场总线情况类似,出于利益驱动因素,实时以太网也出现了种类繁多、标准不一致的情况。除了IEC 61784-2中规定的11种实时以太网技术外,还存在众多未列入标准的非公开的实时以太网技术,如FANUC公司的FSSB、安川公司的MECHATROLINK-Ⅲ、大连光洋的GLink等,导致标准不统一、不同厂商设备通信接口不兼容的问题,影响了不同厂商产品之间的互换性与互操作性。但总的发展趋势仍是使用更为开放的通信技术,如EtherCAT、Ethernet Powerlink等。

(2)网络定时技术和IEEE-1588标准的广泛采用

Ethernet Powerlink,EtherCAT,PROFInet IRT,CIP Motion等实时以太网的高速串行同步总线无一例外都采用了IEEE-1588网络定时标准,甚至以时间触发机制著称的TTP协议的实时以太网升级版本TTEthernet都转而采用了IEEE-1588网络定时标准。此外SERCOS-Ⅲ、SynqNet、SSCNET-Ⅲ、MECHATROLINK-Ⅲ、FSSB等也都有各自的延时侦测和补偿机制,以及相应的网络定时和网络同步功能。

(3)协议之间的相互融合与借鉴

虽然面市的现场总线类型越来越多,但总线协议之间的相互融合和相互借鉴也是大势所趋。例如Ethernet Powerlink在应用层协议方面对CANopen的融合,EtherCAT在应用层协议方面对SERCOS 和CANopen的融合,PROFInet在I/O接入协议方面对Interbus的融合,等等。

(4)网络安全问题日益得到重视

以太网技术在工业控制领域的普及带来了安全隐患,如病毒感染、黑客入侵、非法操作等,必须加以严密防范。一般情况下,可以采用网关或防火墙等对工业网络与外部网络进行隔离,并通过权限控制避免非授权操作,在对关键信息进行加密,关键信息数据加密等多种安全机制加强网络安全管理。

5 结语

相比传统的现场总线,实时以太网技术具有多种优势,在工业自动化领域得到了广泛应用。实时以太网在工业以太网基础上进一步改进了实时机制,具有更优越的性能,尤其适合于对控制网络的实时性与同步性要求特别高的场合,具有很大的推广应用价值。

《物联网技术与运用》考试题库含答案

《物联网技术与运用》考试题库01 单选题 1、物联网的英文名称是(B)B.Internet of Things 2、(D)首次提出了物联网的雏形 D.比尔.盖茨 3、物联网的核心技术是(A) A.射频识别 4、以下哪个不是物联网的应用模式(C) C.行业或企业客户的购买数据分析类应用 5、按照部署方式和服务对象可将云计算划分为(A) A.公有云、私有云和混合云 6、将基础设施作为服务的云计算服务类型是(C) C.PaaS错误:改为B.IaaS 7、2008年,(A)先后在无锡和北京建立了两个云计算中心 A.IBM 8、(A)实施方案拟定了在未来几年将北京建设成为中国云计算研究产业基地的发展思路和 路径 A.祥云工程 9、智慧城市是与相结合的产物(C) C.数字城市物联网 10、可以分析处理空间数据变化的系统是(B) B.GIS 11、智慧革命以(A)为核心 A.互联网 12、迄今为止最经济实用的一种自动识别技术是(A) A.条形码识别技术 13、以下哪一项用于存储被识别物体的标识信息?(B) B.电子标签 14、物联网技术是基于射频识别技术发展起来的新兴产业,射频识别技术主要是基于什么方 式进行信息传输的呢?(B) B.电场和磁场 15、双绞线绞合的目的是(C ) C.减少干扰 16、有几栋建筑物,周围还有其他电力电缆,若需将该几栋建筑物连接起来构成骨干型园区网, 则采用(D )比较合适? D.光缆 17、下列哪种通信技术部属于低功率短距离的无线通信技术?(A) A.广播 18、关于光纤通信,下列说法正确的是(A ) A.光在光导纤维中多次反射从一端传到另一端 19、无线局域网WLAN传输介质是(A) A.无线电波

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

万兆以太网规范

百度文库-让每个人平等地提升自我 10GBase-ER 5.5.1万兆以太网规范 5.5.1万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002 年的IEEE ,2004 年的IEEE ,2006 年的IEEE、IEEE 和2007 年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这 10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线 (或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予 以介绍。 1 ?基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR 和10GBase-LX4 这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表”短距离”(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF ),有效传输距离为2?300m,要支持300m 传输需要采用经过优化的50艸线径0M3 (Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50 ^m光纤称为OM2光纤,而线径为叩的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离”(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode ),对应的标准为2006年发布的IEEE。在1990年以前安装的FDDI ?m多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。

以太网的技术

以太网的技术 1以太网的发展 以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术。以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON 技术;在无线环境中,发展为WLAN技术。 以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势。WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。 同时,以太网技术的应用正在向城域网领域扩展。IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能。 随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mbps光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。 快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双

物联网的应用领域与发展前景

物联网的应用领域与发展前景 姚程宽张新华詹喆 (安庆医药高等专科学校公共基础部安徽安庆246003) 摘要:物联网是互联网发展到今天的高级产物,目前还没有对物联网权威的定义。从技术的角度说,任何一个互联互通的网络都可以实现,比如电信、移动、联通、广电等,也可以是一个独立局域网。对于普通用户来说,物联网重要的不是网络本身,而是基于这些网络的应用服务。能从这些网络中得到哪些服务,这才是与我们的工作生活相关的。简单的说:服务才应该是物联网的关注点。本文介绍了物联网的概念,并从工业、农业、教育和生活等方面详细介绍了物联网的应用,并分析了物联网在中国的发展前景。 关键词:物联网;感知技术;服务 物联网是近两三年来非常热门的科技词汇之一,他的英文是:“The Internet of things”,简写成IOT。简单的说物联网就是物和物互联的网络,它利用并融合感知技术、识别技术、网络技术、通讯技术和云计算等技术,把控制器、传感器、人和物等连接起来,实现物和物,人与物的连接,最终得到智能化的网络,被广泛认为是信息产业的第三次革命。物联网是互联网发展的高级产物,它利用互联网以及互联网上的所有资源,继承了互联网上的所有应用,同时物联网保留了自身资源和设备的个性化和私有化。

1.物联网的应用领域 1.1物联网在工业中的应用 (1)制造业供应链管理物联网应用于原材料采购、销售和库存领域,通过完善并优化供应链的管理体系,从而提高效率,降低成本。 (2)生产过程工艺优化物联网技术能提高工业生产线上的过程检测、生产设备监控、材料消耗监测、实时参数采集的能力和水平,有助于生产过程智能监控、智能诊断、智能控制、智能维护、智能决策,从而改进生产过程,优化生产工艺,提高产品质量。 (3)安全生产管理把感应器或感知设备安装在矿工设备、矿山设备、油气管道等危险设备中,可以感知在危险环境中的设备机器、工作人员等方面的安全信息,将现有单一、分散、独立的网络监管平台提升为多元、系统、开放的综合监管平台,以实现快捷响应、实时感知、准确辨识和有效控制等。 (4)环保检测及能源管理环保设备融入物联网可以对工业生产过程产生的各类污染源及污染治理关键指标进行实时监控[1]。 1.2物联网在农业中的应用 (1)食品安全溯源系统加强农副产品从生产到销售到最终消费者整个流程的监管,降低食品安全隐患。通过安装电子芯片,物联网技术可以追溯芯片的编码查询产地、生产日期以及检验检疫情况。

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

关于万兆以太网标准

万兆以太网标准 关于万兆以太网标准 万兆以太网物理层规格 在IEEE 802.3ae中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。万兆以太网MAC(右图)在服务接口(向PHY)以 10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY和WAN PHY的略有不懂的数据速率。速率适应机制在IEEE 802.3ae中叫做Open Loop Control。 Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout 万兆以太网物理层规格(PHY)为: 连续LAN PHY 连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个10.3Gb/s的连续数据流,并将一个10.3Gb/s的连续数据流去序列化到16-bit并行数据路径(每个 644Mb/s)。 连续WAN PHY 连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为9.95Gb/s(OC-192),每个16-bit并行数据路径为622Mb/s。WIS为SONET framing和X7+ X6 + 1 scrambling专门设计。与SONET OC-192

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

千兆以太网技术与应用

千兆以太网技术与应用 1. 简介 于1998年6月通过的IEEE 802.3z千兆比以太网标准描述了用于一个通用链路编码且可进行1000Mb/s 传输的3个物理层接口(1000BASE-SX、1000BASE-LX和1000BASE-CX)。1000BASE-SX、 1000BASE-LX接口采用光纤作为介质时,最远传输距离可达5000米,因而可应用于建筑物内或校园主干网络。 1000BASE-CX接口计划用于限制在25米内的计算机房内的连接。 IEEE 802.3ab千兆比以太网标准于1999年6月通过认证,它描述了用于不同线路编码的附加物理层接口(1000BASE-T)。 1000BASE-T接口通过5类非屏蔽双绞线(UTP)介质传输的最远距离可达100米,并主要应用于面向桌面的网络连接。 在1999年3月,一个IEEE 802.3研究小组正式成立,主要致力于发展通过光纤介质传输万兆比以太网的标准。 2. 铜缆布线系统 事实上,所有采用结构化综合布线系统的建筑物都有双绞线铜缆水平子系统,用于连接每一层的通讯配线间和墙上的信息出口。而这些布线系统的安装大部分都采用5类产品,所以1000BASE-T是设计应用于5类布线系统的。 1000BASE-T采用一根电缆中的所有4对线来传输,每对线的有效传输速率为250Mb/s,以此完成全双工传输。为了应用于5类带宽的布线系统,1000BASE-T 采用5级编码传输,而接收器采用数字信号处理(DSP)技术以减少来自布线系统中反射和近端串音干扰(NEXT)的影响。 应用于1000BASE-T的布线系统要求包括原5类系统未描述的附加的传输性能,如ELFEXT(等电平远端串扰)和回路损耗。这可由经强力推荐的最新专业测试仪测试、认可,多数已安装的5类布线系统能够支持1000BASE-T来证实。 ---https://www.360docs.net/doc/db14190532.html,(学电脑) 1000BASE-T布线系统的规范将反馈到随ANSI/TIA/EIA的发展而形成的新的规程中。“4对100欧姆5类布线系统的附加传输性能参数”有望于今年年底由TSB-95颁布。 ANSI/TIA/EIA还发布了一篇说明“4对100欧姆增强型5类布线系统的传输性能参数”的草案,现在已是第12稿,预计作为ANSI/TIA/EIA568A标准的附录5在今年年底颁布。该草案同TSB-95的描述类似,但回路损耗和NEXT性能指标好2dB~3dB。 ANSI建议新的布线安装至少应满足增强型5类布线性能要求。

以太网在传输网络中的应用

以太网在传输网络中的应用 摘要:随着以太网的发展,带宽从最初的2Mbps增长到目前的10Mbp,已经增长了千倍以上,对现有的SDH 网络要求越来越高,如何满足用户带宽和网络稳定性要求成为当务之急。本文阐述了基于SDH的以太网业务的传送方式、传送功能和组网方式,并且举例说明了各种组网方式。针对我公司发展现状,结合实际工作,分析了以太网业务对我们在激烈的电信市场竞争中的重要性。 关键词:以太网业务 SDH VCTRUNK 近年来,通信网络技术因与以因特网为代表的计算机网络技术相结合而飞速发展,随着因特网的发展,电子商务、视频点播、网络生活等的需求不断地增长,使得全球范围内的数据业务量迅猛增长,互联网的用户数呈现指数增长的规律,对带宽的需求永无止境。与此同时,作为基础传送网的SDH,其关键技术也在不断进步,新的SDH设备具有高集成度、对ADM 集成和灵活的业务调度能力、多业务传送能力、智能化管理的特点,它采用灵活可变的带宽来适应以太网业务的实际传送。SDH将在业务汇聚层起到协议透明传输和带宽管理的作用,很好地发挥现有网络的功能,配置和控制带宽,动态地从包交换和TDM业务中直接分配带宽,提供逐渐增长的数据带宽。 一、基于SDH的以太网业务传送 1.基于SDH的以太网业务传送方式 传统的SDH传送网络主要针对语音业务,缺乏面对指数型增长的带宽需求和以IP数据为主流的网络所需的扩展性和灵活性。同时,在可预见的未来,面向TDM业务的SDH传输体制将继续存在。但数据业务的增长使得业务提供商和运营商们正在寻求一种方案,从现有的静态TDM复用时代过渡到动态IP业务网时代。 基于下一代SDH的多业务传输平台灵活可变的带宽来适应以太网业务实际传送带宽变化范围大的需求通常采用的方式有两种:一种是采用ML-PPP,灵活捆绑多个VC-12/VC-3通道传送以太网帧;另一种方式是采用多个VC-12/VC-3、VC-4级联或虚级联通道来传送。因为虚级联可以兼容传统的SDH网络,从而得到广泛的应用。 2.基于SDH的以太网业务传送功能 1.1透明传输功能 以太网业务透明传送功能是指将来自以太网接口的信号不经过以太网交换,直接映射到SDH的虚荣器(VC)中,然后通过SDH设备进行点到点的传送。 基于SDH的具备以太网业务透明传送功能的业务传送设备必须具备以下功能: ⑴链路带宽可配置。 ⑵接收的正常数据帧必须能完整的映射到虚容器中,应保证以太网业务的透明性,包括以太网MAC帧、VLAN标记等的透明传送。 ⑶以太网数据帧的封装应采用PPP协议或者LAPS协议和GFP协议。 ⑷数据帧可以采用ML-PPP协议封装或采用VC通道的连续级联或虚级联映射来保证数据帧在传输过程中的完整性。

万兆以太网技术

万兆以太网技术

目录 1.基于光纤的局域网万兆以太网规范 (1) 2.基于双绞线(或铜线)的局域网万兆以太网规范 (2) 3.基于光纤的广域网万兆以太网规范 (3) 4.万兆以太网物理层规格 (4) 4.1万兆以太网物理层规格(PHY) (4) 4.2相关物理介质层(PMD) (7)

万兆以太网技术 万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap。在规范方面,总共有10多个,总共可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1. 基于光纤的局域网万兆以太网规范 目前,基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 (1)10GBase-SR 10GBase-SR中的“SR”代表“短距离”(short range)的意思,该规范支持编码方式为64B/66B 的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 (2)10GBase-LR 10GBase-LR中的“LR”代表“长距离”(Long Range)的意思,该规范支持编码方式为64B/66B 的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 (3)10GBase-LRM 10GBase-LRM中的“LRM”代表“长度延伸多点模式”(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5μm多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 (4)10GBase-ER 10GBase-ER中的“ER”代表“超长距离”(Extended Range)的意思,该规范支持超长波(1550nm)单模光纤(SMF),有效传输距离为2m到40km。 (5)10GBase-ZR 几个厂商提出了传输距离可达到80km超长距离的模块接口,这就是10GBase-ZR规范。它使用的也是超长波(1550nm)单模光纤(SMF)。但80km的物理层不在EEE 802.3ae标准之内,是厂商自己在OC-192/STM-64 SDH/SONET规范中的描述,也不会被IEEE 802.3工作组接受。 (6)10GBase-LX4 10GBase-LX4采用波分复用技术,通过使用4路波长统一为1300 nm,工作在3.125Gb/s的分离光源来实现10Gb/s传输。该规范在多模光纤中的有效传输距离为2~300m,在单模光纤下

网络技术与应用的作业及答案

《网络技术与应用》第一次作业:(本次作业包括教学大纲的1-2 章) 一、填空题 1. 从逻辑上看,计算机网络是由通信子网和终端系统组成。 2. 通信协议的三要素是语法、语义和同步。 3. 按照网络作用范围,计算机网络分为局域网、城域网、广域网、区域个人 网和因特网。 4. 在OSI 参考模型中,传输的基本单位是帧的层次是数据链路层,该模型的 最高层是应用层。 二、单项选择题 1. 在OSI 参考模型中,自下而上第一个提供端到端服务的层次是( C )。 (A )数据链路层(B)网络层(C)传输层(D)应用层 2. 若网络形状是由站点和连接站点的链路组成的一个闭合环,则称这种拓扑结构为( C )。(A )星形拓扑(B )总线拓扑(C)环形拓扑(D)树形拓扑 3. 在OSI 参考模型中,物理层的主要功能是( B )。 (A )数据链路的访问控制和管理(B )透明地传输比特流 (C )在物理实体间传送数据帧(D )发送和接收用户数据报文 4. 下面关于计算机网络的体系结构和协议的叙述,不正确的是( B )。 (A )计算机网络体系结构是计算机网络及其部件所应完成的功能的精确定义 (B )TCP/IP 体系结构中的应用层对应于OSI 体系结构中的表示层和应用层

(C )网络协议是为进行网络中的数据交换而建立的规则、标准和约定 (D )网络协议是“水平”的概念 5. 下列选项中,不属于网络体系结构中所描述的内容是( A )。 (A )协议内部实现细节(B )网络层次(C)每一层使用协议(D )每层须完成的功能 三、综合题 1. 什么是网络协议?由哪几个基本要素组成? 答:协议是指通信双方必须遵循的、控制信息交换的规则的集合,是一套语义和语法规则, 用来规定有关功能部件在通信过程中的操作,它定义了数据发送和接收工作中必经的过程。 协议规定了网络中使用的格式、定时方式、顺序和检错。 一般说,一个网络协议主要由语法、语义和同步三个要素组成。语义:协议的语义是指对构成协议的协议元素含义的解释。语法:指数据与控制信息的结构或格式。同步:规定了事件 的执行顺序。

物联网技术的现状与发展

物联网技术的 现状 与 发展语:随着经济的迅速发展和科学技术的日新月异,人们的生活也愈 加便利,有了智能手机、电脑、iphone 、ipad 等高科技产品。其中,最重要的且具有划时代意义的就是互联网的出现与应用了。互联网导、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

物联网技术与应用论文

物联网技术与应用论文 Revised as of 23 November 2020

一.引言 物联网的发展将彻底改变人们的生活方式,大大提高人们的生活质量和效率。物流关系着现代人生活的衣食住行,其发展关系着社会经济的方方面面。广泛推广和应用物联网技术,不仅可以完善和优化物流供应链管理体系,实现物流管理的合理化,而且在提高物流效率、降低物流成本、优化资源配置等方面具有积极的推动作用。为带动物流行业的全面发展,研究物联网技术在物流行业的应用势在必行。二.物联网以及国内外发展现状及存在问题 物联网的概念 物联网的概念起源于由RFID(射频识别)对所有物品进行标识并利用网络进行数据交换,进而实现智能识别和管理。经过不断扩充、延展、完善,现在人们普遍接受的物联网概念是指通过信息传感设备,运用射频识别、红外感应、全球定位系统、激光扫描等技术,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 国内外发展现状及存在问题 从国际上看,欧盟、美国、日本等国都十分重视物联网的工作,并且已作了大量研究开发和应用工作。如美国把它当成重振经济的法宝,所以非常重视物联网和互联网的发展,它的核心是利用信息通信技术(ICT)来改变美国未来产业发展模式和结构(金融、制造、消费和服务等),改变政府、企业和人们的交互方式以提高效率、灵活性和响应速度。把ICT技术充分用到各行各业,把感应器嵌入到全球每个角落,例如电网、交通(铁路、公路、市内交通)等相关的物体上。并利用网络和设备收集的大量数据通过云计算、数据仓库和人工智能技术作出分析给出解决方案。把

万兆以太网技术

‘农业网络信息》2007年第11期一蝽与电子商务/政务 万兆以太网技术 王树广 山东理工大学网络中心,山东淄博255049) 摘要:奉文舟绍了当前阿摧电最新技术一万兆旺太厨。文章详细说明了万兆以太两标准lEEE8023鹏的主要内客、万兆以太网的应用以;阿时也介绍7万兆以太网的铜癌标准。 美键词:以太网;万晃以太网;局域网;广蛾网;物理层 中圈分类号:TP399文献标识码:B文章编码:1672-625112007}11—0098—03 10GE山ern“ WANGshu—gIl蛳g (sl画一gu血哪酊0f‰h叫。盯,zib0255049,chiM) ^b咖cl:11liB删cleimrodu哪岫l岫ln咖Ⅲktec洲唧一10cm唧eL‰枷de慨plai哪‰m且in删删0flEEE8023胛,tlleap一;c出∞0f10GElhem吐hd豳吐‰oopp肝c出es诅nd埘面丑l吕oi曲甜u∞也 E时woIds:E山唧H;10GE血唧一;L衄dⅢ札n咖ork;Wide删nn珊Ik;Pll撺i脚hy盯 1IEEE802.3∞标准的诞生 2002年6月12日.IEEEE终于批准了10c以太网的标准802.3ae一万兆位,秒的媒体接人控制参数、 物理层和管理参数。802.3ae的批准进一步确定了以太网在未来局域网的霸主地位。也使得以太网未来在城域网、广域网中将占有重要的一席之地。自1973年施乐公司开发出以太网.以太网从粗缆的10B船e5到细缆的10BaBe2.再到双绞线10B鹳e—T.又到五类线的100B衄e—1x。随后又出现了现在还未来得及大面积使用的千兆以太网1000BaBe_Sx、100Ba8e—u、1000Ba∞一T。以太网在过去的30年中击败了TokenRiIlg和FDDI.成为局域冈的首选。万兆网的出现叉开创了以太网的新纪元。IEEE8023.耻是由3C哪、CiBco、Ex骶Ⅱ坨、Intel、Nonel、slln等组成的10cEA(万兆以太网联盟)创立的。我国的中兴、华为等公司也是10GEA的戚员,这对我国高速局域网的发展起了重要的作用。 2IEEE802.3ae标准的主要内容 2.1万兆以太网的主要技术特点 保留802.3以太网的帧格式;保留802.3以太网的最大帧长和最小帧长;使用光纤作为传输媒体(丽不使用铜线);只使用全双工工作方式,彻底改变了传统以太网的半双工的广播工作方式;使用点对点链路,支持星形结构的局域网;数据率非常高,不直接和端用户相连;创造了新的光物理媒体相关(PMD)子层。 2.2万兆以太网的模型 万兆以太网属于以太网,但它是一种只适用于全双工模式并且只能使用光纤的技术.所以它不需要带有冲突检测的载波侦听多路访问协议(csMA/cD)。除此之外,万兆以太网与原来的噬太网模型完全相同。其模型如图1。在以太网中.PHY表示以太网的物理层设备。它对应于OsI模型的第一层。PHY通过连接介质(光纤或铜线)与MAC层相连,而MAC层对应的是OsI模型中的第二层。在万兆以太网的体系结构中。PHY(第一层)进一步划分为物理介质相关层(PMD)和物理编码子层(PCS)。万兆以太网有两种不同的物理层:局域网物理层和广域网物理层.这两种物理层的数据率并不一样。局域网物理层使用简单的编码机制传送数据。而广域网物理层则需要增加一个s0N明ysDH组帧子层(wIs层),以便利用sONE鹏DH作为第一层来传送数据。 PMD(Phy8icalMediumDependent)子层:PMD子层的功能是支持在PMA子层和介质之间交换串行化的符号代码位,PMD子层将这些电信号转换成适合于在某种特定介质上传输的形式。PMD是物理层的最低子 杖稿日期:2007埘埘 作者筒舟:王树广(1968一),男,工程师,研究方向卅算机罔络和信息系统。 一98—

万兆以太网标准的核心内容

万兆以太网标准的核心内容 以太网从诞生到现在已经有25年的历史,由于它成本低、可靠性高、安装和维护相对简单,因此大受人们欢迎。今天,以太网几乎承担了Internet上所有的通信任务。 随着技术的发展和网络速度的提高,万兆(10G)以太网技术开始列入业界的议事日程。拟议中的万兆以太网标准与早期的以太网标准之间存在巨大差别,特别是万兆以太网只用光纤,并且只在全双工模式下运行。这就是说,万兆以太网将不再使用冲撞检测协议。 万兆以太网不会使现有的网络基础设施投资变成明日黄花。它依旧是以太网标准,现有的各种以太网标准可以很方便地移植到未来的新标准中。万兆标准开发特别工作组正在努力使万兆以太网能够与其他网络技术实现互通。此外,该工作组还在向新标准添加一些特别的技术,使以太网数据包能够在SONET中顺利通行。 万兆以太网标准计划在2002年中期开始采用。由于在当前的网络通信中,分组交换数据量已经超过语音通信量,占据了主导地位,因此,业界希望新的万兆以太网标准能够将原来主要用于语音通信的网络和数据网络融合为一体。 本期“万兆以太网主题报道”全面介绍万兆以太网标准的制订情况、标准核心内容、市场应用等,为读者全面展示网络发展的核心方向和它的市场前景,包括以下几篇文章: 万兆以太网标准的核心内容D10 标准制订流程D11 万兆以太网市场蓄势待发D12 10G技术的更高应用D12 10G遭遇障碍D13 以太网发展小史D13 在国际标准组织开放式系统互联(OSI)参考模型下,以太网是第二层协议。万兆以太网使用IEEE 802.3以太网介质访问控制协议

(MAC)、IEEE 802.3以太网帧格式以及IEEE 802.3最小和最大帧尺寸。 正如1000Base-X和1000Base-T(千兆以太网)都属于以太网一样,从速度和连接距离上来说,万兆以太网是以太网技术自然发展中的一个阶段。但是,因为它是一种只适用于全双工模式,并且只能使用光纤的技术,所以它不需要带有冲突检测的载波侦听多路访问协议(CSMA/CD)。除此之外,万兆以太网与原来的以太网模型完全相同。 在以太网中,PHY表示以太网的物理层设备,它对应于OSI模型的第一层。PHY通过连接介质(光纤或铜线)与MAC层相连,而MAC 层对应的是OSI模型中的第二层。在以太网的体系结构中,PHY(第一层)进一步划分为物理介质层(PMD)和物理编码子层(PCS)。例如,光纤收发机属于PMD,PCS由编码器和一个并串转换器或复用功能组成。 802.3ae规范定义了两种PHY类型:局域网PHY和广域网PHY。广域网PHY在局域网PHY功能的基础上增加了一个扩展特性集。这些PHY惟一的区别在PCS上。同时,PMD也有多种类型(请参见图1)。 芯片接口(XAUI) 在万兆以太网特别工作组的诸多创新中,有一个被称做XAUI(读作“Zowie”)的接口。其中的“AUI”部分指的是以太网连接单元接口(Ethernet Attachment Unit Interface)。“X”代表罗马数字10,它意味着每秒万兆(10Gbps)。XAUI被设计成一个接口扩展器,它扩展的接口就是XGMII(与介质无关的万兆接口)。XGMII是一个74位信号宽度的接口(发送与接收用的数据路径各占32位),可用于把以太网MAC层与物理层(PHY)相连。在大多数典型的以太网MAC和PHY相连的、芯片对芯片的应用中,XAUI可用来代替或者扩展XGMII。 XAUI是一种从1000Base-X万兆以太网的物理层直接发展而来的低针数、自发时钟串行总线。XAUI接口的速度为1000Base-X 的2.5倍。通过调整4根串行线,这种4bit的XAUI接口可以支持万兆以太网10倍于千兆以太网的数据吞吐量。

相关文档
最新文档