太阳能电池测试整理全

太阳能电池测试整理全
太阳能电池测试整理全

填空题

1、IEC 61215中的双85是指试验温度85℃±2℃和相对湿度为85%±

5% 。

2、目前,世界围中存在 ANSI 、 IEC 两大光伏组件测试标准体系,中国的光伏组件产品测试基本上遵循 IEC 体系的测试标准。

3、光伏玻璃通过镀膜来增加透光率,薄膜制备的方法提拉法和喷涂

法。

4、硅太阳能电池片正面采光面为负极。

5、太阳电池的标准测试条件:辐照度1000W/m2,AM1.5光谱,电池温度25℃。

6、太阳电池组件为了获得更高的工作电压,可以把组件串连起来,为了获得更大的输出电流,可以将组件并联使用。

7、在一定条件下,串联的组件中被遮挡的组件容易产生热斑效应,会严重破坏电池组件;通过设计旁路二极管可有效避免热斑效应对组件的负面影响。

8、IEC 61215中,紫外光预处理试验采用的波长围是 280nm-385nm ,其中,波长为320nm-385nm的紫外辐射至多为 10KWh·m2。

9、IEC 61215机械载荷试验中,一般情况下表面施加负荷 2400Pa ,在试验组件承受雪重压能力时,应施加 5400Pa 负荷

10、现有两件CS5A-160型号的组件,进行IEC 61215可靠性测试的热循环200次试验,标准条件下初始试验测得最大功率都为159W,在结束热循环以及后续试验,包括湿漏电实验,最后测得最大功率分别为142W、140W,则代表的这一

批测试组件不能通过可靠性测试(能/不能/可能)。

判断题

(判断以下各题是否正确,正确打√,错误打 X ,若有错,请进行改正。)

1、从生产线上制作完成的组件,可以直接进行紫外预处理试验。(×)

需要进行预处理,累计一定的辐射量

2、用于组件最大功率确定的太阳模拟器辐照不均匀度应小于2%。(×)

小于5%

3、采用IEC 61215基本方法测量NOCT时,需要保留环境温度30℃的记录数据,用于后续数据处理。(√)

4、组件在进行IEC 61215湿冻试验时,应保持气候室中85%的相对湿度。(×)

温度在室温上时需要加湿度,室温下不加

5、CS6P-200型号的组件进行IEC 61215湿漏电流试验,组件正负极引出线接到绝缘测试仪正极,组件边框接到测试仪负极。(×)用金属片连接负极到水溶液

简答题

1、光伏组件测试中的光谱失配误差来源是什么?通常采用什么方法来改善这

种失配?

答:光谱失配误差有两个来源:一种是太阳模拟器的光谱和标准太谱不一致,另一种是被测太阳电池的光谱响应和标准太阳电池的光谱响应不一致。

二种情况相比之下,后一种情况更容易产生失配误差,因为待测太阳电池是多种多样的,不可能每一片待测电池都配上和它光谱响应完全一致的标准太阳电池。光谱响应之所难于控制,一方面出于工艺上的原因,在众多复杂因素的影响下,即使是同工艺、同结构、同材料,甚至是同一批生产出来的太阳电池,并不能保证具有完全相同的光谱响应,另一方面来自测试的困难,光谱响应的测量要比伏安特性麻烦得多,也不易测量正确,不可能在测量伏安特性之前先把每片太阳电池的光谱响应测量一下。因此为了改善光谱匹配,最好的办法是设计光谱分布和标准太谱非常接近的精密型太阳模拟器。

2、EVA(乙烯-醋酸乙烯共聚物)为什么要进行交联?常用交联剂的交联度与哪

些因素有关?能否100%交联?

答:未交联的EVA为线状大分子链结构,以物理力聚集在一起,作用力弱,易受溶剂和热的影响。使EVA由线状变成网状结构,即交联,可以提高力学性能、提高耐热性、增强耐溶剂性能。

交联度与层压时间,温度及压力相关

在反应初期,交联基本不发生,随着反应进行,交联度迅速增大,到达一定交联度后,交联的正逆反应速度相等,达到平衡,交联度保持在一个较高的水平(90%左右)不再发生变化。

3、热循环试验中,循环200次与循环50次在测试程序上最大的不同是什么?答:热循环(即温度循环),循环200次时需要给组件加上标准测试条件下最大功率点电流,而且仅在组件超过25℃时施加,而循环50次不需要加电流。

4、光伏组件玻璃有什么要求?通常采用什么方法来减小反射带来的能量损失?要求:1、光学性能:高的透光率,一般在91.7%以上;

2、机械性能:2400Pa的载荷,正反面各压1h,最后一次正面5400Pa的

载荷(雪压);

3、化学性质稳定性:良好的耐酸碱能力,耐水解性;

4、良好的耐冷热冲击性能:试样应耐200度的温差不破坏;

5、冲击性能:25mm的冰球以23m/s速度撞击玻璃共撞击11点。

通常采用对玻璃镀膜的方法来减小反射带来的能量损失。

四、计算题

1. 电池标称工作温度的测量实验中,

第一天测试时,测试期间平均环境温度为18℃,平均风速为0.5m/s,当辐照度为800W/m2时,测得电池温度为37℃,环境温度为15℃。

第二天测试时,测试期间平均温度为15℃,平均风速为1m/s,当福照度为800W/m2时,测得电池温度为35℃,环境温度为13℃。

第三天测试时,测试期间平均温度为20℃,平均风速为1.1m/s,当福照度为800W/m2时,测得电池温度为33℃,环境温度为14℃。

试估算电池标称工作温度。

答:以第一天为例子:(处理依据见讲义NOCT测量部分)

800W/m2时,初步的NOCT = T J - T amb + 20 = 37 – 15 +20 = 42 ℃

平均环境温度为18℃,平均风速为0.5m/s,由图得校正因子为 -1℃

校正的NOCT = 初步的NOCT + 校正因子 = 42 -1 = 41 ℃

依次算出第二、三天的NOCT,然后求平均。

2. 利用参考平板法测定组件NOCT 时,测试期间平均辐照度为820W/m 2,平均环

境温度为22℃,平均风速为2m/s 。测得参考平板平均温度为40℃,组件1平均温度为43℃,组件2的平均温度为41℃。设参考平板在SRE 条件下平均稳态温度为48℃。试估算组件NOCT 。

答:取组件1的平均温度,计算JP1J P 43403T T T D =-=-=℃

取组件2的平均温度,计算JP2J P 41401T T T D =-=-=℃

取()JP1JP2JPm 22

T T T D +D D ==℃ 测试期间平均辐照度为820W/m2,辐照度校正因子800/820...f == 环境温度为22℃,查表并利用差值公式得

2220 1.0030200.96 1.00B --=--,....B = 平均风速为2m/s ,且电池温度较高,查图得风速校正因子:......R = 将JPm T D 修正到标准参考环境:()JPm sre JPm ........f T T BR D =D =,

参考平板在SRE 条件下平均稳态温度为48℃,组件NOCT = PR JPm,sre ..............T T +D =

阿特斯公司生产的CS5A-160光伏组件,电性能参数如图所示,由72(6*12)片电池片串联构成,

试求(1)单个电池片的短路电流温度系数,开路电压温度系数。

(2)辐照度1100W/m2时,Isc1=5.75A,Voc1=44.1V,最大功率点附近P点为5.58A,37.1V,

辐照度900W/m2时,Isc2=4.63A,Voc2=43.0V,最大功率点附近Q点为4.46A,38.3V,

辐照度700W/m2时,Isc3=3.51A,Voc3=42.2V,最大功率点附近S点为3.34A,39.7V,

求组件的部串联电阻。

(3) 若辐照度1100W/m2时数据为30℃时测得,试将P点值转换为标准测试条件下的值。设标准电池在实测条件下短路电流为 5.8A,标准条件下短路电流为5A。电池串联阻利用上题计算所得近似。

(4)试说明该组件在IEC体系绝缘试验中加电压的技术要点。

答:

(1)因为组件是由n s =72片串联而成,由公式β=n s*βc可得单个电池片的

电压温度系数βc为-0.35%/℃除以72得-0.0049%/℃,

电流温度系数αc为0.060%/℃。

(2)R s1=(38.3V-37.1V)/(5.75A-4.63A)≈1.07Ω

R s2=(39.7V-37.1V)/(5.75A-3.51A)≈1.16Ω

R s3=(39.7V-38.3V)/(4.63A-3.51A)≈1.25Ω

R s=(R s1+ R s2+ R s3)/3=1.16Ω

(3)I2=I1+I SC[I SR/ I MR-1]+α(T2-T1)=4.9A

V2=V1-R S(I2-I1)-k*I2(T2-T1)- β(T2-T1)=37.85V

(4)技术要求:

无绝缘击穿(小于50μA),或表面无破裂现象

组件面积小于0.1m2的,绝缘阻抗应该不小于400MΩ·m2

组件面积大于0.1m2的,绝缘阻抗应该不小于40MΩ·m2

有S个电池呈单串串联连接,若其中一块被部分遮阴,则会产生热斑效应。如电池的电流电压曲线如下图所示。

d1和d2分别为两种可能的遮光电池反向特性曲线。问:d1和d2分别为什么类型的热斑,如何确定?其最大消耗功率发生在遮光比分别为多少?最大消耗功率为多少?

D1为B 类,d2为a 类,通过d1与d2的斜率,斜率大的阻值小,斜率小的阻值大。

B 类最大消耗功率发生在全遮的情况,p=2×2√3=4√3

A 类最大消耗功率发生在遮光比为遮光电池与(s-1)电池片的短路电流之比,p=2×2√3=4√3

CS5P-240型号的组件,在制造过程中使用的材料有所更改,具体如下: 组件采用的多晶硅电池片供应商更改,电池片厚度由原来的260m μ变为190m μ; 采用TPE 代替原来的TPT ;

原60%Sn/40%Pb 的镀锡焊带改为62%Sn/36%Pb/2%Ag 的镀锡焊带。

则需要进行哪些测试,以保持该型号组件符合IEC61215的认证?并说明理由。 1, 外观检查,最大功率确定,绝缘试验,湿漏电流试验,热循环试验,热斑耐久性实验,

机械载荷实验,外观检查,最大功率确定,绝缘试验,湿漏电流试验

原因:电池片工艺变更:供应商更改,厚度大于200

m

电池片厚度减小超过25%,

2,外观检查,最大功率确定,绝缘试验,湿漏电流试验,紫外预处理实验,热循环实验,引出端强度试验,湿冻试验,外观检查,最大功率确定,绝缘试验,湿漏电流试验原因:背板变更:不同材料

3,外观检查,最大功率确定,绝缘试验,湿漏电流试验,热循环实验,湿热试验,热斑耐久实验,外观检查,最大功率确定,绝缘试验,湿漏电流试验

原因:电池互联的材料或方式变更:不同的焊接材料或助焊材料

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。 为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线 2. 测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF 3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与相对光强0J J 的关系,求出它们的近似函数关系。 【实验仪器】 光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱

【实验原理】 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为 ??? ? ??-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。(可令nKT q =β) 由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。 当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。 电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。 光电流示意图 太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外, 还有最大输出功率max P 和填充因子FF 。最大输出功率max P 也就是IU 的最大值。填充因子FF 定义为 OC SC U I P FF m ax = (2) FF 是代表太阳能电池性能优劣的一个重要参数。FF 值越大,说明太阳能电池对光的利用率越高。

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

非晶硅太阳能电池测试

薄膜太阳能电池测试: 1外观检测10.1 观察台,显微镜,相机等 2 最大功率确定10.2 符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,一个支架,|I-V 测试装置 3 绝缘试验10.3 耐压绝缘测试仪及一个可限流的直流电源 4温度系数的测试10.4符合IEC60904-9BBB等级太阳光模拟器,一个根据IEC60904-2校准的标准太阳能电池,温度测试仪,I-V 测试装置。烤箱(加温设备),支架。 5 电池标称工作温度的测量10.5 辐射计,温度测试仪(环境温度和电池温度),风速风向仪,支架 6 标准测试条件下和标称工作温度下的性能 10.6符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 7 低辐照度下的性能10.7符合IEC60904-9BBB等级太阳光模拟器,符合IEC60904-10辐照度计,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 8 室外曝露试验10.8符合IEC60904-9太阳能模拟器,辐射计,实验架等 9 热斑耐久试验10.9符合IEC60904-9CCB太阳光模拟器,I-V 测试装置,不透明挡板,组件电源供应器,红外热像仪。 10 紫外预处理试验10.10 UV 试验箱,UV辐射计及温度传感器 11 热循环试验10.11 环境实验箱-40°C--85°C,安装和支撑装置,温度测试仪。 12 湿-冻试验10.12 环境试验箱-40°C--85°C,安装和支撑装置,温度测试仪,检测内部 电连续的装置。 13 湿-热试验(双85)10.13 环境试验箱温度85°C 湿度85% 14 引线端强度试验10.14 拉力试验机 15 湿露电流试验10.15 试验水槽,温控水槽,加温系统,喷淋装置,控制柜,表面张力测定仪,电导率仪,程控绝缘耐压测试仪 16 机械负荷试验10.16 机械压力试验机及检测组件短路或漏电装置 17冰雹试验10.17 冷冻箱,冰球存储箱,发射装置,支架 电子天平,速度传感器。 18旁路二极管热性能试验10.18 电源,温度测试仪,烤箱(加温设备) 及测量接线盒旁路二极管电压仪器,监控电流装置。 19光老炼实验10.19 符合IEC60904-9CCB太阳光模拟器,带积分器的标准设备,支架,温度测试仪,电阻负载。

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

太阳能电池基本特性实验讲义

太阳能电池基本特性测定 目前人类所消耗的能源的70%来自煤、石油、天然气等化石燃料,在现有技术条件下,化石能源的大量使用给地球环境造成了严重危害,使人类生存空间受到了极大的威胁。科学家预言,尽管化石燃料能源未来仍将占有相当大比重,但其一统天下的局面将逐渐结束(地球上2亿年形成的化石燃料,大体只够人类使用300余年),可再生的清洁能源可望撑起未来世界能源供给的半壁江山。 太阳能的利用和研究是21世纪新型能源开发的重点课题之一。太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已应用于许多民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、“绿色”能源。因此,世界各国十分重视对太阳能电池的研究和利用。 一、实验目的 1、学习掌握硅光电池的工作原理。 2、学习掌握硅光电池的基本特性及其测试方法。 3、了解硅光电池的基本应用。 二、实验仪器 1.光功率计 2.测试仪 3.光源 4.光电二极管(用专用连接线与光功率计相连接) 5.样品架(用于放置光电二极管传感器,以及待测太阳能电池样品,含遮光罩) 6. 导轨 7.单晶硅样品 7.多晶硅样品 图1 太阳能电池特性测试仪

1、太阳能电池:单晶硅和多晶硅各1块:60×60mm 2,有效面积50×45mm 2 ,开路电压不低于4V ,闭路电流不小于15mA ;2、光功率计:三位半数显,量程200uw 、2mw 和20mW 三档,数字按键档位切换;光功率计传感器采用高灵敏度光电二极管;3、精密电阻负载:0~99999.9Ω;4、测试仪:电压表:2.000V 和20.00V 两档;电流表:2.000mA 和200.0mA 两档;0-5V 可调直流电源,带限流输出功能;5、光源功率:100W ;6、导轨:长75cm ; 三、实验原理 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1(-=U o e I I β (1) (1)式中,I为通过二极管的电流,o I 和β是常数,o I 为反向饱和电流。 由半导体理论,二极管主要是由能隙为E C -E V 的半导体构成,如图2所示。E C 为半导体电带,E V 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻R Sh 与一个电阻R S 所组成,如图3所示。 图3中,I Ph 为太阳能电池在光照时该等效电源输出电流,I d 为光照时,通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0)(=---+sh d ph s R I I I U IR (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I R R I --=+ )1( (3)

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

太阳能电池板测试方案

如何在迅速变化的测试环境中降低测试成本和提高测试灵活性 目录 引言/1 太阳能电池及电池板的电测试/2用两象限电源测试太阳能电池/3 用电子负载测试太阳能电池及 电池板/5 Agilent的太阳能电池和电池板开关和测量解决方案/7 用高速多路输出电源系统进行 暗I-V特性测试/9 结论/11引言 爆炸性增长的太阳能产业对太阳能电池及电池板测试和测量解决方案有极为紧迫的需要。今天的太阳能电池及电池板测试和测量解决方案有两种主要形式: 全套承包解决方案,以及利用现有的测试设备、通过系统集成和软件开发构建的自动测试系统。如果您选择全套承包解决方案,就可快速启用和运行测试系统。伴随这一好处的代价是不菲的成本,并会面临因技术迅速发展带来产品很快过时的现实风险。 通过系统集成能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试需要更高的精度或更宽的电流范围,需要更换的就只是系统中的模块,而不是整个系统。此外,如果您已很好处理了标准化和重复利用,就能跨各种测试系统平台重复使用各种测试系统的仪器和模块。 Agilent有众多的电源、测量和开关产品,您可将它们作为功能模块,用以表征太阳能电池和电池板的电气特性。这篇应用指南着重评述能适应迅速变化的测试环境,降低成本,不牺牲性能,并提高测试灵活性的测量仪器。本文将帮助您选择应对太阳能电池和电池板测试挑战的最佳解决方案。

太阳能电池阵列测试一览 表1: 太阳能电池和电池板测试解决方案太阳能电池和电池板 电气测试基础 太阳能电池 级的测试为研究、质量保证和生产所需。对于不同的行业,如用于太空或者在地面,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必须测量的重要参数:●开路电压 (V oc )没有电流时的电池电压●短路电流 (I sc )负载电阻为零时从电池流出的电流●电池最大功率输出 (P max )电池产生最大功率时的电压和电流点通常把I-V 曲线上的Pmax 点作为最大功率点 (MPP)●Pmax 的电压 (Vmax)电池在Pmax 的电压电平●Pmax 的电流 (Imax)电池在Pmax 的电流电平●器件的转换效率 (η)太阳能电池接到电路时转换 (从吸收光的电能) 和收集功率的百分比。计算方法是用标准条件 (STC) 和太阳能电池表面积 (A c ,单位是m 2) 下的最大功率点Pmax 除以输入光辐照度 (E ,单位是W/m 2)●填充因子 (FF)最大功率点Pmax 与开路电压 (V oc ) 及短路电流 (I sc ) 之比●电池的二极管特性●电池的串联电阻●电池的旁路电阻太阳能电池开路电压 (V oc ) 一般在3 V 至0.6 V 范围,短路电流 (I sc ) 通常低于8A 。太阳能电池板通常定义为封装和连接在一起的一个以上电池。太阳能电池板有不同的电压和电流范围,但功率产生能力一般为50 W 至300 W 。太阳能电池和电池板有许多相同的需要测试参数,如V oc , I sc , P max 和I-V 曲线。 图1: 太阳能电池I-V 曲线

第三章 太阳电池测试

第三章太阳电池测试 3.1太阳模拟器 3.1.1概述 太阳电池是将太阳能转变成电能的半导体器件,从应用和研究的角度来考虑,其光电转换效率、输出伏安特性曲线及参数是必须测量的,而这种测量必须在规定的标准太阳光下进行才有参考意义。如果测试光源的特性和太阳光相差很远,则测得的数据不能代表它在太阳光下使用时的真实情况,甚至也无法换算到真实的情况,考虑到太阳光本身随时间、地点而变化,因此必须规定一种标准阳光条件,才能使测量结果既能彼此进行相对比较,又能根据标准阳光下的测试数据估算出实际应用时太阳电池的性能参数。 3.1.2太阳辐射的基本特性 3.1.2.1几个描述光的物理概念: (1)发光强度。按照1979年第16届国防计量会议(CGPN)确定,以坎德拉(cd)为发光强度的计量单位。坎德拉是一光源在给定的方向上的光强度,该光源发出频率为5401012Hz的光学辐射,且在此方向上的辐射强度为1/683WSr-1 (2)光通量。光通量的单位是流明(lm),它用来计量所发出的总光量,发光强度为1cd的点光源,向周围空间均匀发出4流明的光能量。 (3)光强度。指照射于一表面的光强度,它用勒克斯(lx)作为单位,当1lm光通量的光强射到1m2面积上时,该面积所受的光照度(简称照度)就是1lx。 (4)辐射度,通常称为光强,即入射到单位面积上的光功率,单位是W/m2或mw/cm2。 3.1.2.2辐照度及其均匀性

对空间应用,规定的标准辐照度为1367w/m2(另一种较早的标准规定为1353 w/m2),对地面应用,规定的标准辐照度为1000 w/m2。实际上地面阳光和很多复杂因素有关,这一数值仅在特定的时间及理想的气候和地理条件下才能获得。地面上比较常见的辐射照度是在600~900 w/m2范围内,除了辐照度数值范围以外,太阳辐射的特点之一是其均匀性,这种均匀性保证了同一太阳电池方阵上各点的辐照度相同。 3.1.2.3光谱分布 太阳电池对不同波长的光具有不同的响应,就是说辐照度相同而光谱成分不同的光照射到同一太阳电池上,其效果是不同的,太阳光是各种波长的复合光,它所含的光谱成分组成光谱分布曲线,而且其光谱分布也随地点、时间及其它条件的差异而不同,在大气层外情况很单纯,太阳光谱几乎相当于6000K的黑体辐射光谱,称为AMO光谱。在地面上,由于太阳光透过大气层后被吸收掉一部分,这种吸收和大气层的厚度及组成有关,因此是选择性吸收,结果导致非常复杂的光谱分布。而且随着太阳天顶角的变化,阳光透射的途径不同吸收情况也不同。所以地面阳光的光谱随时都在变化。因此从测试的角度来考虑,需要规定一个标准的地面太阳光谱分布。目前国内外的标准都规定,在晴朗的气候条件下,当太阳透过大气层到达地面所经过的路程为大气层厚度的1.5倍时,其光谱为标准地面太阳光谱,简称AM1.5标准太阳光谱。此时太阳的天顶角为48.19,原因是这种情况在地面上比较有代表性。 3.1.2.4总辐射和间接辐射 在大气层外,太阳光在真空中辐射,没有任何漫射现象,全部太阳辐射都直接从太阳照射过来。地面上的情况则不同,一部分太阳光直接从太阳照射下来,而另一部分则来自大气层或周围环境的散射,前者称为直接辐射,后者称为天空辐射。二部分合起来称为总辐射,在正常的大气条件下,直接辐射占总辐射的75%以上,否则就是大气条件不正常所致,例如由于云层反射或严重的大气污染所致。 3.1.2.5辐照稳定性 天气晴朗时,阳光辐照是非常稳定的,仅随高度角而缓慢的变化,当天空有浮云或严重的气流影响时才会产生不稳定现象,这种气候条件

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

单晶硅太阳电池性能测试实验

实验一、单晶硅太阳电池特性测试 一、 实验目的 1.了解单晶硅太阳电池的工作原理和结构。 2.了解单晶硅太阳电池的外特性。 3.了解单晶硅太阳电池外特性的影响因素。 二、 实验仪器 1.单晶硅太阳电池板 一块 2.单晶硅太阳电池阵列 一块 3.光源(氙灯) 一套 4.调压器 一台 5.数字万用表 两块 6.定值变阻 若干 7.光辐射计 一块 三、 实验任务 1. 模拟太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 测量记录日期、时间和地点,绘制电池的外形结构图并记录电池几何参数(用于计算电池面积),并记录太阳光当时辐射强度,按照图1所示实验原理图接线。 (1) 在室内太阳光模拟器下,分别测试光强为1 sun (1000 W/m 2)、0.5 sun (500 W/m 2)下的电池短路电流(I sc )和空载电压(U oc ),以及输出外 特性曲线。 (2) 具体测量方法:分别在上述一定光强下,逐步改变电阻箱(负载)的阻值R L ,分别测量电池两端的I 和U 。根据测量结果绘制上述不同条件下的电池外特性曲线。 图1 单晶硅电池阵列外特性测试

2.自然太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 (1)选择户外有太阳光的地方,记录天气状况,测试时间,并测试太阳 光辐射强度; (2)改变单晶硅电池板与地平线的夹角,分别测量在0o、30o和45o夹 角下,电池的短路电流(I sc)和空载电压(U oc)。 (3)分别在上述夹角下,逐步改变电阻箱的阻值(即负载电阻)R L,测 量不同电阻值下的电池两端的I和U,以绘制上述不同条件下的电 池外特性曲线。 3.单晶硅太阳电池电池阵列板的的输出外特性 测量记录日期、时间和地点;记录太阳电池阵列的结构与几何尺寸,应于估算电池面积;记录天气状况、太阳光当时辐射强度,按照图1所示实验原理图接线。 (1)在太阳光照下,水平放置电池阵列板,先测试出在当前光照下的短路电 流(I sc)和空载电压(U oc),在逐步改变负载,测量电池阵列的输出外 特性。 (2)用黑色遮光板遮住一半面积的阵列板,记录电池的短路电流(I sc)和空 载电压(U oc),进一步测量该条件下的外特性曲线。 四、实验结果 1.绘制单电池与阵列板串并联方式简图,标明单电池与电池阵列的有效面积。 单电池有效面积:10.84cm2 电池阵列有效面积:36*10.84cm2 2.整理实验数据,分别绘出单晶硅电池单电池、电池阵列板在不同测试条件下的外特性。 (1)自然光条件下: 0度

太阳能电池特性测试实验报告

太阳电池特性测试实验 太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。 太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。 太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 一、 实验目的 1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。 二、 实验原理 (1) 太阳电池板结构 以硅太阳电池为例:结构示意图如图1。硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。为了减小光的反射损失,一般在表面覆盖一层减反射膜。 (2) 光伏效应 当光照射到半导体PN 结上时,半导体PN 结吸 收光能后,两端产生电动势,这种现象称为光生伏特效应。由于P-N 结耗尽区存在着较强的 图1 太阳能电池板结构示意图

太阳能电池测试原理

太阳能电池测试原理 太阳电池的测量与太阳辐照度测量密切相关。地面上的太阳辐照每时每刻都在变化,这一变化不仅体现在总辐照度上,而且其内在的光谱辐照度细节也在不断的变化,这给最初的太阳电池测量带来了极大的困难。由于太阳电池是光谱选择性元件,其光电灵敏度随太阳光谱分布变化而变化,在总辐照度相同而光谱辐照度不同的光源下,太阳电池的电性能输出会有很大的不同。为了实现太阳电池测量量值的统一,国际电工委员会首先对标准太阳光谱辐照度进行了规定。所有地面用太阳电池的计量标准条件是采用AM1.5标准太阳光谱分布。 太阳电池的主要技术参数是太阳电池的光谱响应,短路电流和开路电压以及太阳电池的光电转换效率。作为太阳电池计量项目,通常进行如下两方面内容的测试工作:标准太阳电池在标准太阳光谱条件下的短路电流标定和在太阳模拟器下测量太阳电池的伏-安特性测量,进而计算出标准太阳光谱条件下太阳电池的光电转换效率。由于无法得到与标准AM1.5太阳光谱分布相一致的人工模拟光源,因此无法直接测量出太阳电池在标准太阳辐照条件下的短路电流。 太阳电池的I-V特性测量方法是,首先采用与被测太阳电池光谱响应相似的标准太阳电池来设定太阳模拟器的标准测试条件下的辐 照度,然后在太阳模拟器下测量被测太阳电池的I-V特性曲线。由于被测太阳电池与标准太阳电池的光谱响应相似,因此这种替代测量方

法可以克服掉由于太阳模拟器的光谱分布与标准AM1.5太阳光谱分布不匹配造成的光谱失配误差。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know that I love you.

太阳能测试标准

1、太阳电池:由太阳光的光量子与材料相互作用而产生电势,从而把光的能量转换成电能,此种进行能量转化的光电元件称为太阳电池(Solar Cell),也可称之为光伏电池。 2、伏安特性曲线:受光照的太阳能电池,在一定温度和辐照度以及不同外电路的负载下,流入负载的电流I和电池端电压V的关系曲线。 3、开路电压:在一定的温度和辐照度的条件下,太阳能电池的正负极不接负载,处于开路状态,此时太阳能电池正负极之间的电压就是开路电压。 4、短路电流:在一定的温度和辐照度的条件下,将太阳能电池的正负极短路,此时测得的电流就是短路电流。 5、最大功率:太阳电池正常工作或测试条件下的最大输出功率,通常用Pm表示。 6、最大功率点:在太阳电池的伏安特性曲线上对应最大功率的点,又称最佳工作点。 7、最佳工作电压:太阳电池的伏安特性曲线上最大功率点对应的电压,通常用Vm表示。 8、最佳工作电流:太阳电池的伏安特性曲线上最大功率点对应的电流,通常用Im表示。 9、最佳工作负载:太阳电池的伏安特性曲线上最大功率点对应的负载,通常用Rm表示。 10、转换效率:太阳能电池的最大输出功率与照射到电池上的太阳能功率的比值,通常用η表示。 11、填充因子:太阳电池的最大功率与开路电压和短路电流乘积之比,通常用FF表示。 12、短路电流温度系数:在规定的测试条件下,被测太阳电池温度每变化1℃,太阳电池短路电流的变化值,通常用α表示。 13、开路电压温度系数:在规定的测试条件下,被测太阳电池温度每变化1℃,太阳电池开路电压的变化值,通常用β表示。 14、光谱响应:光谱响应表示不同波长的光子产生电子-空穴对的能力。定量地说,太阳电池的光谱响应就是当某一波长的光照射在电池表面上时,每一光子平均所能收集到的载流子数。 15、辐射光谱:太阳辐射经色散分光后按波长大小排列的图案。太阳光谱包括无线电波、红外线、可见光、紫外线、X射线、γ射线等几个波谱范围。 16、辐射通量:在规定的时间内,投射在地球某一单位面积上太阳辐射能的量值,通常用kW.h/m2表示。 17、辐射强度(辐照强度):通常成为光强,在单位时间内,垂直投射在地球某一单位面积上的太阳辐射能量,通常用W/m2或kW/m2表示。 18、太阳能电池组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。 19、标称工作温度NOCT:在标准参考环境(SRE),敞开式支架安装情况下,太阳电池的平均平衡结温。 20、太阳能电池标准测试条件STC:太阳能辐照强度1000W/m2 ,电池温度25℃,大气

相关文档
最新文档