乘法公式的常用方法和技巧

乘法公式的常用方法和技巧
乘法公式的常用方法和技巧

乘法公式的常用方法和技巧

一、复习:

(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

归纳小结公式的变式,准确灵活运用公式:

①位置变化,x y y x x2y2 ②符号变化,x y x y x

2y2 x2y2

③指数变化,x2y2x2y2x4y4 ④系数变化,2a3b2a3b4a29b2⑤换式变化,xy z m xy z m⑥增项变化,x y z x y z

xy2z m 2 x y2z2

x2y2z m z m x y x y z2

x2y2z2zm zm m2x2xy xy y2z2

x2y2z22zm m2 x22xy y2z2

⑦连用公式变化,x y x y x2y2⑧逆用公式变化,x y z2x y

z2

x2y2x2y2x y z x y z x y z x y z

x4y42x2y2z

二、乘法公式的用法4xy4xz

(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时提高观察能力。

例1. 计算:

(二)、连用:连续使用同一公式或连用两种以上公式解题。(同一个公式不会超过2次)

例2计算:

(三)、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。

例3. 计算: (a-2b+3c)2-(a+2b-3c)2

(四)、活用: 把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的公式:

例4.已知m+n=7,mn=-18,求m2+n2,m2-mn+ n2的值.

三、乘法公式常用方法技巧

①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。

例5. 运用乘法公式计算:(1)(-1+3x)(-1-3x);(2)(-2m-1)2(2m-1)2

注意:-(a+b)2与[-(a+b)]2的区别

②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.

例6. 计算: (x-2)(x2+4)(x+2)

③巧添括号:运用添括号法则,改变某些因式的符号,可以使公式的特征更加明显。

例7. 计算:(2x-y +5)(2x+y -5)

④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,为一组;

符号相反的项放在后面,为另一组;再依次用平方差公式与完全平方公式进行计算。分组后要加上括号(注意括号前面是“-”时,括号里的各项要改变符号),使公式的特征更明显

例8. 计算:(1)(x+y+1)(1-x-y); (2)(2x+3y-z)(2x-3y+z)

⑤拆项和添项:

例9.计算:

分析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x的系数相同,y的系数互为相反数,符合乘法公式。进而分析如何将常数进行变化。若将2分解成4与的和,将6分解成4与2的和,再分组,则可应用公式展开。

例10. 计算:

分析:由观察整式,不难发现,若先补上一项,则可满足平方差公式。多次利用平方差公式逐步展开,使运算变得简便易行。注意添项后要去项(添项是为了计算简便,去项是为了不改变原来式子的值。)

四、整式乘法运算中常用的数学思想方法

(一)、整体代入的数学思想

例11、已知a+b=2,求的值.

分析:将所求的代数式变形,使之成为a+b的表达式,然后整体代入求值.

例12、已知求的值.

分析:由于我们不便将a,b分别求出,但我们从问题入手,不难发现,

利用整体代入,将问题解决.

(二)、化归的数学思想

例13、已知求的值.

分析:求解本题的关键在于寻找所求式子(目标)与已知条件的关系,可以用下面两种解法.

解法一(已知→目标):

解法二(目标→已知):

(三)、逆向思维的思想方法

1、逆用幂的运算法则

2、逆用乘法公式

例14、计算:…

(四)、构造公式模型的思想方法

例15、计算:1022×982 11×101×10001

(五)、数形结合的思想方法

例16、已知一个长方形的长为(2a+3b),宽为(3a+2b),若用如图所示的3种图

形拼成这个长方形,则需要A 个,B 个,C 个。

例17,图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四

块小长方形,然后按图②的形状拼成一个正方形.

(1)图②中的阴影部分的面积为

(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是:(3)若x+y=-6,xy=2.75,则x-y=

(4)观察图③,你能得到怎样的代数恒等式呢?

(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.

整式的乘法---完全平方公式

完全平方公式 一、填空题: ()22)(91 291=+-a a (2)1-6a+9a 2=()2 22)(41 )5(=++x x (6)x 2y 2-4xy+4=()2 (7)x 2+()+9y 2=(x+)2(8)(a+b)2-()=(a-b)2 (9)(5x+3)2(3-5x)2=_______________________ (10)若(x-3y)2+K=x 2-5xy+8y 2,则K=_________ 二、选择题: (1)已知4x 2+kx+9是一个完全平方式,那么k 值为() (A )12(B )±18(C )±12(D )±6 (2)下列多项式中,是完全平方式的为() (A )1-4m+2m 2(B )a 2+2a+4 ()ab b a C 341 922-+(D )x 2+2xy+1 二、 1、计算 (1)(3a+2b)2(2)(5x-y)2 (3)(-4x+3a)2(4)(-y-6)2 2、计算 (1)99.82(2)20052 (3)1042(4)982 3、计算

(1)(2x-3)(3-2x)(2)(5a-4b)(-5a+4b) (3)(2m2+3n)(2m2-3n)(4)(2m2+3n)(-2m2-3n) 四、填空 (1)(x-y)(x+y)=________(2)(x-y)(x-y)=________ (3)(-x-y)(x+y)=________(4)(-x-y)(x-y)=________ (5)(a-1)·()=a2-1(6)(a-1)·()=a2-2a+1 (7)(a+b)2-(a-b)2=________(8)(a+b)2+(a-b)2=________ 五、计算 (1)(a-2b-3c)2(2)(x+y-2)(x-y+2) (3)(a+2b-3c)(a-2b+3c)(4)(a+2b-3c)(a-2b-3c) (5)(2a+b-5c)(2a-b-5c)(6)(2a+b+5c)(-2a-b+5c)

初中数学七年级下册第2章整式的乘法2.2乘法公式作业设计

2.2 乘法公式 一.选择题(共6小题) 1.下列各式中,能用平方差公式计算的是() A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p) C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b) 2.计算(1﹣a)(a+1)的结果正确的是() A.a2﹣1 B.1﹣a2C.a2﹣2a﹣1 D.a2﹣2a+1 3.如果多项式y2﹣4my+4是完全平方式,那么m的值是() A.1 B.﹣1 C.±1D.±2 4.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是() (第4题图) A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84 5.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为() A.0 B.1 C.2 D.3 6.如果x2﹣(m+1)x+1是完全平方式,则m的值为() A.﹣1 B.1 C.1或﹣1 D.1或﹣3 二.填空题(共4小题) 7.已知m2﹣n2=16,m+n=6,则m﹣n= . 8.若m为正实数,且m﹣=3,则m2﹣= . 9.请看杨辉三角(1),并观察下列等式(2):

(第9题图) 根据前面各式的规律,则(a+b)6= . 10.已知a2+b2=4,则(a﹣b)2的最大值为. 三.解答题(共30小题) 11.(1)计算并观察下列各式: 第1个:(a﹣b)(a+b)= ; 第2个:(a﹣b)(a2+ab+b2)= ; 第3个:(a﹣b)(a3+a2b+ab2+b3)= ; …… 这些等式反映出多项式乘法的某种运算规律. (2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)= ; (3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1= . (4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1= . 12.计算: (1)20132﹣2014×2012;

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

(完整版)[初一数学]乘法公式

乘法公式 一、平方差公式:(a+b)(a-b)=a2-b2 要注意等式的特点: (1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数; (2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方. 值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具. 例1下列各式中不能用平方差公式计算的是(). A.(a-b)(-a-b)B.(a2-b2)(a2+b2) C.(a+b)(-a-b)D.(b2-a2)(-a2-b2) 解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算. 例2运用平方差公式计算: (1)(x2-y)(-y-x2); (2)(a-3)(a2+9)(a+3). 解:(1)(x2-y)(-y-x2)

=(-y +x2)(-y-x2) =(-y)2-(x2)2 =y2-x4; (2)(a-3)(a2+9)(a+3) =(a-3)(a+3)(a2+9) =(a2-32)(a 2+9) =(a2-9)(a2+9) =a4-81 . 例3计算: (1)54.52-45.52; (2)(2x2+3x+1)(2x2-3x+1). 分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看做公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算. 解:(1)54.52-45.52 =(54.5+45.5)(54.5-45.5)

整式的乘法完全平方公式

完全平方公式 一、填空题: () 22)(9 1291=+ -a a (2)1-6a+9a 2 =( )2 22)(4 1 ) 5(=++x x (6)x 2 y 2 -4xy+4=( ) 2 (7)x 2+( )+9y 2=(x+ )2 (8)(a+b)2-( )=(a-b)2 (9)(5x+3)2(3-5x)2=_______________________ (10)若(x-3y)2+K=x 2-5xy+8y 2,则K=_________ 二、选择题: (1)已知4x 2+kx+9是一个完全平方式,那么k 值为 ( ) (A )12 (B )±18 (C )±12 (D )±6 (2)下列多项式中,是完全平方式的为( ) (A )1-4m+2m 2 (B )a 2+2a+4 () ab b a C 34 192 2-+ (D )x 2+2xy+1 二、 1、计算 (1)(3a+2b)2 (2)(5x-y)2 (3)(-4x+3a)2 (4)(-y-6)2 2、计算 (1)99.82 (2)20052 (3)1042 (4)982

3、计算 (1)(2x-3)(3-2x) (2) (5a-4b) (-5a+4b) (3) (2m2+3n) (2m2-3n) (4) (2m2+3n) (-2m2-3n) 四、填空 (1)(x-y)(x+y)=________ (2)(x-y)(x-y)=________ (3)(-x-y)(x+y)=________ (4)(-x-y)(x-y)=________ (5)(a-1)·( )=a2-1 (6) (a-1)·( )=a2-2a+1 (7)(a+b)2-( a-b)2=________ (8)(a+b)2+( a-b)2=________ 五、计算 (1)(a-2b-3c)2(2)(x+y-2)(x-y+2) (3)(a+2b-3c) (a-2b+3c) (4) (a+2b-3c) (a-2b-3c) (5)(2a+b-5c)(2a-b-5c)(6)(2a+b+5c)(-2a-b+5c)

完全平方公式变形的应用

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab

⑴若()()a b a b -=+=22 713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .

解一元二次方程练习题(配方法、公式法)(最新整理)

解一元二次方程练习题(配方法) 配方法的理论根据是完全平方公式,把公式中的a 看做未知数x ,222)(2b a b ab a +=+±并用x 代替,则有。 222)(2b x b bx x ±=+±配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 1.用适当的数填空: ①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____, 所以方程的根为_________. 5.若x 2+6x+m 2是一个完全平方式,则m 的值是 6.用配方法将二次三项式a 2-4a+5变形,结果是 7.把方程x 2+3=4x 配方,得 8.用配方法解方程x 2+4x=10的根为 9.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9

(3)x 2+12x-15=0 (4) x 2-x-4=04 110.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。 解一元二次方程练习题(公式法) 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程的求根公式: )0(02≠=++a c bx ax

乘法公式(提高)

乘法公式(提高) 【要点梳理】 要点一、平方差公式 平方差公式:()()a b a b +-=22b a -. 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,a ,b 既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型: (1)位置变化:如()()a b b a +-+; (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232 ()()m n m n +-; (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+; (6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式 完全平方公式:=+2)(b a 222b ab a ++ ()2a b -=222b ab a +- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形: ab b a ab b a b a 2)(2)(2222+-=-+=+;ab b a b a 4)()(22+-=+. 要点三、添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号. 要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式 2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±; 33223()33a b a a b ab b ±=±+±; 2222()222a b c a b c ab ac bc ++=+++++.

八上整式的乘法与乘法公式

八年级上数学《整式的乘法与乘法公式》测试题 (100分) 班级__________ 姓名______________ 一、选择题(每小题3分,共30分) 1.下列计算中正确的是( ) A .5322a b a =+ B .44a a a =÷ C .842a a a =? D .()632a a -=- 2.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ) ① ()523623x x x -=-?; ② ()a b a b a 22423-=-÷; ③ ()523a a =; ④ ()()23a a a -=-÷- A .1个 B .2个 C .3个 D .4个 3. 若()()b ax x x x ++=+-2 32,则a, b 的值分别为( ) A .a=5, b=6 B .a=1, b= -6 C .a=1, b=6 D .a=5, b= -6 4.()()22a ax x a x ++-的计算结果是( ) A .3232a ax x -+ B .33a x - C .3232a x a x -+ D .322322a a ax x -++ 5.已知210x y -=,则24y x -的值为 ( ) A .10 B .20 C .-10 D .-20 6.下列多项式乘法中可以用平方差公式计算的是( ) A.))((b a b a -+- B.)2)(2(x x ++ C.)31)(31(x y y x - + D.)1)(2(+-x x 7. 我们约定1010a b a b ?=?,如23523101010?=?=,那么48?为 ( ) A. 32 B.3210 C. 1210 D. 1012 8.若153=x ,53=y ,则y x -3等于( ) A. 5 B. 3 C. 15 D. 10 9. 13+m a 可写成( ) A. (a 3)m+1 B. (a m )3+1 C. a ·a 3m D. (a m )2m+1 10. 如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A. –3 B. 3 C. 0 D. 1

乘法公式教学设计(完整版)

2018年初中教师“大练兵、大比武”学科教学技能竞赛 《乘法公式》教学设计 教学目标 1.经历探索完全平方公式的变形过程,进一步发展符号感和推理能力。 2.在灵活应用公式的过程中激发学生的学习兴趣,培养探究精神。 重点:灵活运用完全平方公式解题。 难点:完全平方公式的变形拓展。 教学过程 一、复习乘法公式中的完全平方公式 完全平方公式 (a+b)2=a 2+2ab+b 2 (a ?b)2=a 2?2ab+b 2 文字表述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方,加上尾平方,2倍乘积在中央,符号看前方。 符号表示:( +?)2= 2+2 ?+2?(建模思想,多题归一思想) 注:其中的 、?可以代表单独的一个数或字母或一个单项式或多项式。 二、完全平方公式的变形 ① (a+b)2=a 2+2ab+b 2 ② a 2+b 2=(a+b)2?2ab ③ (a ?b)2=a 2?2ab+b 2 ④ a 2+b 2=(a ?b)2+2ab ⑤ (a+b)2=(a ?b)2+4ab ⑥ 2 )(2 22b a b a ab --+= ⑦ 2 )(2 22b a b a ab --+=

⑧ 4 )()(2 2b a b a ab --+= 在完全平方公式的多种变形中,a+b ,a ?b ,ab ,a 2+b 2四者中,知二求二。 三、灵活应用完全平方公式求代数式的值 1.已知x -y =6,x y =-8. (1)求x 2+y 2的值;(2)求(x +y )2的值 2.已知,21=+x x 求221x x +的值 3.应用完全平方公式解题 (1)982 (2)20162-2016×4030+20152. 四、终极挑战 1. 已知0136422=+++-b b a a ,求a-b 的值. 2. 已知三角形的三边满足022*******=---++bc ac ab c b a ,判断此三角形的形状? 思考:无论x 、y 为何值时,多项式 106222++-+y x y x 值恒为非负数. 五、课堂小结 本节课我们学习了灵活运用完全平方公式解题,体会到数学中的建模思想,多题归一思想,构造的数学思想。 六、作业 ① 已知,21=+x x 求441x x +的值 ② 若022222=++-+b a b a ,求20182017b a +的值 板书设计 一、复习.完全平方公式 二、灵活应用公式解题 三、数学思想:建模思想,多题归一思想,构造思想

整式的乘法和乘法公式(普通难度教师版)

整式的乘法和乘法公式 一、单选题(共7题;共14分) 1.计算的结果为 A. B. C. 1 D. 【答案】C 2.已知,则的值为() A. 5 B. 6 C. 7 D. 8 【答案】C 3.若,则的值为() A. B. C. D. 【答案】A 4.将方程x2+4x+1=0配方后,原方程变形为() A. (x+2)2=3 B. (x+4)2=3 C. (x+2)2=﹣3 D. (x+2)2=﹣5 【答案】A 5.下列运算正确的是() A. (﹣2a3)2=4a5 B. (a﹣b)2=a2﹣b2 C. D. 【答案】 D 6.(﹣5a2+4b2)()=25a4﹣16b4,括号内应填() A. 5a2+4b2 B. 5a2﹣4b2 C. ﹣5a2﹣4b2 D. ﹣5a2+4b2 【答案】C 7.如图1,从边长为的正方形剪掉一个边长为的正方形;如图2,然后将剩余部分拼成一个长方形.上述操作能验证的等式是( ) A. . B. . C. . D. . 【答案】B 二、填空题(共4题;共4分) 8.当x________时,(x-4)0=1.

【答案】x ≠4 9.计算的结果是________. 【答案】 10.计算:________. 【答案】9 11.已知三角形的底边是cm,高是cm,则这个三角形的面积是________ cm .【答案】 三、计算题(共1题;共10分) 12.计算: (1) (2) 【答案】(1)解: = = = (2)解: = = = 四、解答题(共3题;共15分) 13.如图,在Rt△ABC中,∠C=90°,a+b=14,C=10,求Rt△ABC的面积. 【答案】解:∵a+b=14 ∴(a+b)2=196 ∵C=10, ∴a2+b2=c2=100 ∴2ab=(a+b)2-(a2+b2)=196 -100=96, ∴ab=48,

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

配方法、公式法练习题

1、若22 4()x x p x q -+=+,那么p 、q 的值分别是( ) A 、p=4,q=2 B 、p=4,q=-2 C 、p=-4,q=2 D 、p=-4,q=-2 2若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 3.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2.-2..6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 7.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______. 8.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 用配方法解一元二次方程 0542=--x x 01322=-+x x 07232=-+x x 01842=+--x x 0222=-+n mx x ()00222>=--m m mx x 用公式解法解下列方程。 1、0822=--x x 2、22 314y y - = 3、y y 32132=+

4、01522=+-x x 5、1842-=--x x 6、02322=--x x 1代数式2221 x x x ---的值为0,求x 的值. 2解下列方程: (1)x 2+6x+5=0; (2)2x 2+6x-2=0; (3)(1+x )2 +2(1+x )-4=0. x x 5322=- 01072=+-x x ()()623=+-x x 012=--x x 02932=+-x x ()()213=-+y y 3用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台 电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电 脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?

推荐--1整式的乘法(六)——乘法公式二

(八年级数学)整式的乘法(六)——乘法公式(2) 第 周星期 班别 姓名 学号 一、学习目标: 自主探索总结出两数和的平方与两数差的平方规律,并能正确运用完全平方 公式进行多项式的乘法。 二、问题情境 问题1:街心花园有一块边长为a 米的正方形草坪,经统一规划后,南北向 要加长2米,东西向也要加长2米。问改造后的长方形草坪的面积是多少? 解: 问题2:== 问题3:将2改为b ,结果如何?即 三、结论: 完全平方和公式: ① 两数和的平方,等于它们的 加上它们 的2倍。 猜想: ② 比较①、②两个公式: 2(2)a +)2)(2++a a (2()a b +=______________))((=++b a b a 2()a b +=_______________________)(2=-b a

1、 计算结果只有___________与______________符号不同 2、 计算结果:右边中间项的符号都与左边___________符号相同 四、练习(A 组) 1、判断下列各式是否正确。如果错误,请改正在横线上。 (1) ( ) (2) ( ) (3) ( ) (4) ( ) 2、你准备好了吗?请对照平方差公式完成以下练习: (1) (2) (3) (4)= (5) 3.请用公式写出以下多项式乘以多项式的结果: 222() a b a b +=+2 22()2a b a ab b +=++222()a b a b -=-22(2)4x x -=-222()2a b a a b b += + + 222(21)()2()()()a += + + ==+-=-222)())((2)()2(y x 222(32)()2()()()x y += + + =222)())((2)()21+-=-y (2221(3)()2()()()2 a b += + + =

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

一元二次方程配方法_公式法_因式分解法

一元二次方程的根 一元二次方程的解也叫做一元二次方程的根 因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1:下面哪些数是方程0121022=++x x 的根? —4、—3、—2、—1、0、1、2、3、4 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 复习 ()2222b ab a b a ++=+ 2222)(b ab a b a +-=- 根据公式完成下面的练习: (1)()22____________8-→+-x x x (2)()2 2______3______129+→++x x x (3)()22____________+→++x px x (4) ()2 2____________6+→++x x x (5)()22____________5-→+-x x x (6) ()2 2____________9-→+-x x x 例2:解方程:2963=++x x 2532=-x x 解:由已知,得:()232=+x 解:方程两边同时除以3,得3 2352=-x x 直接开平方,得:23±=+x 配方,得22265326535??? ??+=?? ? ??+-x x 即23=+x ,23-=+x 即 3649652=??? ? ?-x ,6765±=-x ,6765±=x 所以,方程的两根231+-=x ,232--=x 所以,方程的两根267651=+=x ,3 167652-=-=x 像这种求出一元二次方程的根的方法叫做配方法。 练一练: (1)982=+x x (2)015122=-+x x (3) 044 12=--x x (4) 03832=-+x x (5)08922=+-x x (6) ()x x 822=+ 练一练

配方法与公式法

第六课时:配方法与公式法 [知识要点] 1配方法:①移项②二次项系数化为1③方程两边同时加上一次项系数一半的平方④开方 2、公式法:当b2 4ao 0时,它的根是X12广b±炉^ 3、由2可以推导:X1 X2b c X[ ? X2 a a [典型例题] 例1用配方法解下列方程: 1 2 5 5 门2 (1) X X 0(2)3X 6X 2 0 2 2 4 例2用公式法解下列方程: (1) 3X25X 2 0 2 (2) 2X 3X 3 0 2 (3) X22X 1 2 例3设X i,X2是方程2x 4x 30的两个根,禾U用根与系数的关系,求下列各式 的值 (1 ) (X1 2)(X2 2);(2) X2 X i X i X2 (难点)

[经典练习] 1、若x 2+6x+m 2是一个完全平方式,则 m 的值是() A . 3 B . -3 C . ± 3 D .以上都不对 2、用配方法将二次三项式 a 2-4a+5变形,结果是( ) A . (a-2) 2 +1 B . (a+2) 2-1 C . (a+2) 2+1 D . (a-2) 2-1 3、用配方法解方程 x 2+4x=10 的根为() A . 2± B . -2土14 C . -2+、10 4、用公式法解方程 4y 2=12y+3,得到() A . y=L 2 B . y=^6 2 C . y= 3 D . y=^J 2 a ( 1+x 2)+2bx-c 5、已知a 、b 、c 是厶ABC 的三边长,且方程 △ ABC 为() A .等腰三角形 B .等边三角形 6将一元二次方程X 2 -2X -4=0用配方法化成(x+a ) 2=b 的形式为 C .直角三角形 方程的根为 (1-x 2) =0的两根相等,则 D .任意三角形 ,所以 7、不解方程,判断方程:①x 2+3X +7=0;②X 2+4=0:③x 2+x-1=0中,有实数根的方程有 8、当 x= 1 时,代数式— 3 2 x - 2x 与 - x 1 亠」的值互为相反数. 4 9、用适当的方法解下列方程: (1) 3X 2-5X =2. (2) X 2+8X =9 (3) x 2 5.2x 2 0 (4) 2x (x — 3) =x — 3

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

整式的乘法(五)——乘法公式一

(八年级数学)整式的乘法(五)——乘法公式1 第周星期班别姓名学号 一、学习目标:自主探索总结出两数和乘以它们的差规律,并能正确运用两数和乘以它们的差的公式进行多项式乘法。 二、回忆:()() ++= m n a b 三、探讨: 1、赛一赛,看谁做得最快:计算 A组:(1)(1)(2) --= x x (2)(1)(2) ++= x x (3)(21)(23) +-= x x B组:(1)(1)(1) -+= x x (2)(5)(5) -+= x x (3)(23)(23) -+= x x 2、想一想:完成以上练习后与同学交换答案,并与同组同学讨论: (1) A组练习与B组练习有什么不同? (2)讨论B组的题目特点。 左边:右边: 3、结论:平方差公式:两数和与它们的差的积,等于 a b a b +-= ()() 四、你会运用上述公式吗?请来试一试: 例:1、________ +x ( - x 3)(2 _______ )2 3= 相同项的积相反项的积

2、_________________)23)(23=--+-x x ( 相同项的积 相反项的积 3、 ______________________________)2)(2(==+-+x x 相同项的积 相反项的积 A 组 1、 下列各式,能直接用平方差公式计算的有: (写编号) (1)(2)(2)a b a b -+ (2)(2)()a b a b -+ (3)(12)(12)c c +- (4) (2)(2)x x -+-- 2、你准备好了吗?请对照平方差公式完成以下练习: (1)(3)(3)x x +- = + =________________ 相同项的积 相反项的积 (2)(23)(23)a a +-= _ + =________________ (3)(3)(3)a b a b +- = + =________________ (4)(12)(12)c c +- = + =________________ (5)11(2)(2)22 x x + -= + =________________ 3、计算 (1)(2)(2)x x +- 解:(2)(2)x x +-= + =________________ 相同项的积 相反项的积 (2)(2)(2)x x -+-- 解:(2)(2)x x -+--=____________+___________=_______________ (3)(2)(2)x y x y -+-- 解:(2)(2)x y x y -+--____________+___________=_______________ (4)(23)(23)a b a b ---+ 解:(23)(23)a b a b ---+____________+___________=_______________

相关文档
最新文档