上海地铁盾构隧道纵向变形分析

上海地铁盾构隧道纵向变形分析
上海地铁盾构隧道纵向变形分析

上海地铁盾构隧道纵向变形分析

【摘要】隧道若发生纵向变形将严重影响到隧道结构的安全。分析探讨了纵向变形的发生、变化情况以及隧道结构和防水体系所允许的纵向变形控制值。结合工程实践,对隧道发生的典型沉降曲线规律进行了深入的分析,其结论对有效控制隧道纵向变形具有指导意义。

【关键词】隧道;通缝拼装;纵向变形;环缝;错台;防水;失效

至2020年,上海将建成轨道交通运营线路达到20条、线路长度超过870 km以及540余座车站的网络规模。这其中,以盾构隧道结构为主的地下线路几乎占到一半。控制隧道纵向变形是确保隧道结构安全的重要因素之一。在研究隧道纵向变形时,我们首先要关注这种变形是以何种方式发生、又是如何发展变化以及隧道变形控制值是多少等问题,本文对这些问题进行了分析探讨。

1、盾构隧道结构和构造设计

盾构法隧道是由预制管片通过压紧装配连接而成的。与采用其它施工方法建成的隧道相比,盾构隧道明显的特点就是存在大量的接缝。1 km长的单圆地铁盾构隧道需要五~六千块管片拼装而成,接缝总长度约是隧道长度的20余倍。因此,盾构隧道的多缝特点已成为隧道发生渗漏水最直接或潜在的因素之一(见图1)。在盾构拼装结构中,接缝有通缝和错缝之分,现以单圆通缝盾构隧道为例进行隧道纵向变形分析。

1. 1 盾构隧道结构与构造设计

1. 1. 1 管片厚度、分块及宽度

单圆通缝隧道管片厚度350mm,管片为C55高强混凝土,抗渗等级为1 MPa。一环隧道由6块管片拼装而成(一块封顶块F、两块邻接块L、两块标准块B和一块拱底块D),圆心角分别对应16°、4×65°和84°(见图2a)。封顶块拼装方便,在拱底块上布置了两条对称的三角形纵肋。整个道床位于拱底块内,底部没有纵缝,对底部环缝渗漏水有一定程度的抑制作用,可大大降低处理底部渗漏水的难度。

1. 1. 2 纵缝和环缝构造

在管片环面中部设有较大的凸榫以承受施工过程中千斤顶的顶力,可有效防止环面压损,既利于装配施工,又易于整个环面凹凸榫槽的平整密贴,提高管片外周平整度;并可提高环间的抗剪能力,控制环与环之间

的剪动,同时也可减少对盾尾密封装置的磨损。靠近外弧面处设弹性密封垫槽,内弧面处设嵌缝槽。环与环之间以17根M30的纵向螺栓相连,在管片端肋纵缝内设较小的凹凸榫槽,环向管片块与块之间以2根M30的环向螺栓压密相连,能有效减少纵缝张开及结构变形,环、纵向螺栓均采用热浸锌或其它防腐蚀处理。

这种构造设计使得隧道在拼装完成后形成具有一定刚度的柔性结构,环向面之间以及纵向面之间可以

达到平整密贴装配,既能适应一定的纵向变形能力,又能将隧道纵向变形控制在满足列车运行及防水要求的范围内;同时,满足结构受力、防水及耐久性要求。

错缝拼装与通缝拼装略有不同,其拼装方式是隔环相同,拱底块不设三角肋,在道床底部有一条纵缝, 6

块管片所对应圆心角分别为20°、2×68. 75°、3×67. 5°(见图2b)。不论是通缝还是错缝拼装,隧道总体上呈“环刚纵柔”的特点。

1. 2 装配隧道对纵向变形的适应性分析

错台是指两环隧道之间发生的径向相对位移,隧道纵向变形的适应性是指在保障隧道结构安全前提下

各组成构件所允许的最大环间错台量。从以下几方面分析各自对环间错台量的适应情况。

1. 2. 1 环面构造对错台量的适应性

如图3a示,在管片环面中部设了较大的凹凸榫槽。因环面装配部位的凹槽比凸榫稍大,存在约8mm的极限装配余量,可允许凸榫在凹槽内沿着径向作微量移动或滑动。这种环面间的相对移动表现在隧道壁上就是错台现象(见图3)。无论环面凹凸榫槽的初始装配关系如何,当环间错台达到4~8mm时,凸榫的顶部边缘将与凹槽的底部边缘相接触,若继续发生错台,凹凸榫槽将发生剪切。应当说环面上设置的凹凸榫槽对提高环间的抗剪切能力是有益的。从环面构造可知,当环间错台量超过4~8mm时,环面缝隙将按线性张开。所以, 4~8 mm错台量应是环面装配和错台的控制值。

1. 2. 2 密封垫对错台量的适应性

在环面上靠近外壁约30 mm处设有密封垫(现多为三元乙丙橡胶材料),按照设计构想,理想装配条件下密封垫径向宽度的重叠达23 mm,并可抵御环面间张开4~6 mm而不会发生渗漏水。通过对密封垫试验和数值计算分析发现,当环面之间发生错台时,密封垫表现出复杂的形状,不同部位呈拉压剪等十分复杂的受力状态。从理论上讲,当环间错台量为4~8 mm(甚至更大一些)时两块压紧状态的密封垫是不会产生渗漏水的。由于环面上的密封垫不是完整的(分别粘贴在12块不同管片上),装配后单侧整环密封垫长达19. 415 m,且存在许多棱角组合,加之防水材料质量及施工技术条件等制约因素,多数渗漏水发生在错台量<8 mm(甚至

更小)的情况下(见图4)。

1. 2. 3 螺栓孔和螺栓对错台量的适应性

为便于管片拼装紧固,一般螺栓孔设计的要比螺栓稍大,螺栓孔径为35mm,螺栓直径为30 mm,在管片拼装或产生错台时可允许螺栓适当调整。当环间错台量较小时,螺栓会随管片发生移动,螺栓拉伸量相当有限。不论螺栓与螺栓孔的初始装配关系如何,在错台量达到6~12 mm后,螺栓孔与螺栓的对应位置关系都趋于极限,螺栓将发生拉弯,同时对手孔部位的混凝土产生压剪作用。因手孔部位增强了配筋,螺栓会在手孔部位的混凝土压坏之前先于拉坏。

通过以上分析可知,隧道环面构造、防水体系及螺栓等在隧道发生变形过程中所起的作用不尽相同,对错台量的适应性也并不完全一样。但将它们装配成一条完整的隧道后就必须要求管片间的变形要协调,即只有当错台量同时满足结构抗剪、螺栓受拉及防水有效等要求时,隧道安全才有保障。受管片制作、拼装施工、密封垫质量等因素的影响,通常在隧道投入运营之初,环缝、十字缝或管片接缝处就已发生了渗漏水,隧道在施工过程中已经用掉了大部分结构变形和防水预留量,而留给运营期间允许发生的变形余量非常少。因此,综合多方面因素,将环面间的错台量控制在4~8mm即可保障隧道的安全。

2、隧道纵向变形分析

在隧道防水设计中,一般取纵缝和环缝张开量来确定密封垫的性能,弹性密封垫在隧道张开量达到4~6 mm时还具有防水能力。但隧道纵向变形究竟是以隧道顶底部刚性张开方式还是以环面错台方式进行的?或是两者兼之?下面分别对两种情形进行讨论分析。

2. 1 假定隧道纵向变形是以刚体转动的方式进行的

将单环隧道假定为一个理想的刚体,允许环与环之间发生小角度θ的刚体转动,隧道顶(底)部张开量Δ,形成隧道纵向沉降变形(见图5)。当隧道发生沉降时,隧道顶部压紧,底部张开(或闭合)量Δ;反之,隧道顶部张开Δ,底部压紧。根据刚体转动几何条件,隧道环宽w、直径D、环间张开(或闭合)量Δ及隧道纵向沉降曲线半径R之间有如下几何关系:

当取环宽为1. 0 m、隧道外径为6. 2 m,隧道纵向沉降(或隆起)与环缝张开关系见表1。若依此计算,当环缝张开量为6 mm时,隧道防水已经失效。但在隧道实际变形中,如此小沉降半径(甚至更小)是存在的,但防水体系并没有发生失效现象。这说明将隧道纵向变形视作整环隧道刚体转动的假定与隧道实际发生的纵向变形有着较大出入。在已建隧道中,隧道长度与直径之比L/D>150,隧道纵向端点与车站锚固联结,车站刚度较大,而且隧道与周围土层之间存在一定的抗剪力,对隧道沿纵向移动有较大约束,加之管片之间螺栓紧固作用等,对隧道整环发生刚体转动或沿纵向产生较大的水平位移(缝隙)起到极大约束作用。一般情况下,沿隧道纵向难以产生较大的环间缝隙或刚体转动。

2. 2 假定隧道纵向变形是以环间错台方式进行的

从上述分析得知,隧道环与环之间可以发生小量级的错台而不破坏隧道的安全性,假定隧道纵向变形曲线视作是由环与环之间发生不同错台而形成的,现分析沉降曲线为等圆的错台情况。将最下部的一环定为第1环,称之为基准点,第1环隧道底部与沉降曲线最低点之间沉降差定义为初始错台变形δ1,第2环与第1环之间的错台变形量δ2,第i环隧道与i-1环之间的错台变形量δi。根据图6a示,第一环的初始错台量为δ1,则有:

根据表2和图6分析可知:①沉降曲线半径越大,沉降影响范围越大,环间错台发展速度越缓慢;反之,沉降曲线半径越小,沉降影响范围越小,环间错台发展就越快(即错台很快就超出安全控制值)。②沉降曲线半径越大,沉降范围内的累积沉降量越大。由式(3)可以看出,即使环间的错台量是一个较小的数据,但在一个较大范围的隧道累计变形量来说仍然很可观。③即使在等半径沉降曲线上,不同距离的环间错台量是不同的。由式(2)可知,距离基准点越远,环与环之间的错台变形量就越大。

隧道安全取决于隧道结构和防水体系的安全,通过对隧道的长期现场监护监测发现,隧道结构沉降变形和防水之间又是相互影响和相互促进的,隧道渗漏水会引起隧道变形加大,隧道变形加大又会加剧隧道渗漏水,形成恶性循环。

在隧道发生渗漏水的许多部位,沉降曲线半径超过15 000m,满足隧道纵缝张开的设计要求;在发生较大沉降变形区段,沉降曲线半径远小于15 000m,隧道没有发生渗漏水,也未发现隧道顶底部的转动张开;在几处发生过险情的隧道区间,隧道沉降半径远小于500 m,发生漏水的整环隧道多位于沉降曲线的直线段,个别环间错台量达数厘米,在隧道内壁上表现为明显错台形式。理论分析和隧道发生渗漏水的实际情况都证明了隧道纵向变形方式是以环间错台方式进行的,将隧道纵向沉降曲线视作是由一系列环间错台构成的这一假定是合理的。

2. 3 隧道纵向变形过程分析

在隧道发生沉降(隆起)后,隧道总长度增加,沉降变化越多,变化量越大,隧道总长度增加量就越大。当错台量较小时,隧道纵向增加量较小,可用下式来表达:

当错台量超过4~8 mm时,隧道纵向长度计算还应考虑纵向环面缝隙的增加量w0。下面根据不同程度的错台量对隧道结构安全和防水影响进行分析:

(1)当环间错台量为1~4 mm时,这个量级的错台可以通过隧道环面构造设计本身加以调整,但会对密封垫产生一定的拉压作用。从几何意义上讲,变形前密封垫径向重叠厚度至少可达约23 mm,发生错台后密封垫仍可保持约19 mm的重叠厚度。根据式(4)计算,若错台为1 mm,单环隧道增加长度0. 005 mm;若环间错台4 mm,单环隧道增加长度0. 008 mm。这个量级的小错台量引起隧道纵向长度的增加非常小,环间缝隙宽度不增加。

随着环间错台量的增大,密封垫不同部位表现为十分复杂的拉压剪等受力状态,密封垫一般不会发生渗漏水现象,但环面间的防水能力在一定程度上被大大削弱,隧道发生渗漏水的概率大为增加。纵向连接螺栓或将进一步发挥抗拉作用,对手孔部位的混凝土施加低水平的压剪作用。

(2)当环间错台量达4~8 mm时,即在前一阶段变形基础上继续发生错台4 mm(见图3b)。不论环面凹凸榫槽最初装配位置如何,此刻凹凸榫槽处在极端配合状态,凸榫顶边缘与凹槽底边缘相接触,凹凸榫槽直接发生剪切,螺栓也处在进一步拉紧状态,密封垫的变形和受力状态也随错台量的加大而加剧,但密封垫径向重叠厚度仍可达15 mm。根据式(4)计算,若错台达到4~8 mm,单环隧道长度增加将达0. 032 mm。这个级别的错台引起隧道总长度的增加量依然很小,环间缝隙宽度不增加,但密封垫之间、密封垫与管片之间都可能会直接发生渗漏水现象,环间防水能力被极大削弱,隧道发生渗漏水的几率成倍增加,必须引起警惕,采取措施控制错台的进一步发展。

(3)当环间错台量达8~13 mm时(见图3c),环面凹凸榫槽已发生直接剪切,凹凸榫槽局部会出现裂缝,而导致防水失效,这个错台量会引起环面凹凸榫槽出现“艰难爬坡”现象,环间缝隙呈线性扩大,螺栓被拉流。尽管密封垫径向重叠厚度仍有10~15 mm,但因管片局部发生破坏、环面间缝隙超过防水标准而失去防水作用。根据式(4)计算,若环间错台量达到13mm,隧道长度增加迅速,单环隧道增加量也达13.083mm,环缝张开量将迅速增加超过6 mm,环间防水体系基本失效,将会有大量水土流入隧道,环缝漏水严重。图7是整环隧道发生竖向错台示意图,当环间发生竖向错台时,依附于管片上的密封垫将随同管片一起发生错台。在隧道顶底部位错台最为显著,其它部位并不明显,但此时环面上凹凸榫槽还处在咬合状态,错台将呈直线方式发展。隧道处于此种状态十分危险,若变形继续发展,后果不堪设想。

(4)当环间错台量为13~23 mm时(见图3d),环面间持续剪切导致凹凸榫槽结构进一步破坏,防水体系完全失效,凹凸榫槽还处在咬合状态,错台将呈线性发展直至结构失稳,尤其当隧道下卧土层是砂性土层的状况时风险性更大。

分析表明:①若错台量在几毫米以内,隧道总长度增加量很少,环间缝隙宽度并不增加,隧道结构安全尚处在可控状态,但会大大削弱密封垫的防水效果;②若错台量超过环面凹凸榫槽配合极限之后,环间缝隙按线性发展,管片会发生破损、防水失效等现象,给隧道安全带来灾难性威胁。因此,径向错台的增加不仅会引起隧道环面发生剪切,还将导致隧道纵向水平位移(环面缝隙)的增加。

以上仅是对隧道竖向发生径向错台进行分析,实际上隧道发生纵向变形远比此复杂。隧道在装配完成受力后其环面并不是一个真圆,环面凹凸榫槽的装配关系随之发生变化,这些变形会沿着隧道纵向进行传递,隧道纵向和横向变形在一定范围内相互影响。

3、隧道纵向变形典型曲线及工程实例

3. 1 隧道纵向沉降典型曲线

图8是典型纵向沉降曲线,沉降曲线呈对称漏斗型。一半曲线是一条反S沉降曲线,曲线的上部向下弯曲,下部向上弯曲,中间呈直线段变化。可将曲线划分成三段,现逐一分析如下:

第一段为向下弯曲段(沉降加速段)。该段隧道受扰动影响较小,环间错台较小,纵向变形量小,环与环之间的错台迅速变大,环间缝隙基本上没有张开,也不发生渗漏水,此阶段的纵向变形累计量较小。

第二段为直线变形段(沉降均速段)。该阶段隧道受扰动影响较大,该段环与环之间的错台量较大,凹凸榫槽相扣处在剪切状态,错台基本上呈直线型发展,没有明显弯曲,纵向沉降累积量迅速变大,环间缝隙防水失效,有大量水土涌入隧道。

第三段为向上弯曲段(沉降减速段),也是最后一个阶段。该段环与环之间的错台变形由大变小,曲线呈向上弯曲状,此阶段的纵向累计沉降量达到最大。

近年来发生的几起隧道险情大沉降与上述隧道纵向变形曲线非常吻合。

3. 2 工程实例

(1)图9是上海轨道交通2号线某停车场出入库线下行线隧道泵站发生事故后形成的沉降曲线。因泵站施工引起隧道大量漏水漏砂,隧道发生了较大错台变形,个别环间错台量达到数厘米,最大累计沉降量达26 cm,后经及时抢险才得以控制隧道危情。

(2)4号线大连路区间隧道因结构存在固有缺陷导致隧道漏水漏砂,环间发生了较大错台沉降,纵向累计和差异沉降变形都很大,环间发生错台量达到3~5 mm,累计沉降达9 cm,影响范围超过100m,后经及时发现抢险并最终得到根治。

环间过大的错台变形势必会引起隧道结构开裂,导致隧道受损或破坏,防水体系失效,给隧道结构安全带来直接威胁,多处隧道发生的纵向大变形验证了这一变形过程。

4、结语

本文通过对地铁盾构隧道纵向变形进行分析,得到如下结论:

(1)地铁盾构隧道纵向变形基本上是以径向错台方式进行的。

(2)径向错台的增加不仅会引起隧道环面发生剪切,同时会引起环缝间隙按线性发展,导致隧道结构损坏、防水失效。必须严格控制各类因素引起的环间错台量。

(3)研究了不同沉降曲线半径的环间错台变化规律,等半径沉降曲线上不同位置的错台量是不同的。结合工程险情研究了典型的隧道沉降曲线。

(4)隧道安全与隧道结构变形和防水密切相关,防水的成败关系到其长久安全,“见水就堵”是十分重要的。这些分析结论进一步加深了对隧道发生沉降方式和变形控制值的认识,对指导地铁盾构隧道安全监控具有重要的意义。

隧道变形监测方案-新

隧道变形监测方案 1、目的 为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。 2、适用范围 2.1适用于津滨轻轨隧道变形观测的相关工作; 2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。 3、职责分工 隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。 4、参考依据 《建筑变形测量规程》 《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》 5、变形观测工作内容 5.1隧道沉降观测 监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。 5.1.1监测基准网 监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一

次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。 图1 监测基准网示意图 5.1.2沉降监测点 津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。 图2 明挖段沉降监测点布置示意图 为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

广州地铁盾构隧道纵向弯曲变形评价方法研究

广州地铁盾构隧道纵向弯曲变形评价方法研究目前,盾构法修建地铁隧道在国内的地铁建设中占据了很大一部分比重。随着越来越多的地铁盾构隧道的建设和运营,盾构隧道的健康状态问题引起了许多专家和学者的重视。 运营盾构隧道的结构安全评价主要考虑横向变形和纵向变形两个方面,对于横向变形的计算及性能的研究有很多,纵向变形的研究却很少,且缺乏纵向变形安全评价的指标和评估方法。本文以广州运营地铁盾构隧道为研究对象,首先考虑了隧道横向“椭变”效应对纵向等效抗弯刚度的影响。 基于前人对隧道纵向变形理论计算方法研究的基础上,根据椭圆的参数方程,修正了纵向抗弯刚度计算公式中的中性轴位置,并由参数方程得到中性轴位置为c=bsinφ,从而推导出考虑横向效应下纵向等效抗弯刚度的理论计算公式,以及纵向变形曲率与环缝张开量的关系式。并由此建立环缝张开量与纵向变形曲率的关系,弥补了现有对盾构隧道横向和纵向变形之间相互影响的理论计算研究的不足。 其次,研究了纵向等效刚度螺栓环的假定对隧道纵向抗弯刚度计算公式的影响,利用Midas/GTS建立10环管片的三维精细数值分析模型,以广州地铁盾构隧道衬砌的结构参数,计算了实际接头和等效螺栓环接头给纵向等效抗弯刚度带来的差异,引入纵向管片螺栓环的等效抗弯刚度修正系数ζ。由计算可知,采用实际点状分布螺栓模型计算时,抗弯刚度相比等效螺栓环增加10%,得到等效抗弯刚 度修正系数为ζ=1.094,从而修正管片环等效螺栓刚度计算公式;并根据广州地铁6.0m直径的盾构隧道随管片环宽、螺栓型式和数量变化关系,得到等效刚度修正系数的组合表,增加纵向等效抗弯刚度和张开量计算公式的适用范围。

上海软土地铁隧道变形影响因素及变形特征分析概况

设计与研究 上海软土地铁隧道变形影响因素及变形特征分析 王如路 (上海地铁运营有限公司) 摘要:盾构法隧道是上海软土地铁隧道的主要型式,隧道过大的纵向和横向变形是危及结构安全的重要病害之一。根据上海地铁隧道结构长期监测数据和监护实践,对其结构变形产生的原因、变形过程及变形特征进行了分析,所得到的结论有助于指导地铁隧道日常维护和变形控制。关键词:地铁隧道;纵向沉降;变形;渗漏水;破 坏上海地铁建设经过近30年的持续探索、试验研究和实践,在设计和施工方面取得了大量的技术成果和实际经验,形成了一整套适合上海地质条件和施工环境特点的地铁建设工程设计和施工方法。目前,随着上海轨道交通网络化运营的初步实现,工作日客流维持在320万人次以上,最大日客流超过382.8万人次,客流量占公交比重超过20%。面对如此庞大的轨道交通网络和客流状况,地铁隧道结构安全愈显重要。隧道变形的稳定可控是地铁安全运营的重要保障之一,其纵向变形及防水研究越来越受到工程设计、施工和运营单位的重视。1 地铁盾构隧道特点 在上海轨道交通建设中,其区间隧道大多采用盾构法施工,在盾构隧道拼装型式中 又以通缝拼装居多数。盾构法隧道与其它隧道相比,其特点就是多缝。一般情况下,一条隧道的接缝总长度达到隧道长度的20多倍。因此,盾构隧道的多缝已成为隧道发生渗漏水的最直接因素。 单圆通缝隧道管片厚度350mm,管片混凝土强度为C55,抗渗等级为1MPa。一般隧道衬砌环由6块管片拼装而成,即由一块小封顶块F、两块邻接块L、两块标准块B和一块大拱底块组成(见图1)。 (1)大拱底块布置了两条对称的三角肋,在隧道施工期间可搁置运输用的轨枕,提供运输通道;在整体道床浇筑后,有利于加强道床和隧道间的整体联系,增加隧道底部刚度,提高道床与衬砌间的环向抗剪力;在运营期间,可控制道床与隧道脱开后发生的相对移动。 (2)在靠近隧道外弧面设弹性密封垫槽,内弧面设嵌缝槽。 (3)在管片环面中部设了较大的凹凸榫,既利于施工装配、定位和拼装密贴,又可以提高施工过程中承受千斤顶顶力的能力,有效防止环面压损,同时也可提高隧道环 向接头部位的抗剪能力,有利于协调隧道纵向差异沉降。 图1 通缝拼装隧道示意图 5)1) (4)在管片端肋纵缝内设较小的凹凸榫。(5)环向管片间以2根M30的环向螺栓紧密相连,纵向环间以17根纵向螺栓相连。既能适应一定的纵向变形,又能满足列车

隧道沉降变形处理方案(终稿)

隧道出口沉降变形处理方案 一、设计情况 1、 D65+100~ D65+450段原设计为Vc型复合衬砌,支护及衬砌参数:超前支护采用?89管棚,初期支护采用拱墙工22钢架,间距0.5m,拱部采用φ22组合中空注浆锚杆,边墙采用φ22砂浆锚杆,锚杆长3.0m,环纵向间距为1.2×1.2m,锁脚锚管长4.5m,每榀每侧2根,φ6钢筋网片间距20×20cm,C30喷射混凝土厚28cm,衬砌厚度为55cm,仰拱厚65cm。 2、设计地质情况:设计围岩为白垩纪下统磨石砬子组砂砾岩,拱顶为砂砾岩和弱风化砂砾土分界线,节理裂隙发育,岩体破碎,有裂隙水。 二、施工及沉降变形情况 目前掌子面施工至 D65+348,按三台阶法开挖,中台阶开挖至D65+360,左侧下台阶施工至D65+376,右侧下台阶施工至D65+372,仰拱及填充施工至 D65+382,二衬施工至 D65+406。 10月6日早7:00测得 D65+348~ D65+382段34米发生变形,10月8日测得拱顶最大累积沉降量69.1cm,初支出现不同程度变形及侵入二衬限界。地表观测相对高差发现地表下层,沉降范围D65+348~ D65+376,最大下沉量达1.1m。 三、施工计划安排 1、2012年10月15日至2012年11月20日对洞内沉降变形段进行加固和洞顶地表的封闭覆盖。 2、2013年4月1日至2013年8月31日对洞内沉降变形段进行

换拱并施做二衬。 3、出口掌子面不再掘进,采取隧道进口掘进贯通。 四、处理方案 (一)方案目标: 1、控制沉降,安全过冬,确保冻融期安全; 2、保证隧道贯通时掌子面和现已开挖变形支护段的安全。 (二)控制沉降变形措施 1、施做衬砌 对目前已施作仰拱及初支还没变形地段,加快二衬施工推进至D65+382处,避免初支变形范围进一步扩大。 2、 D65+382~ D65+348沉降段加固 (1)加固原则:先洞内后地表,洞内由外向里进行,先用套拱加固后径向注浆。 (2)待 D65+382~ D65+406段二衬完成, D65+376~D65+348段监测稳定后,先在 D65+379~ D65+377段施做套拱,套拱采用I22a工字钢架,间距0.5m,共支立5榀,套拱工字钢采用14槽钢进行纵向连接,环向间距2m。套拱与原初支间喷射C30砼封闭,保护层厚度不小于3cm。套拱下部采用I22a工字钢架横向支撑,喷射C25砼设临时仰拱。套拱底面标高在现有原状土基础上施做,底面稍作开挖,套拱基础必须牢固,松软土体注浆加固,提高承载力。套拱定位后及时施做锁脚锚管,左侧拱脚的锁脚锚管每榀设置三排即6根,长度4~5m,角度5~10度,管内注浆对软弱基础进行固结,以提高承载力,同时插入直径32mm的螺纹钢增加锚管的刚度和抗剪度。

隧道变形监测方案

富水土质隧道围岩变形监测及其应用 (中铁建某集团山东) 摘要本文以新松树湾隧道为例,通过内空收敛和围岩内部位移的量测,分析了富水土质隧道的围岩变形规律,对类似工程施工有一定的参考价值。 关键词富水土质隧道围岩变形 随着西部大开发的进行,对富水黄土地区的隧道施工参数的测试和研究具有重要的意义。本文以新松树湾隧道为例进行探讨。 1 工程概况 新松树湾隧道为既有松树湾隧道复线的单线铁路隧道,位于甘肃省陇西县境内大营梁,全长1726m,复合衬砌。大营梁为黄土梁峁区,该隧道范围地层为上更新统风积粘质黄土和下、中更新统冲、洪积杂色砂粘土。粘质黄土为淡黄色、棕黄色,厚0—20m,土质较匀,具孔隙及虫孔,局部含白色钙丝及钙质斑点,半干硬至硬塑,II级普通土,II类围岩,σ0=150kPa,具II级自重湿陷性。杂色砂粘土主要表现为强崩解性,一定的膨胀性及含有盐碱成分。II级普通土,II类围岩,σ0=200--250kPa (局部软塑—流塑状,I类松土,I类围岩,σ 0=100--120kPa)。大营梁地带年平均降水量513.3mm,隧道三面汇水,地下水较发育,系大气降水补给。地下水主要有上层滞水和裂隙水,前者一般埋深15—30m之间。多见有泉和渗水出露,水量相对较大,隧道内日渗水量22--18m3/d.地下水对混凝土具弱侵蚀性。经调查,既有松树湾隧道(1960年建成)各地段有不同程度的渗漏水现象。隧道渗水主要通过拱顶、边墙接缝、排水沟孔、墙角部位渗出,水对普通硅酸盐水泥有侵蚀性。因此,新松树湾隧道采用曲墙有仰拱衬砌,除进口端I类围岩模筑衬砌,余均采用复合衬砌。初期支护为1榀/m钢格栅+钢筋网+钢筋锚杆喷锚。在施工中采用新奥法分三台阶开挖。 2 量测项目 根据现场情况,选取了八个量测断面进行内空收敛的测试;还选取了两个断面进行围岩内部位移测试。内空收敛在开挖后马上埋设测点,在12小时内测取初始读数,采用煤炭科学研究院生产的JSS30型数显收敛计量测。观测断面里程分别为1#面——DK1601-8.4,2#面——DK1601+6.4,3#面——DK1601+21.9,4#面——DK1601+36.1,5#面——DK1601+46.5,6#面——DK1601+86.5,7#面——DK1601+122.5,8#面——DK1601+172.7,其中7#、8#面进行围岩内部位移测试(图1),每个断面各有六条内空收敛测线,即1-2、1-3、1-4、1-5、2-3、4-5。围岩内部位移采用煤炭科学研究院生产的杆式多点位移计进行测量,这种位移计使用膨胀木锚头,具有安装简单,可靠等特点,每个钻孔可分别测量埋深1M,2M,4M处的围岩与洞壁之间的相对位移。 Fig.1 Arrangement of the c onvergences and internal displacement of the wall rock 3 内空收敛量测 通过测量结果计算各测线收敛累计值,同时计算出各测线的位移速率。 隧道周边收敛按下式计算: R R U i i - = 收敛速率按下式计算:

隧道初支变形处理方案样本

目录 1.编制依据、编制范围及设计概况 (2) 1.1编制依据 (2) 1.2编制范围 (3) 2.工程概况 (3) 2.1工程简介 (3) 2.2.地质情况描述 (3) 2.3设计基本参数 (4) 3.施工概况 (4) 3.1现场施工情况 (5) 3.2山体开裂及初支变形情况 (5) 4.处理方案 (6) (7)

(7) (8)

(9) 1.编制依据、编制范围及设计概况 1.1编制依据 国家的法律、法规和铁道部、湖南省的相关管理制度规定; 本项目采用的标准、指南、验标、工法、定型图、通用图、标准图等; 沪昆铁路客运专线湖南有限责任公司下发的指导性施工组织设计; 沪昆铁路客运专线湖南有限责任公司关于项目建设管理的规章制度;

新建长沙至昆明铁路客运专线湖南段站前CKTJ-1标段施工承包合同; 客专用材料、机械设备、机具等相关规程、标准、质量文件; 《新建铁路长沙至昆明铁路客运专线( 长沙至玉屏段) 施工图官家山隧道设计图》, 图号: 《长昆客专施( 长玉段) 隧004A-01~06》、《长昆客专施( 长玉段) 隧004A-07~08》、《长昆客专施( 长玉段) 隧变004-1-01~02》; 4月7日由娄底建设指挥部组织设计、监理及施工单位的”官家山隧道DK44+065~+150段初支变形及地表开裂处理方案会议纪要”; 现场踏勘调查的相关资料。 1.2编制范围 新建铁路长沙至昆明铁路客运专线官家山隧道( DK44+065~DK44+150) 工程。 2.工程概况 2.1工程简介 沪昆客专长昆湖南段官家山隧道进口里程为DK44+065, 出口里程为DK44+542, 隧道全长477m, 其中暗洞长为428m, 明挖段长为49米( 进口段DK44+065~+072为明挖段) 。全隧位于直线上, 全隧为3.8‰的单面下坡。本隧围岩级别为IV、 V级软弱围岩, 进口段为浅埋偏压, 裂隙发育且不能确定, 岩体较破碎, 地下裂隙水较发育, 存在微弱发育岩溶。隧道总体风险等级为中度复杂。 2.2.地质情况描述 官家山隧道地貌属低山丘陵区, 山体多未见基岩出露, 植被茂密, 隧道范围内据调查及勘探深度范围内所揭露的地层为第四系上更新统坡洪积

地铁隧道纵向沉降和结构性能研究

内容摘要:【提要】:地铁隧道发生的过量不均匀纵向沉降对隧道结构内力、变形、接头防水、以及隧道正常运营的影响已不容忽视。因此研究地铁盾构隧道的纵向结构性能和变形性态,是非常必要而且迫切的。本文分析了地铁隧道纵向沉降的影响因素和作用机理;改进了隧道等效连续化的计算方法,对地铁盾构隧道纵向结构性能进行了讨论。 【提要】:地铁隧道发生的过量不均匀纵向沉降对隧道结构内力、变形、接头防水、以及隧道正常运营的影响已不容忽视。因此研究地铁盾构隧道的纵向结构性能和变形性态,是非常必要而且迫切的。本文分析了地铁隧道纵向沉降的影响因素和作用机理;改进了隧道等效连续化的计算方法,对地铁盾构隧道纵向结构性能进行了讨论。 1 引言 随着我国城市化程度迅速提高,国内许多大城市都竞相发展以地铁为主干线的快速轨道运输系统(rts)。北京、上海、广州、南京、深圳等地相继开展大规模的地铁建设。随着盾构施工技术和施工工艺的发展成熟,盾构施工法以其对城市地面环境影响小的特点,成为城市环境下地铁隧道的主要施工方法。由此也发现,在饱和、灵敏度高的软土地区,盾构隧道经常发生较大的不均匀纵向沉降,其对隧道纵横向的内力、变形、接头防水、及隧道正常运营的影响已不容忽视。因此研究盾构隧道的纵向结构性能和变形性能,分析隧道纵向沉降的影响因素,是非常必要而且迫切的[1][2]。 国际隧道协会(ita)在2000年盾构法隧道设计指导中提出在必要时将隧道纵向沉降的影响列入荷载种类的其他荷载项予以考虑[3]。上海市地基基础设计规范对盾构隧道设计的规定中也提出必要时尤其在隧道下卧土层土性变化处应考虑隧道纵向不均匀沉降对隧道内力的影响[4]。这表明隧道纵向沉降尤其是不均匀沉降对隧道的影响已经引起国内外工程界的重视,但以上二者都没有明确提出具体应该如何考虑隧道纵向沉降的影响和隧道的纵向结构性能,需要进行进一步的深入研究。 2 隧道纵向沉降影响因素分析 2.1 施工期间的影响 施工期间隧道沉降主要是由于盾构推进时对周围土体的扰动,以及注浆等施工活动引起的;主要包括以下几个方面的因素:①开挖面底下的土体扰动;②盾尾后压浆不及时不充分;③盾构在曲线推进或纠偏推进中造成超挖;④盾壳对周围土体的摩擦和剪切造成隧道周围土层的扰动;⑤盾构挤压推进对土体的扰动。 隧道衬砌环入土后的沉降发展过程,按其发生的时间先后和原因可大体分为三个阶段[5]:①初始沉降;②下卧土层超孔隙水压力消散而引起的固结沉降;③下卧土层骨架长期压缩变形的次固结沉降。隧道通常要在盾构推进完毕后半年至一年后开始使用。因此,一般在施工阶段已大体完成了初始沉降和固结沉降,而在长期使用阶段则缓慢地进行次固结沉降。经过长期的发展,现在的盾构施工技术和施工工艺都已比较成熟。采用的泥水平衡和土压平衡盾构等先进的施工设备及同步注浆,减小了对隧道周围土体的扰动。除在隧道与车站的连接段外,如果隧道下卧土层均一,则在盾构施工期间隧道的沉降比较一致,则隧道纵向不均匀沉降较小。 2.2 隧道在长期营运中的纵向沉降影响因素 在长期营运中隧道的纵向不均匀沉降主要有以下六个因素所致[5]:①隧道下卧土层固结特性不同;②隧道临近建筑施工活动的影响;③隧道上方增加地面荷载;④隧道所处地层的水位变化;⑤区间隧道下卧土层水土流失造成破坏性纵向变形;⑥隧道与工作井、车站连接处

城市浅埋暗挖隧道地层变形规律及控制方法

城市浅埋暗挖隧道地层变形规律及控制方法 对于城市公路隧道而言,施工区域周边环境复杂是其最为显著的特点,表现在隧道紧邻建构筑物,往往要穿越交通流量较大的城市主次干道,且隧道埋深较浅,隧道施工对周边环境影响大,安全事故的发生会带来恶劣的社会影响。因此,为了保障隧道施工安全及最大限度地降低隧道施工对周边环境的影响,选择合适的施工方法是关键。 标签:城市;浅埋暗挖法;地层变形规律 1、工程概况 某城市浅埋暗挖隧道段西线端桩号K12+710—K13+587.1,全长877.1m、东线端起讫桩号K12+700—K13+569.1,全长869.1m。工程段主要位于⑩-2层粉质黏土混碎石、⑩-3层含砾粉质黏土、?k1c-1层全风化凝灰灰质粉砂岩、?k1c-2层强风化凝灰质粉砂岩、?k1c-3層中风化凝灰质粉砂岩、?s2k-2层强风化粉砂岩。工程区属钱塘江水系,地面隧道下穿沿山河,沿山河平行于天目山路,河道宽30余米,河道与西溪湿地相通,河水涨落与大气降水补给有关。场区水文主要分为地表水系和地下水。 2、地层变形规律 2.1地层竖向变形 通过对某城市隧道土建工程浅埋暗挖隧道地表变形进行监测,得到该地区典型地层变形规律。隧道开挖后,围岩首先会发生应力重分布,导致地层变形,形成典型的地表沉降槽。由此可知,在掌子面未到达监测断面之前,施工扰动对地层的影响较小,地层竖向变形不明显;地层竖向变形从CRD1部开挖通过时开始增加,且变形速率呈增大趋势,直至掌子面通过监测断面一段时间之后竖向变形速率开始减小,即沉降变形接近稳定。可见,隧道掌子面初支的封闭成环对围岩的变形影响较大,为变形控制的关键,施工时应尽早使仰拱闭合,以减小围岩的变形量。为统计出地层竖向变形规律,定义L/D为掌子面与监测断面的当量距离(其中,L为掌子面与监测断面实际距离,D为隧道跨度),对当量距离L/D 与监测断面地层竖向变形之间的关系进行研究。研究表明,可将隧道施工对地表的影响归纳为四个变形阶段,即第一阶段为超前微小变形阶段,-2.03.0,该阶段后沉降基本趋于稳定。 2.2地层纵向变形 随着掌子面的不断推进,隧道东侧拱顶沉降的变化与分布,地层变形具有明显的时空效应,沿隧道纵向地层变形存在超前和滞后两方面特征。通过对隧道施工拱顶沉降变化及分布规律进行总结,得沿隧道纵向轴线所产生的地层变形的一般规律。地层纵向变形可划分为三个区域,即前期变形区、施工变形区和后续变

铁路软弱围岩大变形隧道施工控制技术

铁路软弱围岩大变形隧道施工控制技术 发表时间:2019-02-21T09:37:41.443Z 来源:《防护工程》2018年第32期作者:李永巍 [导读] 近年来,我国的铁路工程建设越来越多,其施工技术也越来越受到重视。 中铁三局集团第三工程有限公司山西省太原市 030006 摘要:近年来,我国的铁路工程建设越来越多,其施工技术也越来越受到重视。本文对铁路软弱围岩大变形隧道施工技术方案进行分析,对施工难点进行讨论,并对软弱围岩大变形隧道变形控制技术进行研究,由此得出具有可行性的方案。实践证明,该方案提高了围岩支撑力,保证了施工安全,实现了动态管理大变形隧道的目标。 关键词:铁路;软弱围岩大变形隧道;综合施工技术 引言 铁路隧道技术在我国地势复杂的铁路施工区域经常应用。但某些地区铁路隧道建设由于其围岩支撑力度较低,极易在施工过程与铁路运输过程中出现安全事故。因此,本文对铁路软弱围岩大变形隧道综合施工技术进行详细研究,通过详细的案例分析,对铁路隧道施工技术进行研究与探讨。 1软弱围岩的定义 软弱围岩可以定义为:主要以粘土矿物或粘粒组成,以碎屑结构以及泥状结构为主,强度低、变形模量小以及亲水易软化的软岩及土体。 2铁路软弱围岩大变形隧道施工技术方案 2.1整体方案 以某隧道为例,由于隧道中的围岩压力较大,且分布不规则的地质环境特点造成隧道开挖出现变形增大(最大达123cm)、围岩变形持续时间增长,初期支护也出现极易变形失稳的情况以及施工人员具有较安全高风险的问题。故而本文提出对隧道断面结构形式及初期支护参数进行优化调整的主体方思路,进而期望达到对隧道变形进行有效控制的目标。在围岩大变形的隧道施工中:(1)应在保证施工安全的前提下进行围岩变化信息的收集与调查,并对初期支护的变化动态信息进行查验与记录,进而完成对围岩大变形的隧道调查;(2)应对施工过程的监测进行研究,研究中应该主要对隧道围岩的应力、内部位移、沉降和变形收敛监测技术进行着重分析;(3)应对隧道初期支护的变形进行研究,尤其是对初支钢架所受的应力进行着重检测与分析。 2.2断面结构优化方案 在获取并分析围岩变形参数之后,便可以此为基础展开技术优化。数据仅仅是理论基础,还需要通过大量的实验才能得出最优方案。在进行大量实验后,最终确定了“圆形断面”这一方案。方案不同,对断面变化速率影响也不同。相比其他方案,“圆形断面”具有更强的抗干扰能力,即完成支护后,随着时间的流逝,隧道的变形会更小。所以该方案被广泛运用在初期支护工作中,它可以减小断面连接处的受力,控制隧道的变形范围,为隧道其他环节的施工提供基础的空间支持。 2.3软弱围岩大变形段隧道初期支护思路 依据围岩特性不断调整的现象为基础,对隧道初期支护进行加强措施,最终在多种实施方案中确定初支钢架增加预应力锚索和采用长锁脚锚杆为主的支护形式,以此有效控制初支变形。同时该种方式还能够克服单线隧道施工空间狭窄有限与锚索施工过程持续时间较长等问题,不仅实现在单线隧道内完成锚索钻孔、锚索安装、注浆、张拉和封锚等工作,而且对隧道施工速度与进度进行提升。通过在初期支护钢架上增设预应力锚索,边墙起拱、台阶接头应力集中部位的变形明显减小,有效控制初支的变形。 3软弱围岩隧道施工方法的选择需考虑的因素 软弱围岩隧道的稳定与否和施工方法的选择密切相关,采用不同的软弱围岩隧道施工方法,对隧道工程的施工进度、施工成本以及施工的质量安全等有很大影响,不同的施工方法对隧道的开挖都有会不同程度的破坏原有的初始应力场,从而导致应力重分布,当应力重分布超过了软弱围岩的强度就会使围岩发生变形,变形过大就容易发生失稳破坏。对于软弱围岩隧道施工方法的选择,我们应需考虑以下四个方面的因素。①软弱围岩隧道段的围岩级别。不同的隧道施工方法适用于不同级别的围岩,同级围岩下采用不同的施工方法,产生的围岩位移可能会区别很大。②软弱围岩隧洞的几何形状。椭圆形或者圆形的隧道的围岩应力主要是以压应力为主,有利于围岩的稳定性。③软弱围岩隧道的工程地质条件。地下工程施工具有复杂的工程地质条件,比如:地下水渗流的影响,当工程地下水含量丰富时,会产生渗透水压力,对地表的变形和围岩变形的影响不可忽视。④工程的进度和工程造价等综合因素。采用不同的软弱围岩隧道工法,由于施工工序、技术条件等不同,对工程的进度和工程造价会有不同的影响,在保证隧道稳定的前提下,采取施工工艺简单,进度快的施工方法有利于加快工程的建设以及节约工程成本。但在大断面隧道中,对地表及围岩变形要求过高,即使造价高,进度慢的施工方法也是需要结合工程实际情况考量选择。 5软弱围岩大变形隧道变形控制技术研究 (1)强化锚杆,强调锚杆施工效率及锚固力发挥的及时性:①合理选择锚杆类型。对于锚杆钻孔后一定时间内围岩能够自稳、不会立刻发生塌孔缩孔的,选用普通中空锚杆;对于锚杆钻孔后孔壁易发生塌孔、无法在钻杆拔出后送入杆体的,选用自钻式中空锚杆。中空锚杆从锚固端部返浆,注浆质量容易控制。②配置专用机械设备。人工机具打设锚杆,角度受限,施工进度慢,质量不易保证,大变形地段应配置高效率的专业锚杆钻机或凿岩台车,可以实现全角度锚杆施工,8~10m长的锚杆施作时间可控制在10~20min。③优化锚杆参数。采用地质雷达、声波测试法等方法探明松动区,明确不同等级、不同断面的隧道围岩松动圈,为确定锚杆参数提供依据。④长短锚杆结合,形成群锚效应。短锚杆施作便捷快速,用于初期变形控制,限制浅部围岩松弛的发展,为长锚杆创造施作时机;长锚杆锚入弹性区,将组合拱支护结构悬吊于深部稳定岩体,使浅部围岩和深部围岩共同作用,协调变形。长短锚杆合理组合,形成群锚效应,可以有效限制隧道围岩的塑性区发展,约束围岩变形速率,保证隧道施工安全。(2)优化工法,尽量少分步,实现大断面开挖,尽早封闭仰拱成环:①掌子面自稳性差时,采用微台阶施工,初期支护尽快封闭成环。②掌子面自稳性较好时,采用台阶法施工,尽量少分台阶,尽可能减少钢架接头等工序衔

隧道大变形段专项施工方案

隧道大变形段 专 项 施 工 方 案

目录 一、编制依据 (1) 二、适用范围 (1) 三、工程概况 (1) 四、隧道变形段总体施工方案 (2) 五、施工方法 (5) 六、监控量测、超前地质预报实施方案 (11) 七、资源配置 (14) 八、质量保证措施 (15) 九、安全保证措施 (16) 十、应急预案 (17)

一、编制依据 1.编制依据 1.1、合同段两阶段施工图设计文件。 1.2、施工总承包合同文件。 1.3、《公路隧道施工技术规范》 1.4、《公路工程施工安全技术规程》 1.5、《公路隧道工程施工技术指南》 1.6、《公路工程施工安全技术规程》 二、适用范围 根据构造断裂带位置,现场围岩地质条件和隧道埋深情况对大变形段落进行预测,右线K74+930~K75+600段、左线ZK74+980~ZK75+660段可能出现大变形。 三、工程概况 隧道端左线5.935km,隧道端右线5.976km,隧道端斜井2.272km,隧道端横洞0.475km,改扩建斜井施工便道1.524km,新建斜井施工便道2.043km。主要工程内容为隧道工程,隧址区呈北东向展布,南东坡向沟谷发育大体多呈V型,沟壁陡直,谷底狭窄,谷坡陡峻,一般坡度为35°,洞身地形中部高,地形起伏大,进、出口地段地形较低,海拔高程657.6~3000m,相对高差约2500m,为构造剥蚀高中山地貌。Ⅲ级围岩以流云岩、白云岩为主,以块状整体结构为主,地下水较发育~发育局部可能出现大股状,岩质硬,埋深400~1900m,可能存在岩爆;Ⅳ级围岩以板岩、变

质砂岩、流云岩、白云岩主为主,岩体呈楔形破碎镶嵌结构,受构造作用强烈,裂隙较发育,岩体较破碎~较完整,隧道开挖易发生掉块或小至中塌方现象,深埋段可能发生强岩爆,地下水不发育以潮湿~滴水状为主;Ⅴ级围岩覆盖层、强风化基岩、断裂破碎带等,岩体以破碎结构为主,洞口风化及构造裂隙发育,岩质软~硬,岩体破碎~较破碎,断裂带,岩体极破碎,呈碎裂结构或碎粒状。受构造作用强烈,褶曲及次级断层发育,围岩可发生岩体大变形,拱部易产生大的坍塌现象,地下水不发育,呈潮湿~滴水状。断裂带可能有股状水流,雨季有产生突泥、涌水的可能。根据构造断裂带位置,现场围岩地质条件和隧道埋深情况对大变形段落进行预测,右线K74+930~K75+600段、左线ZK74+980~ZK75+660段可能出现大变形。 四、隧道大变形段总体施工方案 加强超前地质预报,施工过程中,按三台阶七步法施工,加强监控量测。严格控制开挖进尺,严禁冒进,仰拱及时封闭成环,二衬及时跟进。支护参数及注意事项如下: ①、Da段分外层和内层共双层初期支护,在开挖完成后及时施做外层支护即采用I20b工字钢50cm/榀,辅以φ8钢筋网20×20cm、φ32自进式锚杆长800cm、φ42注浆小导管长400cm环向间距120cm、纵向间距50cm,锚杆与小导管按梅花型相间布设,喷射C25砼26cm,加强监控量测,如围岩变形达到设计预留变形量20cm,且变形没有收敛趋势,立即施做内层支护,否则不施做内层支护,内层支护采用I18工字钢50cm/榀,喷射C25砼20cm。Db段采用I20b工字钢50cm/榀,辅以φ8钢筋网20×

地铁隧道结构变形监测数据管理系统的设计与实现

地铁隧道结构变形监测数据管理系统的设计与实现 摘要:探讨开发地铁隧道结构变形监测系统的必要性与紧迫性。以VisualBasic编程语言和ACCESS数据库为工具, 应用先进的数据库管理技术设计开发地铁隧道结构变形监测数据管理系统。系统程序采用模块化结构,具有直接与外业观测电子手簿连接下传原始观测资料、预处理和数据库管理等功能,实现了测量内外业的一体化。系统结构合理、易于维护、利于后继开发,提高监测数据处理的效率、可靠性以及监测数据反馈的及时性,值得类似工程的借鉴。关键词:地铁隧道;变形监测;管理系统 随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。地铁隧道结构变形监测内容需根据地铁

隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,由规范[1]与文献[2]知,运营期的地铁隧道结构变形监测内容主要包括区间隧道沉降、隧道与地下车站沉降差异、区间隧道水平位移、隧道相对于地下车站水平位移和断面收敛变形等监测。它是一项长期性的工作,其特点是监测项目多、线路长、测点多、测期频和数据量大,给监测数据处理、分析和资料管理带来了繁琐的工作,该项工作目前仍以手工为主,效率较低,不能及时快速地反馈监测信息。因此,有必要开发一套高效、使用方便的变形监测数据管理系统,实现对监测数据的科学管理及快速分析处理。现阶段国内出现了较多的用于地铁施工期的监测信息管理系统[3-4],这些系统虽然功能比较齐全、运行效率较高,能够很好地满足地铁施工期监测需要,但它主要应用于信息化施工,与运营期地铁隧道结构变形监测无论是在内容还是在目的上都有着很大的区别和局限性。而现在国外研究的多为自动化监测系统[5-6],也不适用于目前国内自动化程度较低的地铁隧道监测。此外,能够用于运营期并符合当前国内地铁隧道结构监测实际的监测数据管理系统还较为少见。因此,随着国内建成地铁的逐渐增多,开发用于运营期地铁的变形监测数据管理系统变得越来越迫切。为此,根据运营期地铁隧道结构变形监测内容[1-2]和特点,以isualBasic作为开发工具[7],应用先进的数据库管理技术[8],以目前较为流行的

隧道变形因素及治理方法探讨

隧道变形因素及治理方法探讨 摘要:文章以南京地铁一号线工程为例,针对隧道变形因素展开分析,并且从 金马区间隧道、雨-元区间隧道两个方面提出治理建议,目的在于加快施工速度,保证施工质量,真正解决隧道变形问题。 关键词:隧道变形;南京地铁一号线;地层软弱 改革开放几十年来,我国经济发展迅速,城市化进程很快,城市人口大量增长,交通拥堵问题在许多大城市日益严重。随着地铁的开通运营,各城市地铁隧 道或多或少出现了一些变形与病害,主要包括不均匀沉降、渗漏水、裂缝、道床 隆起等,这些隧道病害几乎在各城市开通运营的地铁线路中都有发生。因此,研 究地铁隧道病害的现状及其治理措施对于既有地铁工程和在建工程都具有重要的 理论和实际意义。 1 工程概述 南京地铁一号线西延线位于秦淮河以西地区,隧道线路起于河西新城奥体中心,沿乐山路西侧向南直行,至乐山路、河西大道交汇路口左转向东,沿河西大 道南侧东行,最后到达一号线小行站的西端。线路全长为4.8km,其中,地下线 里程为3.9km,过渡段里程为0.3km,高架线里程为0.57km,共设有奥体中心、 元通、中胜3座地下车站。地形较平坦,隧道结构采用明挖法施工,基坑深度为 9-12m,底板主要处于软~流塑淤泥质粉质粘土层中,该土层土质差、厚度大、含 水量高,具有低强度、高压缩性、高灵敏度、易蠕变等特征。 2 隧道变形原因分析 截止到2013年底,北京、上海、广州、天津等21个城市,已经开通运营的 地铁线路总长超过2500公里(如图1)。引起隧道结构沉降的原因有很多,如沿线地质因素(土体性质、土层分布等)、隧道施工工艺、周边工程施工、地下水 开采、地面堆载、地铁运营荷载以及隧道渗漏水等。经排查发现,南京地铁一号 线西延线周围较为荒芜,周边道路施工及建筑物施工很少,经行车辆也不多,结 合地质勘查资料、监测数据和实际工程情况,分析认为该区段发生沉降的主要原 因是地层软弱,即地层软弱区段隧道沉降也大。此外,软弱土质在后期施工扰动、运营荷载以及渗漏水的影响下,最终导致了西延线地铁隧道发生较大沉降变形和 隧道结构病害。 图1 已开通地铁的城市及其运营线路的长度(截止2013年) 3 隧道变形治理方法 3.1 金马区间隧道变形及治理方法研究 金马区间地铁隧道沿线地质情况良好,周边建筑物、道路施工情况较少,经行车辆也不多,因此,最终经排查发现,金马区间隧道变形的主要原因为隧道上方有超高覆土,由于受 该外加荷载的影响造成隧道结构破坏。该堆土为外部建设单位施工的弃土,覆土高度超出原 有隧道设计承受的标高3至8米,土方量约2万立方。该区间原先上部覆土厚度为5-8m,管片配筋设计按照10m覆土计算,现今堆土厚度已达14m,远远超过设计荷载。 对于南京地铁二号线金马区间隧道发生的病害情况,地铁公司十分重视,立即组织技术 力量,迅速开展综合治理工作。为保证隧道损坏不再加剧,控制病害发展,具体的加固措施为:①对于收敛变形较大(变形量大于1.15%D)的管片,采用钢环加固;②对管片开裂不 严重、收敛变形不大的管片采取粘贴芳纶布的措施;③对管片纵环缝进行注浆封堵,拱顶注 浆材料为刚性环氧树脂,两侧注浆材料为弹性环氧树脂。为减少运营损失,缩短工期,经综 合考虑后决定对钢环采用全机械手安装。施工主要流程为:前期施工——拼装阶段(地铁停运)——后期结尾工作;前期施工主要包括:(1)芳纶布粘贴;(2)环、纵缝封堵;(3)

软岩隧道大变形成因分析及处置措施

软岩隧道大变形成因分析及处置措施 摘要:本文对软岩隧道大变形机理进行分析,详细介绍了软岩地区常见的支护 设计和软岩区施工阶段的质量控制措施,以解决当前施工阶段出现的问题,以期 为软岩区隧道建设提供借鉴和参考。 关键词:软岩隧道;大变形;成因分析;处置措施 0 引言 由隧道大变形引起的地质灾害屡见不鲜,困扰着软岩区隧道的建设。首例出 现软岩大变形的隧道是1906年建成的新普伦隧道(全长19.8Km),比较有代表 性的是奥地利陶恩隧道,施工期间产生50~120cm的变形,日最大变形量达到 20cm。国内比较有代表性的有乌鞘岭隧道,拱顶沉降达到105cm,周边收敛达到103cm,而凉风垭隧道的周边收敛值达到197.25cm,此类的地质问题还有许多, 软岩隧道不仅延长建设的周期,而且还会大幅增加工程造价。软岩隧道的支护理 论有多种,20世纪初由Haim、Rankine等提出的古典压力理论,以及在之后提出 的塌落拱理论,这也是新奥法的理论基础,其核心是隧道围岩具有自稳能力, L.V.Rabcewicz提出新奥地利隧道施工方法(即新奥法),其后还有应变控制理论、能量支护理论、轴变论、软岩工程力学支护理论等。近年来结合数值模拟技术, 可以对隧道变形进行初步的了解,提高设计的准确性,在施工技术、监测手段上 也取得较大的发展,复合式衬砌、超前支护等应用于隧道工程中,高精度、自动化、智能化的监测设备用于隧道变形和应力监测[1]。 1 隧道围岩大变形机理 1.1 软岩大变形的工程定义 目前对于围岩大变形尚未有明确的定性和定量判断依据,只是根据地质条件,以某一角度进行判断,而在实际的工程中,软岩大变形并未列入规范中。软岩区 隧道产生大变形与地质条件、时间、隧道的尺寸规模、埋深等有着密切关系,根 据以上的影响因素,本文对软岩大变形给出如下定义:软弱围岩在水(包括地下 水和地表渗水)的作用下,采取常规的支护设计,围岩产生塑性变形,且无法有 效控制,其变形量已经超过预留变形量或者规范的允许值,或者具有这种趋势, 当二衬施工工后一段时间内,变形仍不稳定,且导致衬砌结构开裂的现象称为软 岩大变形。 1.2软岩大变形机理 围岩产生大变形破坏取决于岩性,即岩体的性质、构造与结构,其次是围岩 的地质环境,即地应力、地下水分布等,与支护参数也有较大的联系。围岩大变 形发展机理可以归纳为以下几点: ⑴软岩流塑 隧道的开挖会改变围岩的应力状态,围岩的应力状态随开挖而调整,在此过 程中岩体中闭合的结构面会不断的张开,产生滑移,岩体进一步破碎,此时地下 水进入张开的结构面,进一步弱化岩体的强度,导致岩体呈流塑状态而产生较大 的周边收敛。 ⑵板梁弯曲 对于呈薄层状的围岩,在开挖后,其顶板变形呈弯曲状态,这一现象在高地 应力地区更为明显。隧道的法向应力降低而切向应力增加,层状的岩体发生横向 或者纵向挠曲,引起顶板和地板在垂直应力作用下引起顶板下沉和底板的隆起, 侧墙在侧向应力作用下产生较大的收敛。

软岩大变形隧道初期支护钢拱架纵向锁定工法

软岩大变形隧道初期支护钢拱架纵向锁定工法 1 前言 兴源隧道位于黑龙江省穆棱市兴源镇境内,起讫里程DK409+090~DK412+517,全长3427m,为双线隧道。隧道所处地质条件十分复杂,有断层、软岩破碎带等不良地质体存在,在隧道施工过程中,由于地质条件的影响,工程的掘进速度受到一定的影响;能否通过厚度较大的软岩断层破碎带,对于初期支护结构的变形控制提出了很高的要求。由中铁二十二局、兰州交通大学等合作单位针对该项目难点成立专门的课题研讨组,形成了一种新型的初期支护中钢拱架纵向连接结构,改变以往连接筋的受力偏弱的状态,提高钢拱架的抗扭性能,从而增强初期支护对围岩变形的约束能力的研究成果。经过鉴定达到了国内领先水平,形成了一系列关键施工技术,申请了一项实用型专利(软岩隧道大变形控制初期支护中钢拱架纵向连接结构),并结合施工工艺、组织管理等,编写了《软岩大变形隧道初期支护钢拱架纵向锁定工法》。 2 工法特点 2.0.1采用这种新型的软岩隧道大变形控制初期支护中钢拱架纵向连接结构,增大了纵向连接构件与钢拱架腹板焊接的有效面积,提高了相邻两榀钢拱架之间的纵向连接能力,增加了钢拱架体系的抗扭能力和整体稳定性,使隧道初期支护对围岩变形的约束能力有了较大的提高。 2.0.2 能有效地控制围岩变形,与围岩形成一个整体,充分发挥围岩的自承能力。 2.0.3能应用量测监控等信息化管理方法指导施工,使整个施工过程均处于受控状态。 2.0.4 施工作业简便,不需用特殊的施工机械和设备。 2.0.5 适用于各种不同的软弱围岩地层,适用范围广。 3 适用范围 本工法适用于各类在初期支护中配置钢拱架的软弱破碎围岩隧道施工,也适用于其它类似的地下工程。 4 工艺原理 通过采用14a号槽钢代替Φ22或Φ25螺纹钢筋进行初期支护中钢拱架的纵向连接,增加了焊接有效面积,加强了钢拱架的纵向连接,提高了初期支护中钢拱架的整体抗扭能力,增加了钢拱架的整体稳定性,提高了隧道初期支护对围岩变形的约束能力,有效的抑制了围岩的变形。 5 施工工艺流程及操作要点 5.1 施工工艺 参见图5.1.1-1和图5.1.1-2,本实用新型是软岩隧道大变形控制初期支护中钢拱架纵向连接结构,包括钢拱架(1)、钢拱架(2)、纵向连接槽钢(3),其特征在于:采用槽钢(3)将钢拱架(1)和钢拱架(2)沿着环向相隔一定距离在纵向连接在一起,纵向连接槽钢(3)的两端分别焊接在钢拱架(1)和钢拱架(2)

地铁隧道结构变形监测方案

地铁隧道结构变形监测方案 一、工程概况 珠江新城海心沙绿化改造及地下空间(三区)基础工程位于珠江新城海心沙区域的西部,正在运营的地铁三号线“珠江新城?赤岗塔”区间盾构隧道在该工程的地下由西北向东南通过。该工程位于地铁隧道上方的地基基础主要为直径 1.6和2.2米的钻(冲)孔灌注桩基础,桩底高程约为-23.35?-20.7米(广州城建高程),并设置横、纵向转换梁支撑跨越地铁隧道的上部主体结构,最大的转换梁梁底高程约 2.70米。 经核查,位于地铁隧道两侧的钻(冲)孔桩与地铁隧道的最小水平净距约2.90米,位于地铁左、右线隧道中间的钻(冲)孔桩与地铁隧道的最小水平净距约 2.60米。横、纵向转换梁梁 底与地铁隧道结构顶面之间的最小垂直净距约为15.50米。该工程范围内的地铁隧道结构顶面高程约-13.15米,地铁隧道结构底 高程约-19.35米。 二、监测目的 正在运营的地铁三号线“珠江新城?赤岗塔”区间盾构隧道在该项目看台工程的地下由西北向东南通过,在地铁隧道结构外 侧左右垂直距离15.0米范围内的看台工程桩及上部主体施工过程中,可能对地铁隧道结构产生变形、倾斜、位移、隆起或沉降等方面的影

响。受广州新中轴建设有限公司的委托对此区间的盾构隧道进行变形监测和裂缝监测。主要目的是: 1、了解各种因素对地铁盾构结构变形等的影响,为有针对性地改进施工工艺和修改施工参数提供依据; 2、预测地铁隧道结构的变形趋势,根据变形发展程度,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据; 3、了解上部工程施工过程中地铁隧道结构有无裂缝情况及其变化规律; 4、建立预警机制,避免结构和环境安全事故造成不必要的损失; 5、施工过程中,根据监测数据分析,及时反馈信息、指导施工,为地铁的安全运营提供可靠保障。 三、遵循的监测技术及方案编制依据 3.1遵循的技术为TPS极坐标差分法 该方法采用瑞士Leica公司的具有ATR (自动目标识别) 功能的TCA系列的全站仪(又称测量机器人),进行极坐标差分作业。 TCA2003全站仪,其标称精度测角为土0.5〃,测距为土(1mm+1 X 10-6 x D); TCA1800全站仪,其标称精度测角为土T,测距为土(1mm+2 X 10-6 x D), 该系列仪器能对目标进行自动搜索、自动照准、自动观测,

相关文档
最新文档