脑功能磁共振成像及其应用进展

脑功能磁共振成像及其应用进展
脑功能磁共振成像及其应用进展

脑功能磁共振成像及其应用进展

聂生东1,聂斌2

(1.上海第二医科大学计算机教研室,上海 200025; 2.泰山医学院)

功能磁共振成像是近10余年来在传统的磁共振成像技术的基础上迅速发展起来的一种新的成像技术。与传统的磁共振成像技术不同的是,功能磁共振成像得到的是人脑在执行某项任务或受到某种刺激时的功能映射图,而不是人脑的解剖图像。它能够确定人脑在执行某项任务或受到某种刺激时大脑的哪些区域被激活。目前,功能磁共振成像技术在国外已经得到了广泛的应用,其应用领域涉及到脑科学研究的各个领域,如认知科学、心理学、神经科学、药物滥用以及临床应用等。国内在这一方面的研究和应用还刚刚开始。本文对近年来功能磁共振成像及其在国内外的应用进行了综述。

一、功能磁共振成像的原理及特点

功能磁共振成像(functional magnetic resonance imaging,fMRI)的突出特点是可以利用超快速的成像技术,反映出大脑在受到刺激或发生病变时脑功能的变化。它突破了过去仅从生理学或病理生理学角度对人脑实施研究和评价的状态,打开了从语言、记忆和认知等领域对大脑进行探索的大门。

传统的磁共振成像(MRI)与功能磁共振成像(fMRI)之间的主要区别是它们所测量的磁共振信号有所不同[1-3,6]。MRI是利用组织水分子中的氢原子核处于磁场中发生的核磁共振现象,对组织结构进行成像,而fMRI所测量的是在受到刺激或发生病变时大脑功能的变化。根据所测量的脑功能信号的不同,磁共振功能成像主要有以下四种工作方式:①血氧水平依赖功能磁共振成像(blood-oxygen-level-dependent fMRI,BOLD-fMRI),它主要是通过测量区域中氧合血流的变化(或血流动力学的变化),实现对不同脑功能区域的定位;②灌注功能磁共振成像(perfusion fMRI),又称为灌注加权成像(perfusion weighted imaging,PWI)。这种成像方法主要用于测量局部脑血流和血容积;③弥散加权功能磁共振成像(diffusion-weighted fMRI),这种方法主要用于测量水分子的随机运动;④磁共振波谱成像(MRI spectroscopy),该方法用于测量脑的新陈代谢状态以及参加到新陈代谢中的某些物质(如磷和氧)的含量。目前,临床上和脑科学研究中一般都是用第一种方式,文献中出现的fMRI,如果不做特别说明,一般都是指BOLD-fMRI,简称为fMRI。以下只给出其工作原理。

BOLD技术是fMRI的理论基础。当大脑在执行一些特殊任务或受到某种刺激时,某个脑区的神经元的活动就会增强。增强的脑活动导致局部脑血流量的增加,从而使得更多的氧通过血流传送到增强活动的神经区域,使该区域里的氧供应远远超出了神经元新陈代谢所需的氧量,导致了血流中氧供应和氧消耗之间的失衡,结果造成了功能活动区血管结构中氧合血红蛋白(oxyhemoglobin)的增加,而脱氧血红蛋白(deoxyhemoglobin)的相对减少[3-7]。脱氧血红蛋白是一种顺磁性物质,其铁离子有四个不成对电子,磁距较大,有明显的T2*缩短效应,因此在某一脑区脱氧血红蛋白的浓度相对减少将会造成该区域T2*信号的相对延长,使得该区域中的MR信号强度增强,在脑功能成像时功能活动区的皮层表现为高信号,利用EPI快速成像序列就可以把它检测出来。

目前,在临床和脑科学研究中进行脑功能成像的手段主要有:单光子发射计

算机断层成像(SPECT),正电子发射断层成像(PET)和功能磁共振成像(fMRI)。与其他脑功能成像手段相比,fMRI具有以下特点[8]:①fMRI的空间分辨率和时间分辨率要比PET和SPECT高的多,这意味着fMRI能够对瞬间的认知事件和大脑的微细结构进行成像,并能够提供比较清晰的图像;②与PET和SPECT 不同,fMRI技术对人体无辐射性伤害,它利用脱氧血红蛋白作为内生的造影剂,在成像过程中不需要注射放射性同位素,可对同一患者进行重复成像;③利用fMRI,可以对发生在同一个体的不同的精神状态(如躁狂、压抑和欣喜等)进行比较时,易于作统计推断,而利用PET和SPECT扫描通常要对一组个体在不同的精神状态之间做统计推断。这样,fMRI在理解个体脑功能方面具有重要的应用;④与其他功能成像仪器比,fMRI的扫描费用较低。基于以上特点,fMRI 技术在临床和脑科学研究中得到了广泛的应用。

二、功能磁共振成像的应用

1991年,Belliveau等人在美国麻省总医院首先报道了MRI对脑功能活动的敏感性[3]。他们通过在静脉内注射顺磁性的造影剂,首次利用光刺激获得了人类视觉皮层的功能磁共振图像。1992年,Ogawa等直接利用血液中脱氧血红蛋白的顺磁性特点而不是注射造影剂进行了脑的fMRI。目前fMRI主要应用领域有:临床、药物滥用和正常脑功能研究。这些研究相辅相成,其研究所涉及到的学科主要有:神经生理学、神经生物学、认知科学、心理学、病理学和精神科学等,研究成果可以互相借鉴。例如,正常脑功能的研究成果可以作为临床和药物滥用研究中的异常脑功能的对照,通过与正常脑功能的对比研究,为研究患者的异常脑功能和行为提供依据。

(一)fMRI在临床上的应用

患者的生存时间和生活质量与病灶(如肿瘤、血肿等)的切除程度密切相关[9-11]。如果对病灶过度切除,会造成对病灶周围重要功能区域的损害,而这种损害是不可逆转的,严重影响患者的生活质量;反之如果对病灶切除不够,残余病灶会严重影响患者的生存时间。最大程度地切除病灶,同时使主要的脑功能区域(如视觉、语言和感知运动皮层等)得以保留是神经外科手术的目标。神经外科的风险主要是由外科手术对重要脑功能区域的损伤程度决定的[9,11]。手术的成功与否取决于对大脑结构和重要组织功能的精确描述。迄今为止,实施神经外科手术的主要程序是:在术前,外科医生根据由患者得到的二维CT或MRI图像想象和估计病灶的大小及形状,“构思”病灶与周围组织之间的空间关系,从而确定手术方案;在术中,为了最大程度地切除病灶,最小限度地减小患者重要功能区域的损伤,外科医生一般是通过对脑皮层直接电刺激的方法对重要功能区域进行定位,根据定位结果决定病灶的切除范围。因此,术前计划的合理性及手术的成功与否极大地取决于医生的经验。目前,对重要脑功能区域进行定位的“金标准”仍然是对脑皮层直接进行电刺激[11,12,16]。这种功能定位方法的局限性是显而易见的。首先,它对患者会造成一定的伤害和痛苦,定位的时间和精度取决于医生的经验;其次,这种定位方法只能适用于很有限的脑区(开颅后裸露的脑区)[12],定位数据只能在术中得到,不能用于术前的手术计划和手术风险的评估。因此,功能定位结果如果能在术前获得,将会大大缩短手术时间,提高手术效率,减轻患者痛苦等。近年来,脑功能成像技术,特别是功能磁共振成像技术(fMRI)的发展,为这一设想的实施奠定了技术基础。

利用fMRI可以在术前无创地获得人脑重要区域的功能映射图,这些信息可

被外科医生用来制定最优手术方案,以便在最大程度地切除病灶的同时,把患者的重要功能区域保留下来。在术前,把由fMRI得到的患者的功能定位图像与其脑结构图像进行配准/融合,经三维重建后,可明确标示病灶区与周围组织皮层、血管之间的空间关系,帮助外科医生选择最佳手术路线,并对外科手术的风险进行评估,这就是近年来在生物医学工程领域产生的一个新的研究方向——集成可视化技术(integrated visualization)。在术中,如果对个别患者有必要利用直接电刺激的方法进行功能定位时,外科医生也可以在术前功能定位图的指导下,直接对感兴趣的皮层区进行刺激,从而大大缩短定位时间;在术后,术前的功能定位图与患者的随访数据进行比较,可用来评价手术效果,并评估预后。

目前,利用fMRI进行神经外科术前功能定位在国外已相当普及。文献[7]报道了利用fMRI在术前对运动皮层进行定位,作为定位方法在手术中得到了验证。美国麻省总医院利用fMRI对31例患有肿瘤、海绵状血管瘤、脑皮层萎缩和灰质异位移位的患者进行术前评估[10],并辅助术前计划的制定,取得了很好的手术效果。Maximilian等人[9],利用fMRI技术对脑肿瘤患者在术前进行功能定位(主要是感知运动皮层和语言皮层),并在术中利用直接电刺激的方法对定位精度进行了验证,结果表明,利用fMRI在术前进行功能定位是非常可靠的。

大约70%的病人在肿瘤的治疗过程中接受放疗[13]。放疗的目的就是最大限度地把放射能量集中在靶位上,从而使周围的重要功能区和正常组织的损害减到最小,在这一方面,fMRI可以对病变组织周围的功能定位起到关键的作用。大量的临床应用表明,对肿瘤周围的主感觉运动皮层、辅助运动区、运动皮层、语言运动中枢等功能活动区进行fMRI的术前评价,与术中生理功能实验具有良好的一致性[11]。在改善神经病学上的紊乱治疗方面,fMRI同样具有广阔的应用前景[4],某些潜在的应用包括在对肿瘤或顽固性癫痫进行手术前,要对运动、语言和记忆等重要的功能皮层进行精确定位,确定手术入口,为最大限度地切除病灶,最小限度地减少对重要功能区域的损伤奠定基础。

目前,fMRI在老年痴呆(Alzheimer)、帕金森综合征(Parkinson)和精神分裂症(schizophrenia)等疑难病的早期诊断和治疗方面也有相关报道[15,16],但从总的应用情况看,这些应用尚处在临床应用研究阶段。但有可能为最终揭示这些疾病的发病机制,并对这些疾病的早期诊断和治疗方面提供有力的支持。另外,fMRI 在对慢性和顽固性疼痛的发病机制以及治疗,对神经紊乱的生理学基础的揭示等诸多方面有广阔的应用前景。

(二)fMRI在药物滥用研究中的应用

毒品已成为全球性公害,且有日益增长的趋势[17]。近年来,各国都投入大量的人力、物力广泛开展对吸毒成瘾、戒毒方法以及复吸和防复吸的机制研究。目前国内外在毒品成瘾及戒断的脑机制研究方面采用的主要方法有:①在细胞和分子水平上研究毒品对脑的影响,探索脑兴奋的传导与传递回路,从神经病理、神经药理、分子生物学等角度研究毒品对脑的作用机制;②利用脑成像技术观察脑内受体的上调、下调,受体亲和力,脑内递质变化,糖和氨基酸等代谢变化。前一种方法只能从单纯结构或单一介质的角度来研究毒品对脑的影响,而且这种方法不直观,其研究结果只能反映身体依赖时的一些变化,还不好反映精神依赖时的变化。脑成像技术可以在整体,而且是在清醒状态下观察脑内受体和很多微观的生物化学变化,因此这种方法具备了前一种方法所没有的优点。它不仅可以用来分析身体依赖时的变化,也可用来分析精神依赖时的变化。

尽管人们利用各种手段对药物滥用进行了大量的研究,但是到目前为止,毒

品对人脑的作用位置和作用机制知之甚少,而这些信息对于研究更有效的治疗方法是至关重要的[22]。从大量报道的文献可以看出,fMRI在药物滥用研究中的主要目的是:确定毒品成瘾患者在不同的吸毒行为(如欣快感、戒断症状以及对药物的强烈渴求和不可控制的觅药行为等)出现后,大脑的哪些区域被激活,从而确定参与到不同吸毒行为的大脑环路,为研究新的戒毒方法或对现有戒毒方法的改进提供客观依据和理论基础。Sue等[18]利用fMRI研究大脑对可卡因的反映,结果显示多于90个脑区对可卡因表现出增加的活动。这一研究给出了一个可卡因作用于脑回路的详细图。上述脑回路涉及到奖赏系统的两个方面:强化和刺激。强化是指一种直接的积极或愉快的反映,刺激是指重复某一行为的动机。文献[19]利用fMRI获得了可卡因对大脑的作用映射图,利用fMRI发现,可卡因激活了具有高浓度多巴胺受体并与愉快感觉相关联的伏隔核(nucleus accumbens),降低了参与到情绪记忆以及其他认知功能的杏仁核(amygdala)和前额叶(frontal cortex)的活性。应用fMRI技术,在与可卡因使用有关的不同行为实验中,麻省总医院(MGH)的科学家获得了被激活的极其详细的许多不同的脑回路[20]。MGH的研究显示出在可卡因成瘾的不同阶段,如可卡因极度快感(rush)、快感(high)和渴求(craving),脑的不同区域被激活。这些研究成果提供了一个清晰和非常详细的可卡因作用在人脑上的图像,这对可卡因成瘾的治疗方面将具有重要意义。Bloom等利用fMRI确定在大脑中可卡因、尼古丁和大麻的作用位置[21]。他们的研究表明在大脑的某些区域如伏隔核、杏仁核、额叶和cingulate中,尼古丁会产生一种与剂量相关的fMRI信号的增加。Elliot等,在由NIDA(美国国家药物滥用研究所,Natoinal Institute of Drug Abuse)资助的研究项目(可卡因和尼古丁作用于人脑的神经解剖学基础研究)中,利用fMRI技术确定可卡因和尼古丁对人脑作用的神经解剖位置。

行为心理学家在药物滥用的研究中,过于强调奖赏和强化机制的作用,忽略了强化过程的信息加工和表现方面[22]。近年来,fMRI研究开始集中在一些特定的亚皮层和边缘系统(paralimbic),这些亚皮层和对位边缘系统涉及到与潜在的奖赏有关的信息加工,其区域包括:杏仁核、脑岛、伏隔核等。当戒断后的药物滥用患者看到吸毒场景或吸毒工具以及其往日的吸毒同伴时,往往会使其回忆起吸毒时的欣快感,从而产生强烈的觅药行为,这也是复吸率居高不下的主要原因。这种由与吸毒有关的场景刺激引起的患者觅药行为,是否是由神经解剖的特异性(specificity)造成的,Hugh等[23]回答了这个问题。在对吸毒组和对照组实施不同刺激(让他们观看三个不同的录象片段:①吸毒者吸食可卡因;②户外自然场景;③有关性的场面)的情况下,利用fMRI进行功能成像,结果发现由与吸毒有关的场景刺激引起的患者觅药行为与独特的神经解剖环路无关,这种吸毒行为与患者的学习能力有关。

由于药物成瘾是由不同的神经生物学、行为和环境等诸多因素相互作用造成的一种重大脑疾病,目前,还没有一种药物或行为治疗方法能够解决药物成瘾的问题。然而,脑功能成像技术已经使我们离解决这一问题越来越近。目前,国内还未见到有关利用fMRI研究药物滥用的报道。

(三)fMRI在脑功能研究中的应用

脑科学研究最具挑战性的研究课题之一是对人脑工作机制即人脑高级功能的研究,这些功能主要包括:视觉、听觉、认知(语言、记忆)和运动功能等。了解人脑的高级功能可以为人类认识脑、保护脑、开发脑和利用脑,为许多重大脑疾病(如老年痴呆、帕金森综合征和药物依赖等)的诊断、治疗以及病理学、

药理学研究提供科学依据。

脑科学研究首先是从认识脑开始的。所谓认识脑,就是揭示脑的奥秘,阐明脑的功能,即阐明行使感知、情感和意识的脑区的结构和功能[24]。目前,国内外在脑科学研究领域大都把精力集中在这一方面,即研究当人在执行读、听、看等不同功能时,大脑的哪部分在突出地活动。早期的脑功能研究由于受科学技术的限制,研究手段主要是通过动物实验和对重大脑疾病患者实施手术的过程中,通过对脑皮层的直接电刺激,确定大脑的功能区域。脑电图仪的出现使研究正常人的脑功能成为可能。但是,正是由于PET、SPECT特别是fMRI的出现,才使得对脑功能的研究进入了一个全新的时代。

以往有关脑的研究包括神经解剖、神经生化、神经免疫、神经电生理、神经心理等,已经获得了大量有关动物脑和人脑的试验数据和研究结果。近年来,分子神经生物学研究从基因水平来揭示人脑的奥秘,先进的基因芯片技术在每秒钟可以得到大量的试验数据。脑功能成像(fMRI、PET等)的应用使我们能够从活体和整体水平来研究脑,好比窥探脑的窗口,可以在无创伤条件下了解到人的思维、行为活动时脑的功能活动。这些新方法、新技术极大增强了我们从微观和宏观量各水平上进行脑功能研究的能力。

作为一项新兴的技术,fMRI可以形象地展现人类大脑在处理与加工各类信息的活动情况,使研究者能够在无创伤的条件下直接观察脑的复杂功能,便于深入探讨人类的行为与脑活动之间的关系,认识大脑在人类认知活动及发展中的作用。Khushu等[7],利用EPI协议通过fMRI获得了20个志愿者做对指(finger tapping)运动时的脑功能图像,并通过这些图像对大脑的主运动区域进行了定位。实验中他们发现,BOLD信号的强度以及在对侧主运动区中激活区域的大小会随着对指速率的增加而增加。Craig等人[10]利用fMRI研究性对情绪的影响,结果发现异性气味能够引起强烈的情绪反映。他们选用雄性小猿猴作为实验对象,首先对小猿猴实施轻度麻醉后置于一个特殊设计的限制器中,然后把装有小猿猴的限制器放在9.4T的fMRI设备中。在小猿猴处于完全清醒状态时,对其实施两种嗅觉刺激,一种是处于排卵期雌猴的气味,另一种是卵巢切除后的雌猴的气味。结果发现,与卵巢切除后的雌猴的气味相比,处于排卵期雌猴唤起性的气味明显增强了雄性小猿猴视叶前区和前端下丘脑处的信号强度。Randy等利用fMRI验证了在功能解剖方面与年龄有关的特征的改变[25]。他们把41个受试者分成3组(14个年轻人为组1,14个非痴呆的老年人为组2,13个有痴呆的老年人为组3)。定量研究结果表明,相对组1的年轻人,组2和组3的老年人在血流动力学反应的幅度上有显著减少。这些减少也是与不同的脑区有关的:视觉区显示了显著的幅度减少,而运动区幅度的改变则不明显。Scott等利用fMRI研究人类大脑视觉注意的神经学机制[26]。视觉注意与人类的认知能力密切相关。实验中他们利用同一幅图片的两种版本交替呈现在受试者的面前,受试者的任务是利用视觉搜索(visual search)区别两幅图片的不同之处。结果发现,包括脑岛、额叶和extrastriate视觉皮层区等不同脑区在视觉搜索期间被激活。

目前,从国外大量的文献报导来看,利用fMRI对正常脑功能进行的研究大多集中在对大脑视觉、听觉、运动、情感等功能区的定位研究方面,对大脑认知(如学习、记忆)等复杂功能的研究也在进行之中。国内在这方面的研究与国外相比差距是非常大的,很少能见到利用fMRI对脑功能进行研究的文献。但随着我国在2001年加入人类脑计划,相信我国的科学家会在世界性的脑科学研究进程中做出自己应有的贡献。

三、功能磁共振成像存在的问题及发展前景

像任何新兴科学一样,正处于发展阶段的fMRI在许多方面还不成熟,尚存在着一些急待解决的问题。本文在有关文献的基础上,对fMRI存在的一些问题归纳如下:

(一)BOLD-fMRI的工作机制问题

根据前面的讨论,我们知道BOLD是目前临床和脑科学研究中所广泛接受和使用的fMRI的理论基础。BOLD-fMRI的工作原理已经在本文的第一部分进行了阐述。通过探测神经活动期间顺磁性物质脱氧血红蛋白的相对减少,BOLD-fMRI可对激活的脑区进行成像。许多实验已经证明,对于神经功能正常的成年人来讲,当某一脑区被激活时,就会造成该区域血流量的增加,血流量增加造成了脑局部区域中氧合血红蛋白的增加和脱氧血红蛋白的相对减少,这一现象表现为T2*信号的增强,从而可以用BOLD-fMRI技术把脑激活区域检测出来。上述BOLD-fMRI的工作机制能否适用于神经功能受到损害的脑疾病患者,至今还少有报道,但是目前临床上和脑科学研究中对脑疾病患者采用的大都是BOLD-fMRI。日本学者酒谷薰博士等利用NIRS(near infrared spectroscopy)技术对脑血氧的变化进行评估,他们发现在脑外伤患者的激活脑区内,伴随着氧合血红蛋白的增加,脱氧血红蛋白不是减少了,而是增加了,因此,利用BOLD-fMRI 就难以对神经功能不正常的脑疾病患者的激活区域进行成像。尽管人们已经利用BOLD-fMRI在临床和脑科学研究中取得了很多成果,但是日本学者的发现至少可以说明,BOLD-fMRI能否在临床上得到广泛应用尚值得人们进一步去研究和论证。

(二)fMRI图像的噪声问题

血液只占到灰质的很小一部分(约6%),在白质中所占的比例就更小。因此,在fMRI图像中,由神经活动造成的血流动力学信号的改变所占的比例也是非常小的,信号比例的大小与静态磁场的强度直接相关。在1.5T的磁场中,血流动力学信号的改变一般在2%到5%之间,在4T的磁场中,血流动力学信号的改变一般在10%左右,其他成分是一些系统噪声和生理噪声。系统噪声是成像环境及成像系统本身造成的噪声,生理噪声是由于受试者呼吸、心脏的跳动以及与刺激无关的神经活动造成的。噪声信号严重影响了脑功能活动区域的定位。利用高的静态磁场可以明显提高MR信号的信噪比,但在高场中,由于质子MR信号的衰减时间因失相(dephasing)而变短,fMR图像的质量会有所下降。目前,解决fMRI噪声问题最理想的方法是图像后处理[2]。

(三)fMRI图像的运动伪影问题

fMRI对受试者头部微小的运动十分敏感,头部运动是造成fMRI图像运动伪影的主要原因[2],微小的头部运动所造成的大脑边缘象素强度的变化远大于BOLD激活反映。因此,在利用fMRI图像进行定位处理前,应消除运动伪影的影响。解决运动伪影问题的一般做法是:①限制头部运动,即在成像前固定受试者的头部;②利用图像后处理方法进行配准,即利用图像配准技术对运动伪影进行校正处理。前一种方法难以适用于具有严重脑部疾病的患者,在这种情况下,一般是利用第二种方法消除运动伪影的影响。

尽管fMRI还存在一些问题,但作为发展最为迅速、应用前景最为广阔的脑功能成像技术,fMRI已经在脑科学、临床等领域的应用中获得了巨大成功,取得了很多突破性的研究成果。目前,一种新的发展趋势是[27],fMRI可能向多

技术联合的方向发展。例如,将fMRI和PET采用图像融合或配准技术,就可得到更多的脑功能性活动信息;fMRI如果与一组具有时间特性的脑电磁检测手段(脑电图、脑磁图等)相结合,就有可能解决脑区域性活动的时相问题。

四、结束语

作为目前最具发展潜力的医学成像技术之一,fMRI是目前国内外MRI研究的前沿课题和热门课题。与MRI不同,fMRI仍然是一种处于发展阶段的研究性功能成像方法。无论是在脑科学研究方面还是在临床应用方面,利用fMRI技术都要涉及到几个环节的问题:刺激方案的设计问题;所使用的快速成像序列的优化问题;图像后处理方法的选择及可视化问题;功能定位方法的选择问题等。上述的每一个环节都会对fMRI实验的成功与否产生较大的影响。因此,对于fMRI,还有相当多的技术问题需要深入研究和探索。

[参考文献]

[1] Stefan Sunaert. Functional Magnetic Resonance Imaging Studies of Visual Motion Processing in The Human Brain[R]. Leuven University Press,2001.

[2] Stuart Clare. Functional Magnetic Resonance Imaging: Methods and Applications[D]. University of Nottingham,1997.

[3] Niels Vaver Hartvig. Parametric Modelling of Functional Magnetic Resonance Imaging Data[D]. University of Arahus,2000.

[4] Gregory S Berbs,Allen W Song,Hui Mao. Continuous Functional Magnetic Resonance Imaging Reveals Dynamic Nonlinearities of "Dose-Response" Curves for Finger Opposition[J]. The Journal of Neuroscience,1999,19(1):1-6.

[5] 张伟国.MR脑功能成像的临床应用[J].中国医学影像技术,2000,16(2):94-95.

[6] Aronen HJ,Korvenoja A,Martin Kauppi S. Clinical Applications of Functional Magnetic Resonance Imaging[J]. International Journal of Bioelectromagnetism,1999,3(1):23-34.

[7] Khushu S,Kumaran SS,Trapathi RP,et al. Functional Magnetic Resonance Imaging of the Primary Motor Cortex in Humans: Response to Increased Functional Demands[J]. J Biosci,2001,26(2):205-215.

[8] Klose U,Erb M,Raddi A,et al. Functional Imaging with Magnetic Resonance[J]. Electromedica,1999,67(1):27-36.

[9] Maximilian I Ruge,Jonathan D Victor,Syed Hosain,et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping[J]. Stereotactic and Functional Neurosurgery,1999,72(4):95-102.

[10] Craig F Ferris,Charles T Snowdon,Jean A King,et al. Functional Imaging of Brain Activity in Conscious Monkeys Responding to Sexually Arousing Cues[J]. Brain imaging,2001,12(10):2231-2236.

[11] The future role of functional MRI in medical applications at MSKCC[DB/OL]. Neuro-Oncology Ⅵ,MSKCC,NY,1996.45-50.

[12] Jack CR,Thompson RM,Butts RK,et al. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping[J]. Radiology,1994,190(1):85-92.

[13] 包尚联.医学成像及其在功能疾病和肿瘤诊疗中的应用[J].中国医学物理学杂

志,1999,16(2):70-73.

[14] Knight DC,Smith CN,Stein EA,et al. Functional MRI of human pavlovian fear conditioning:patterns of activation as a function of learning[J]. Neuro Report,1999,10(23):3665-3670.

[15] Cynthia G Wible,Marek Kubicki,Seung-Schik Yoo,et al. A functional magnetic resonance imaging study of auditory mismatch in schizophrenia[J]. Am J Psychiatry,2001,158(22):938-943.

[16] Constable RT. Functional MRI for neurosurgical planning epilepsy[J]. Academic Radiology,2001,8(8):800-801.

[17] 韩济生.海洛因吸毒的防治-21世纪中国神经科学面临的一项严重挑战[C].中国神经科学学会第二界代表大会论文摘要汇编,1999.

[18] Sue McGreevey. Imaging Studies Illuminate Brain's Response to Cocaine,Massachusettes General Hospital news release[C]. NIH NEWS RELEASE,Thursday,September 25,1997.

[19] Neil Swan. Special report: NIDA brain imaging research links cue-induced craving to structures involved in memory[J]. NIDA Notes,1996,11(1):5.

[20] New Imaging Techniques Provide Brain Map of Cocaine-Induced Euphoria and Craving[C]. NIH NEWS RELEASE,Thursday,September 25,1997.

[21] Bloom AS,Hoffmann RG,Fuller SA,et al. The determination of drug-induced changes in functional MRI signal using a pharmacokinetic model[J]. Human Brain Mapping,1999,8(3):235-244.

[22] Cognitive neuroscience & drug addiction: Primed for interaction? A symposium at the cognitive neuroscience society meeting[C]. San Fransisco,CA,April 9-11,2000.

[23] Hugh Garavan,John Pankieweicz,Alan Bloom,et al. Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli[J]. Am J Psychiatry,2000,157(11):1789-1798.

[24] Thickbroom GW,Philips BA,Morris I,et al. Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion[J]. Exp Brain Res,1999,126(6):431-438.

[25] Randy L Buckner. Functional brain imaging of young,nondemented,and demented older adults[J]. Journal of Cognitive Neuroscience,2000,12(Suppl 2):24-34.

[26] Scott A Huettel. Dissociating the neural mechanisms of visual attention in change detection using functional MRI[J]. Journal of Cognitive Neuroscience,2001,13(7):1006-1018.

[27] 赵喜平.磁共振成像系统的原理及其应用[M].北京:科学出版社,2000.464-465.

医学功能成像技术

医学功能成像技术 第二讲功能性磁共振成像 吕维雪 本讲座撰写人吕维雪先生浙江大学教授 解剖结构的磁共振成像已经在临床和研究中被普遍接受了功能性磁共振成像做脑功能定位的出现更进一步扩大了磁共振成像技术在临床上的作用这一新技术可以通过检测神经活动对局域血流流量以及氧饱和的影响产生被激活脑区的图像它对于进一步理解脑的结构功能和病理学之间的关系有重要的作用而且该技术是无损的能很容易地和现有的临床实践集成所以受到了很大的重 视 仅有结构成像技术是不能确定功能性的神经解剖学的已经证明即使在正常人中其脑的中央沟都有很大差异这种情况当存在脑肿瘤时变得更为严重这 时会有质量效应和功能性的重新组织能做功能性定位的技术可以在畸变和脑解剖不确定的场合下提供有临床意义的信息 在对脑肿瘤做手术治疗时功能性成像也是很有价值的在很多场合中需要对主要的功能性皮层做精确的定位以便能最大程度地切除病态组织而使术后的神 经性后遗症减到最少术前能确定主要的功能区对于评价手术是否可行和手术的 方案都有重要意义 术前关键功能区的定位是功能性磁共振成像立即可以对临床有用的领域 fMRI可以在医院现有的MRI扫描仪上做功能区定位的常规检查图像的采集和处理时间基本上和结构性MRI检查类似除了这种应用以外fMRI对许多心理学和认知异常方面的理解和治疗也有潜在的临床价值 一功能性磁共振的原理 要了解功能性磁共振需要熟悉磁共振的物理原理它决定了信号的特性并由这些信号形成图像 1990年Seiji Ogawa首先报道了在磁共振图像中发现了血液氧合对T2*的影响他注意到当血液氧合降低时皮层血管变得更清楚了他知道这是由于去氧基血红素造成局域磁场不均匀的结果并把这一方法称为BOLD(Blood Oxygenation

FMRI脑功能磁共振成像的原理及应用进展

FMRI脑功能磁共振成像的原理及应用进展 功能磁共振是在磁共振原理的基础上根据人脑功能区被信号激活时血红蛋白和脱氧血红蛋白两者之间比例发生改变,随之产生局部磁共振信号的改变而进行工作的。凭借其具有较高的空间、时间分辨率,无辐射损伤以及可在活体上重复进行检测等优点已广泛应用于脑功能的研究。 1 磁功能磁共振概述 磁共振功能成像(function magnetic resonance imaging,FMRI)是目前脑功能研究中的一个热点。20世纪90年代后,BOLD(blood oxygenation level dependent)磁共振功能成像已广泛应用于脑功能的研究。其优点是就有较高的空间、时间分辨率,无辐射损伤以及可以在活体上重复进行检测。理论上讲,凡以反映器官功能状态成像为目标的磁功能成像技术都应称之为功能磁共振成像。目前,临床上已较为普遍使用的功能成像技术有:各种弥散加权磁共振成像技术(diffusion-weighted imaging,DWI),各种灌注加权磁共振成像技术(perfusion weighted imaging,PWI),磁共振波谱和波谱成像技术(blood oxygenation level dependent,BOLD)。观察脑神经元活动和神经通路的成像技术时,这种成像技术应叫做脑功能磁共振成像(FMRI),它一般包括水平依赖成像;脑代谢测定技术成像;神经纤维示踪技术如弥散张量和磁化转移成像。 1.1 FMRI的基本原理:FMRI的方法很多,主要包括注射照影剂、灌注加权、弥散加权及血氧水平依赖(blood oxygenation level dependent,BOLD)法,目前应用最广泛的方法为BOLD法:血红蛋白包括含氧血红蛋白和去氧血红蛋白[1],两种血红蛋白对磁场有完全不同的影响,氧合血红蛋白是抗磁性物质,对质子弛豫没有影响,去氧血红蛋白是顺磁性物质,其铁离子有4个不成对电子,可产生横向磁化磁豫缩短效应(preferential T2 proton relaxation effect,PT2PRE)。因此,当去氧血红蛋白含量增加时,T2加权像信号减低。当神经元活动增强时,脑功能区皮质的血流显著增加,去氧血红蛋白的含量降低,削弱了PT2PRE,导致T2加权像信号增强,即T2加权像信号能反映局部神经元活动,这就是所谓血氧水平依赖BOLD[2]效应,它是FMRI基础[3]。 梯度回波成像(gradient recall echo,GRE)是FMRI的常规脉冲序列,它对磁化效应引起的T2效应非常敏感,梯度回波脉冲序列使用单次激发小翻转角射频脉冲和极性翻转的f编码梯度场,在采集信号过程中,由于梯度场引起的去相位就会完全被再聚集,而回波信号则取决于组织的T2。在信号采集过程中,GRE 与SE序列相似。都是通过多次反复采集回波信号完成全部的相位编码和数据采集。GRE扫描对流空现象,扩散现象以及对功能成像非常重要的T2效应等诸

第三课磁共振成像基本原理和主要新技术-上海中医药大学

第三课磁共振成像基本原理和主要新技术 3.1 核磁共振物理现象 人体内含有大量氢原子核,亦称质子,质子具有自旋和磁距的特性。与地球绕太阳旋转一样,质子也不停地绕原子核旋转,称为自旋。氢原子中的质子和其外的电子在自旋过程中会产生一个小磁场,使氢质子犹如一个小磁体(Spin),其磁性大小以“磁距”表示,磁距就是反映小磁场强度的矢量,磁距具有方向性,在无外加磁场时,众多随机运动的质子的净磁距为零。与自旋强度成正比,常态下人体内众多质子的自旋方向是随机的,呈无规律状态,各方向的磁距相互抵消,因而总磁距为0。 然而,当给予一个较强大而均匀的外加磁场时,质子的自旋轴方向(磁距)会趋于平行或反平行于这个磁场方向,数秒钟后就会平衡,即为磁化,磁化的强度也就是所有质子磁距的总和。但对于某一个质子而言,其磁距的方向并不一定与磁场方向一致,而是以一种特定的方式绕磁场方向轴旋转,这种旋转运动方式称为进动或旋进。它很象一个自旋轴不平行于地心引力方向而旋转的驼螺,除了自旋之外还以一定的角度围绕地心引力轴旋转。自旋的质子,如以侧面投影方式看就很象单摆在左右摆动,此摆动频率即称进动频率,与主磁场强度直接成正比关系,可用公式进行测算,频率实际值即称为拉莫(Larmor)频率。病人被送入主磁体内后不久,其身体各部位的质子即按主磁场强度相应的拉莫频率进行旋进运动和发生磁化。磁化后的质子,在化学特性上仍然保持不变,所以对人体生理活动并无任何影响。 在特定磁场中“旋进”的质子,当受到一个频率与其旋进频率一致的外加射频脉冲(radiofrequency, RF)激发后,射频电脉冲的能量会大量地被吸收,使氢质子旋进角度增大,质子则跃迁到较高能态,磁距总量的方向将发生改变(增大),90度的RF能使纵向磁化从Z轴转到XY平面,而180度RF则从Z轴旋转180度至负Z轴方向。当RF激发停止后,有关的质子的能级和相位都在一定时间后恢复到激发前的状态,氢原子核将释放已吸收的能量,能量释放和传递的方式具有重要的利用价值,那就是被激发的质子,在RF停止后将持续发射与激励RF频率完全一致的电脉冲信号,这个现象就称为“磁共振现象”。 质子在RF中止后的变化,就像拉伸的弹簧,在拉力中止后回缩一样,这个过程称为“弛豫(relaxation)”,所需的时间称为“弛豫时间”,在弛豫过程中的能级变化和总磁距的相位变化均能被MRI信号接受装置测得,并按信号强弱进行图像的重建。 弛豫时间有两种,即T1和T2,T1弛豫时间又称为纵向弛豫时间,反映被90度RF 激发而处于横向磁化的质子,在RF停止时刻至恢复到纵向平衡状态所需的时间,一个单位时间T1指恢复纵向磁化最大值的63%所需要的时间。T2弛豫时间亦称为横向弛豫时间,指90度RF激发后处于横向磁化状态的质子在RF 停止后横向磁化丧失所需的时间,横向磁化丧失至原有水平的37%时为一个单位时间T2 ,因它不是完全依靠能量释放或传递,大部分依靠相位变化导致的相干性丧失,故时间远较T1为短。 3.2 磁共振成像技术 3.2.1 图像亮暗与信号 根据以上物理学原理,首先MRI需要一个主磁场,目前产生主磁场的磁体有超导型、阻抗型和永磁型,一般超导型的主磁场强度及均匀度均较另两型为好,MRI图像质量较高。磁体中常有匀场装备以使主磁场更均匀。

磁共振成像技术模拟题13

磁共振成像技术模拟题13 单选题 1. 部分容积效应是由于 A.病变太大 B.矩阵太小 C.信噪比太低 D.扫描层厚太薄 E.扫描层厚太厚 答案:E [解答] 层厚增加,采样体积增大,容易造成组织结构重叠而产生部分容积效应。 2. 关于矩阵的描述,不正确的是 A.矩阵增大,像素变小 B.增加矩阵可提高信噪比 C.常用的矩阵为256×256 D.增加矩阵会增加扫描时间 E.矩阵分为采集矩阵和显示矩阵两种 答案:B 3. 关于流动补偿技术的叙述,不正确的是 A.降低信号强度 B.T1加权时不用 C.常用于FSE T2加权序列 D.用于MRA扫描(大血管存在的部位) E.可消除或减轻其慢流动时产生的伪影,增加信号强度

答案:A [解答] 流动补偿技术用特定梯度场补偿血流、脑脊液中流动的质子,可消除或减轻其慢流时产生的伪影,增加信号强度。 4. 关于回波链长的描述,不正确的是 A.在每个TR周期内出现的回波次数 B.常用于FSE序列和快速反转恢复序列 C.回波链长,即ETL D.回波链与扫描的层数成正比 E.回波链与成像时间成反比 答案:D [解答] 回波链越长,扫描时间越短,允许扫描的层数也减少。 5. 下列哪一种金属物不影响MRI扫描 A.心脏起搏器 B.体内存留弹片 C.大血管手术夹 D.固定骨折用铜板 E.固定椎体的镍钛合金板 答案:E [解答] 体内具有非铁磁性置入物的患者是可以接受MRI检查的。 6. 关于细胞毒素水肿的叙述,不正确的是 A.白质、灰质同时受累 B.T2WI之边缘信号较高 C.钠与水进入细胞内,造成细胞肿胀 D.细胞外间隙减少,常见于慢性脑梗死的周围

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

核磁共振成像技术原理及国内外发展

核磁共振成像技术原理及国内外发展 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging?,简称MRI?),是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。 核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发

磁共振成像的原理和临床应用

磁共振成像原理与临床应用 一、授课提纲:内容分四个部分:磁共振的发展背景和历史;磁共振的基本原理;磁共振的 安全性和优缺点;磁共振临床应用。 1、背景和发展历史:1946年由美国斯坦福大学的Felix Bloch和哈佛大学的Edward Purcell发现核磁共振现象,为此获得1952年诺贝尔奖。磁共振的发展史中共有16 位诺贝尔获奖者,分别在物理学、化学和生理医学奖项中夺魁。尤其近几年磁共振 在医学领域中的应用越来越广泛,从单纯的形态解剖学显示向功能和分子影像发 展,从而显示出磁共振的强大潜能。 2、磁共振基本原理:分物理学基础、磁共振的基本序列和图像特点三个方面概述。介 绍了磁化、进动、Larmor公式、静磁场(主磁场)和射频脉冲、驰豫和横向、纵向 驰豫,重复和回波时间、梯度磁场及两个主要基本序列(SE和GRE) 3、高磁场下的安全性:禁忌症和注意事项 4、磁共振的临床应用:包括三个方面,分别是形态解剖学的显示:尤其在细微解剖结 构、动态器官和血管解剖的形态显示上具有独特优势。其次是特殊序列的结构显示,如水成像、磁敏感加权显示,对于胆道、泌尿系和椎管等富有液性成分的结构能清 晰显示管腔内情况,对于梗阻的判断非常直接。最有优势体现在功能解剖学的显示,如脑功能成像,分别从弥散、灌注、波谱和神经网络及分子影像方面加以展示。 二、常用术语 1、共振、自旋磁矩、磁化、进动、Larmor公式 2、T1WI和T2WI、横向和纵向驰豫、重复和回波时间(TR、TE) 3、SE序列和GRE序列 三、磁共振成像过程 ?把病人放进磁场→人体被磁化产生纵向磁化矢量 ?发射射频脉冲(同时进行空间定位编码)→人体内氢质子发生共振从而产生横向 磁化矢量 ?关掉射频脉冲→质子发生T1、T2弛豫(同时进行空间定位编码) ?线圈采集人体发出的MR信号→计算机处理(付立叶转换)→显示图像

磁共振功能成像

磁共振功能成像(functional magnetic resonance imaging;FMRI)是一种安全的影像学检查手段,在完全无创伤的条件下可对人脑进行功能分析,其时间及空间分辨率较高,一次成像可同时获得解剖与功能影像,而且对人体无辐射损伤,在这一点上优于ECT和PET成像。目前,FMRI已广泛地用于人脑正常生理功能和脑肿瘤的术前评价,对手术计划的制定及最大程度地减小术后功能损伤有极大帮助。 1MR脑功能成像的原理与技术 神经元活动与细胞能量代谢密切相关,磁共振功能成像并不能直接检测神经元活动,而是通过MR信号的测定来反映血氧饱和度及血流量,从而间接反映脑的能量消耗,因此,在一定程度上能够反映神经元的活动情况,达到功能成像的目的。血氧水平依赖(blood oxygen level dependent;BOLD)技术是FMRI的基础,神经元活动增强时,脑功能区皮层的血流量和氧交换增加,但与代谢耗氧量的增加不成比例,超过细胞代谢所需的氧供应量,其结果可导致功能活动区血管结构中氧合血红蛋白增加,脱氧血红蛋白相对减少。脱氧血红蛋白是顺磁性物质,其铁离子有4个不成对电子,磁矩较大,有明显的T2缩短效应,即PT2PRE(preferential t2 proton relaxation effect)。因此,脱氧血红蛋白的直接作用是引起T2加权像信号减低,FMRI对其在血管结构中的浓度变化极为敏感,当浓度增加时可引起局部信号减低,减低时则可使磁化率诱导的象素内失相位作用减低,引起自旋相干性增大,从而导致T2*和T2弛豫时间延长,信号升高,使脑功能成像时功能活动区的皮层表现为高信号。 磁场强度的高低对脱氧血红蛋白引起的磁化率改变敏感性不同,磁场强度越高对磁化率变化的敏感性越大,超高磁场MRI仪对磁化率变化最为敏感。但由于技术上的限制,临床上一般采用1T~2T的磁共振仪进行脑功能成像,其结果也较为满意。FMRI一般采用梯度回波和回波平面T2加权成像,常用的梯度回波序列有:梯度破坏稳态再聚焦采集(spoiled gradient recalled acquisition in the steady-state;GRASS)序列和快速小角度激发(fast low angle shot;FLASH)序列,扫描参数为:TR/TE=40~120/40~60ms,翻转角30~40度,矩阵256×64~128,视野200~400mm,根据机型及获得的扫描层数不同,扫描参数有一定的差别;回波平面成像技术(echo-planar imaging;EPI)是一种超快速MR成像方法,是目前采用的主要技术,可以结合GRE序列和SE序列得到不同对比度的T1、T2加权像。目前,脑功能成像多采用单次激发梯度回波—回波平面成像(gradient-echo echo-planar imaging)序列,扫描参数因场强和机型不同而不同,常用参数为TR/TE=1000-3500/40~70ms,翻转角90度。

功能性磁共振成像的应用和发展前景_final

功能性磁共振成像的应用和发展前景 王君1*刘嘉1,2 1认知神经科学与学习国家重点实验室,北京师范大学,100875 2中国科学院研究生院,北京,100049 摘要:功能性磁共振成像(functional Magnetic Resonance Imaging ,fMRI)是当代 医学影像技术应用于脑神经科学研究最为迅速的领域之一。本文首先简要介绍功能 性磁共振成像的基本原理,然后着重叙述该技术在临床和基础研究中的应用和发展 前景。 关键词:功能性磁共振成像脑神经科学临床应用基础研究 Applications of fMRI in Clinical Medicine and Brain Neuroscience Jun Wang1*, Jia Liu1,2 1State Key Lab of Cognitive Neuroscience and Learning,Beijing Normal University, Beijing, 100875 2Graduate University of Chinese Academy of Sciences,Beijing,Beijing, 100049 Abstract: Now functional Magnetic Resonance Imaging (fMRI) has been more rapidly applied in clinical medicine and brain neuroscience than some other modern medical imaging techniques. This paper first briefly introduces the principle of fMRI, and then its some applications in clinical medicine and brain function research are described in details together with its some recent developments. Key words: fMRI Brain Neuroscience Clinical application Basic Research 20世纪90年代以来,在传统磁共振成像(Magnetic Resonance Image, MRI) 技术的基础上发展的功能磁共振成像(functional Magnetic Resonance Image , fMRI) 技术已广泛应用于脑功能的临床和基础研究。fMRI结合了功能、解剖和影像三方面 的因素,为临床磁共振诊断从单一形态学研究到与功能相结合的系统研究提供了强 有力的技术支持。该技术具有无创伤性、无放射性、可重复性、较高的时间和空间 分辨率、可准确定位脑功能区等特点,为脑神经科学提供了广阔的应用前景。 1.fMRI的基本原理 1990年, Ogawa等人根据脑功能活动区氧合血红蛋白(HbO2)含量的增加导 致磁共振信号增强的原理得到了关于人脑的功能性磁共振图像[1],即血氧水平依赖 的脑功能成像(Blood Oxygen Level Dependent fMRI, BOLD fMRI) 。由于血液动力学

(完整版)磁共振血管成像

磁共振血管成像 一、磁共振成像 磁共振成像(Magnetic resonance imaging, MRI)是近年来应用于临床的先进影像学检查技术之一。1946年美国哈佛大学的Percell及斯坦福大学的Bloch分别独立地发现磁共振现象并接收到核子自旋的电信号,同时将该原理最早用于生物实验。1971年发现了组织的良、恶性细胞的MR信号有所不同。1972年P. C. Lauterbur用共轭摄影法产生一幅试管的MR图像。1974年出现第一幅动物的肝脏图像。随后MRI技术在此基础上飞速发展,继而广泛地应用于临床。 磁共振成像的基本原理是将受检物体置于强磁场中,某些质子的磁矩沿磁场排列并以一定的频率围绕磁场方向运动。在此基础上使用与质子运动频率相同的射频脉冲激发质子磁矩,使其发生能级转换,在质子的驰豫过程中释放能量并产生信号。MRI的接受线圈获取上述信号后通过放大器进行放大,并输入计算机进行图像重建,从而获得我们需要的磁共振影像。 磁共振成像的优势在于无辐射、无创伤;多方位、任意角度成像;成像参数多,对病变部位和性质有较强的诊断意义;软组织分辨率高等,日益受到临床的关注与欢迎。 二、磁共振血管成像 磁共振血管成像(Magnetic Resonance Angiography,MRA)是显示血

管和血流信号特征的一种技术。MRA不但可以对血管解剖腔简单描绘,而且可以反应血流方式和速度等血管功能方面的信息。近几年来该技术发展迅速,可供选择的磁共振血管成像技术有多种: (一)时间飞越法 时间飞越法(Time of Flight,TOF)血管成像的基本原理是采用了“流动相关增强’机制,是目前较广泛采用的MRA方法。TOF血管成像用具有非常短TR的梯度回波序列。由于TR短,静态组织在没有充分弛豫时就接受到下一个脉冲的激励,在脉冲的反复作用下,其纵向磁化矢量越来越小而达到饱和,信号被衰减,对于成像容积以外的血流,因为开始没有接受脉冲激励而处于完全弛豫状态,当该血流进入成像容积内时被激励而产生较强的信号。 TOF MRA极大地依赖于血管进入扫描层面的角度,所以在用TOF法进行血管成像时扫描层面一般要垂直于血管走向。另外,在TOF血管成像中,通过在成像区域远端或近端放置预饱和带,去除来自某一个方向的血流信号,因而可以选择性地对动脉或静脉成像。 1.三维(3D)单容积采集TOF法MRA 3D TOF法MRA采用同时激励一个容积,这种容积通常3~8mm厚,含有几十个薄层面。3D TOF的最大优点是可以薄层采集,可薄于l mm,最终产生很高分辨率的投影。另外,3D TOF对容积内任何方向的血流均敏感,所以对于迂曲多变的血管,如脑动脉的显示有一定优势。但是对于慢血流,因其在成像容积内停留时间较长,反复接受多个脉冲的激励,可能在流出层块远端之前产生饱和而丢失信号,所以3D TOF

磁共振成像概述

磁共振成像概述 磁共振成像( Magnetic Resonance Imaging )是利用人体内氢原子核在强磁场内共振产生影像的一种医学检查和诊断的方法。 ?MRI是什么? –——无线电波成像 ?MRI的特点? –——是软组织分辨率最高的影像检查手段 ?MRI的适应症? –——可适用全身检查 ?功能MRI是什么? –——可提供活体的结构、代谢信息 磁共振信号=无线电波 依据质子拉莫尔频率,其波长位于短波或超短波。 如:0.5T 拉莫尔频率为21.3MHz, 波长为14.08m(短波) 1.5T 拉莫尔频率为63.9MHz, 波长为4.69m(超短波) 磁共振成像的定义: 磁共振成像(magnetic resonance imaging,MRI)是利用射频(radio frequency,RF)电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生核磁共振(nuclear magnetic resonance,NMR),用感应线圈采集磁共振信号,按一定数学方法进行处理而建立的一种数字图像。 核磁共振的含义:

核—磁共振现象涉及原子核(特别是氢原子核) 磁—磁共振过程发生在强大静磁场的巨大磁体内在静磁场上叠加射频场按时做激励诱发共振叠加梯度磁场进行空间标记并控制成像 共振—借助宏观世界自然现象解释微观世界的物理学原理(如音叉振动),核子间能量吸收与释放可产生共振(磁场中) 共振现象的三个基本条件 (1) 必须有一个主动振动的频率 (2)主动振动频率与被动振动的物体固有频率必须相同 (3) 主动振动物体具有一定强度并与被振动物体保持一定距离 磁共振具备三种磁场才能完成:即静磁场,梯度磁场,射频脉冲磁场。磁共振现象: 处于恒定磁场中的氢原子核,在特定频率(拉摩尔Larmor )的射频脉冲( RF ) 影响下交替吸收、释放能量的过程。 什么是核磁共振现象? 位于静磁场中的人体组织受到射频场的作用产生磁共振信号并利用梯度场进行空间编码实现对信号的定位,通过计算机的重建处理,从而得到图像。 1.人体磁共振的基本成像过程:人体未进入静磁场,体内氢质子群 磁矩自然无规律排列; 2. 进入静磁场,所有自旋的氢质子重新排列定向,磁矩指向N 或S 极; 3. 通过射频线圈与静磁场垂直方向施加射频脉冲,受检部位氢质子

功能磁共振成像

功能磁共振成像(fMRI) 功能磁共振成像技术简述 功能性磁共振成像(fMRI)是一种新兴的神经影像学方式,其原理是利用磁振造影来测量神经元活动所引发之血液动力的改变。由于fMRI的非侵入性、没有辐射暴露问题与其较为广泛的应用,从1990年代开始就在脑部功能定位领域占有一席之地。目前主要是运用在研究人及动物的脑或脊髓。 相关技术发展 自从1890年代开始,人们就知道血流与血氧的改变(两者合称为血液动力学)与神经元的活化有着密不可分的关系。神经细胞活化时会消耗氧气,而氧气要借由神经细胞附近的微血管以红血球中的血红素运送过来。因此,当脑神经活化时,其附近的血流会增加来补充消耗掉的氧气。从神经活化到引发血液动力学的改变,通常会有1-5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。这使得不仅神经活化区域的脑血流会改变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之改变。 血氧浓度相依对比(Blood oxygen-level dependent, BOLD)首先由贝尔实验室小川诚二等人于1990年所提出[2],小川博士与其同事很早就了解BOLD对于应用MRI于脑部功能性造影的重要性,但是第一个成功的fMRI研究则是由John W. Belliveau 与其同事于1991年透过静脉内造影剂(Gd)所提出。接着由邝健民等人于1992年发表在人身上的应用。同年,小川博士于4月底提出了他的结果且于7月发表于PNAS。在接下来的几年,小川博士发表了BOLD的生物物理学模型于生物物理学期刊。Bandettini博士也于1993年发表论文示范功能性活化地图的 量化测量。由于神经元本身并没有储存所需的葡萄糖与氧气,

磁共振功能成像

一、更优秀的图像质量,探测小病灶能力增强 3.0T磁共振首先会带来图像信噪比的提升,从而获得更加清晰锐利的磁共振影像,对临床疾病的诊断与治疗具有重要意义。同时,随着图像分辨率的提高,也意味着能够显示更加微小的病变,从而对疾病的早期发现做出贡献。 二、更快速的成像速度,承载更大的病人量 3.0T磁共振配备西门子Tim 4G和Dot技术的MAGNETOM skyra,可以帮助实现每日超过30%的工作量增加。如果结合并行采集技术,采集速度将会有更大的提升。这使得一些在1.5T磁共振上难以实现的扫描成为可能(如腹部多期动态增强扫描)。同时,扫描速度的提升也意味着可以承受更大的病人量。 三、更强大的设备性能,为临床与科研助力 3.0T磁共振系统具有更强大的磁场稳定性,更高效的数据传输能力,更高的梯度磁场,更快的磁场切换率,集合多通道线圈采集技术,可以提供更丰富的临床与科研检查项目。 四、神经系统成像的巨大优势 由于信噪比和扫描速度的增加,使得磁共振在神经系统成像上的优势被更加放大。除了常规扫描序列图像质量与信噪比的提升,更稳定的磁场均匀度使得在弥散加权成像(DWI)中,可以设置更高的b值,同时获得更高质量的图像。此外,也使更多的神经系统成像技术在临床与科研中成为可能,如: 1.弥散张量成像(DTI):可以获得活体状态下的脑白质纤维束走行影像,揭示脑肿瘤等病灶与脑白质纤维走行的关系,也可以用于神经外科手术的术前定位,增加手术的成功率与后期预后效果。 2.脑灌注成像(PWI):通过静脉快速团注造影剂,超快速采集血液流通数据,绘制时间信号强度曲线,分析脑组织的灌注情况,可正确判断早期脑缺血的程度及可逆性。还可用于脑血管病(烟雾病)、脑肿瘤的辅助诊断。 3.磁共振头波谱成像(CSI):由于正常与病变脑组织在代谢过程中的产物不同,利用化学位移成像技术,分析组织代谢产物峰值,预测病变的良恶性。亦在前列腺及乳腺的临床检查及科研中应用。 4.磁敏感成像(SWI):清晰显示颅内微静脉、微出血及微钙化,用于脑血管畸形、微血管病变等疾病的协助诊断。 5.脑组织血氧水平依赖成像(BOLD):磁共振功能成像(FMRI)可以揭露大脑皮质与代谢之间的关系,使脑功能成像的许多研究成为可能,在这方面的研究目前3.0T占有绝对优势。 五、真正的腹部多期动态增强扫描

磁共振成像原理

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 一、磁共振现象与MRI 含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列 用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。 人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此。这种组织间弛豫时间上的差别,是MRI的成像基础。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。 MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。 表1 人体正常与病变组织的T1值(ms) 肝 140~170 脑膜瘤 200~300 胰 180~200 肝癌 300~450 肾 300~340 肝血管瘤 340~370 胆汁 250~300 胰腺癌 275~400 血液 340~370 肾癌 400~450

磁共振技术讲解

磁共振技术 1.磁共振简介 磁共振指的是自旋磁共振(spin magnetic resonance)现象。它是指磁矩不为零的原子或原子核在稳恒磁场作用下对电磁辐射能的共振吸收现象,其意义上较广,包含有核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。用于医学检查的主要是磁共振共像(Magnetic Resonance Imaging,MRI)。 磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。1953年在半导体硅和锗中观测到电子和空穴的回旋共振。1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。1956年开始研究两种磁共振耦合的磁双共振现象。这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。 2.电子顺磁共振 电子顺磁共振(Electron Paramagnetic Resonance 简称EPR),或称电子自旋共振(Electron Spin Resonance 简称ESR)。它主要研究化合物或矿物中不成对电子状态,用于定性和定量检测物质原子或分子中所含的不成对电子,并探索其周围环境的结构特性。 2.1 电子顺磁共振的发展史 EPR现象首先是由前苏联物理学家E.K.扎沃伊斯基于1945年从MnCl2、CuCl2等顺磁性盐类发现的。物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。 1954年美国的B.康芒纳等人首次将EPR技术引入生物学的领域之中,他们在一些植物与动物材料中观察到有自由基存在。 60年代以来,由于仪器不断改进和技术不断创新,EPR技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。

脑功能磁共振成像及其应用进展

脑功能磁共振成像及其应用进展 聂生东1,聂斌2 (1.上海第二医科大学计算机教研室,上海 200025; 2.泰山医学院) 功能磁共振成像是近10余年来在传统的磁共振成像技术的基础上迅速发展起来的一种新的成像技术。与传统的磁共振成像技术不同的是,功能磁共振成像得到的是人脑在执行某项任务或受到某种刺激时的功能映射图,而不是人脑的解剖图像。它能够确定人脑在执行某项任务或受到某种刺激时大脑的哪些区域被激活。目前,功能磁共振成像技术在国外已经得到了广泛的应用,其应用领域涉及到脑科学研究的各个领域,如认知科学、心理学、神经科学、药物滥用以及临床应用等。国内在这一方面的研究和应用还刚刚开始。本文对近年来功能磁共振成像及其在国内外的应用进行了综述。 一、功能磁共振成像的原理及特点 功能磁共振成像(functional magnetic resonance imaging,fMRI)的突出特点是可以利用超快速的成像技术,反映出大脑在受到刺激或发生病变时脑功能的变化。它突破了过去仅从生理学或病理生理学角度对人脑实施研究和评价的状态,打开了从语言、记忆和认知等领域对大脑进行探索的大门。 传统的磁共振成像(MRI)与功能磁共振成像(fMRI)之间的主要区别是它们所测量的磁共振信号有所不同[1-3,6]。MRI是利用组织水分子中的氢原子核处于磁场中发生的核磁共振现象,对组织结构进行成像,而fMRI所测量的是在受到刺激或发生病变时大脑功能的变化。根据所测量的脑功能信号的不同,磁共振功能成像主要有以下四种工作方式:①血氧水平依赖功能磁共振成像(blood-oxygen-level-dependent fMRI,BOLD-fMRI),它主要是通过测量区域中氧合血流的变化(或血流动力学的变化),实现对不同脑功能区域的定位;②灌注功能磁共振成像(perfusion fMRI),又称为灌注加权成像(perfusion weighted imaging,PWI)。这种成像方法主要用于测量局部脑血流和血容积;③弥散加权功能磁共振成像(diffusion-weighted fMRI),这种方法主要用于测量水分子的随机运动;④磁共振波谱成像(MRI spectroscopy),该方法用于测量脑的新陈代谢状态以及参加到新陈代谢中的某些物质(如磷和氧)的含量。目前,临床上和脑科学研究中一般都是用第一种方式,文献中出现的fMRI,如果不做特别说明,一般都是指BOLD-fMRI,简称为fMRI。以下只给出其工作原理。 BOLD技术是fMRI的理论基础。当大脑在执行一些特殊任务或受到某种刺激时,某个脑区的神经元的活动就会增强。增强的脑活动导致局部脑血流量的增加,从而使得更多的氧通过血流传送到增强活动的神经区域,使该区域里的氧供应远远超出了神经元新陈代谢所需的氧量,导致了血流中氧供应和氧消耗之间的失衡,结果造成了功能活动区血管结构中氧合血红蛋白(oxyhemoglobin)的增加,而脱氧血红蛋白(deoxyhemoglobin)的相对减少[3-7]。脱氧血红蛋白是一种顺磁性物质,其铁离子有四个不成对电子,磁距较大,有明显的T2*缩短效应,因此在某一脑区脱氧血红蛋白的浓度相对减少将会造成该区域T2*信号的相对延长,使得该区域中的MR信号强度增强,在脑功能成像时功能活动区的皮层表现为高信号,利用EPI快速成像序列就可以把它检测出来。 目前,在临床和脑科学研究中进行脑功能成像的手段主要有:单光子发射计

磁共振成像的临床应用

磁共振成像的临床应用 (作者:___________单位: ___________邮编: ___________) 【摘要】上世纪七十年代CT的问世是医学影像学的一场革命,她带动了医学事业蓬勃发展,因此,发明者获得了诺贝尔医学奖。至八十年代磁共振成像(magneticresonanceimaging)的兴起,医学影像的成像原理发生了本质变化,从简单的x线能量衰减转化为物理生物学成像。大大拓宽了医学影像的发展道路,各种新的成像技术层出不穷。改变了影像学就是形态学的传统观念,引导影像学向定性、定量诊断方向发展。 【关键词】磁共振原理临床应用技术设备 磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。 核磁共振(nuclearmagneticresonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成

像混淆,现改称为磁共振成象。参与MRI成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 1中枢神经系统 (1)脑血管性疾病由于弥散、灌注及水抑制的应用,使的MRI 诊断脑梗塞的敏感性、特异性均明显高于CT。MRI对脑溢血的价值在于其能对血肿进行准确分期。脑动脉瘤、动静脉畸形均有流空血管影显示。 (2)脑肿瘤脑肿瘤在MRI上有形态学和异常信号改变,三维成像的使用对脑肿瘤的定性、定位诊断更准确。 (3)炎症各种细菌、病毒、霉菌性脑炎、脑膜炎与肉芽肿在MRI 可显示,注射顺磁性造影剂Gd-DTPA对定性诊断更有价值。对弓形体脑炎、脑囊虫、脑包虫病可定性诊断,并能分期分型。 (4)脑退行性病变MR能清楚的显示皮质性、髓质性、弥漫性脑萎缩。MR还能诊断原发性小脑萎缩。协助诊断皮质下动脉硬化性脑病、Alzermer氏病、pick氏病、hunfing氏舞蹈病,wilson氏病、leigh氏病、fahr氏病及CO中毒、霉变干蔗中毒、甲旁减等疾病。 (5)脑白质病变MR对诊断多发性硬化、肾上腺性脑白质病等脱髓鞘和髓鞘形成不良性疾病都有重要价值。 (6)脑室与蛛网膜下腔病变MR能清楚的显示孟氏孔和中脑导水管,即能明确分辨梗阻性和交通性脑积水。MR显示蛛网膜囊肿、室管膜囊肿、脑室内肿瘤、脑室内囊肿等均很敏感。

相关文档
最新文档