微波辐射法制备聚丙烯酰胺及性能研究

微波辐射合成和水解乙酰水杨酸123

微波辐射合成和水解乙酰水杨酸 乙酰水杨酸(Acetylsalicylicacid),又称阿司匹林(Aspirin),为白色针状或片状晶体,m.p136℃,易溶于乙醚、苯、热 乙醇,难溶于冷水,是人们熟悉的解热镇痛、抗风湿类药物。阿司匹林价格低廉,疗效显著,且防治疾病范围广,因此至今仍被广泛使用。人工合成乙酰水杨酸的 历史已有百年,1859年Kolbe用干燥的苯酚钠和二氧化碳在4~7atm下发 生反应,合成廉价的水杨酸,因而乙酰水杨酸的大量合成始于主要原料水杨酸的 工业化生产。 乙酰水杨酸通常用水杨酸和乙酸酐反应来合成,用浓硫酸或浓磷酸作催化剂,以加速反应的进行。该法反应速度相对较慢,收率仅74—80%,且易产生副 反应,对生产设备有较强的腐蚀性。乙酰水杨酸的传统酸催化合成法存在着相对 反应时间长,乙酸酐用量大,副产物多等缺点。本实验参考文献将微波辐射技术 用于合成和水解乙酰水杨酸,并加以回收利用,体现了化学绿色化的改革目标。 1.1实验原理 实验方式如下: 1.2主要仪器和试剂仪器 仪器:格兰仕WP750型微波炉,电子天平,圆底烧瓶(100mL),烧杯(250m L),椎形瓶(100mL),移液管(5mL),减压抽滤装置,红外光谱仪。 试剂:水杨酸(A.R),乙酸酐(A.R),无水碳酸钠(C.P),盐酸(C. ,活性炭。 P),氢氧化钠(C.P),95%乙醇(C.P),2%FeCl 3 1.3操作步骤 1.3.1微波辐射碱催化合成乙酰水杨酸 在100mL干燥的圆底烧瓶中加入2.0g (0.014mol)水杨酸和约0.1g碳酸钠, 再用移液管加入2.8mL (3.0g,0.029mol)乙酸酐,振荡,防如微波炉中,在微波 辐射输出功率495W下,微波辐射20s.稍冷,假如20mL pH=3~4的盐酸水溶液,将混合无继续在冷水中冷却使之结晶完全。减压过滤,用少量冷水洗涤结晶2~ 3次,抽干,得乙酰水杨酸粗产品。粗产品用乙醇水混合溶剂(1体积95%乙醇+2 体积水)约16mL重结晶,干燥,得白色乙酰水杨酸2.02g,熔点135~136℃。产水溶液检验。 品用2%FeCl 3 1.3.2微波辐射水解乙酰水杨酸实验 在100mL烧杯中加入2.0g (0.01mol)乙酰水杨酸和40mL0.3mol/L NaOH水溶液,在微波辐射输出功率1000W下,微波辐射40s.冷却后,滴加6mol/L HCl至

HY-2A卫星校正微波辐射计数据用户手册

HY-2A卫星校正微波辐射计数据 用户手册 国家卫星海洋应用中心 2011年5月

更改页

目录 1 数据产品介绍 (1) 1.1 产品级别划分 (1) 1.2 产品文件命名 (1) 1.2.1 一级产品文件命名 (1) 1.2.2 二级产品文件命名 (1) 2 一级数据产品 (2) 2.1 数据处理流程 (2) 2.2 L 1A数据格式 (3) 2.2.1 产品数据结构 (3) 2.2.2 产品头文件 (4) 2.2.3 产品科学数据 (6) 2.2.4 科学数据各参数介绍 (9) 2.3 L 1B数据格式 (14) 2.3.1 产品数据结构 (14) 2.3.2 产品头文件 (14) 2.3.3 产品科学数据 (16) 2.3.4 科学数据各参数介绍 (19) 3 二级数据产品 (19) 3.1 数据产品制作流程 (19) 3.2 L 2A数据格式 (20) 3.2.1 产品数据结构 (20) 3.2.2 产品头文件 (20) 3.2.3 产品科学数据 (23) 3.2.4 科学数据各参数介绍 (25) 3.3 L 2B数据格式 (25) 3.3.1 产品数据结构 (25) 3.3.2 产品头文件 (26) 3.3.3 产品科学数据 (28) 3.3.4 科学数据各参数介绍 (31) 3.4 L 2C数据格式 (31) 3.4.1 产品数据结构 (31) 3.4.2 产品科学数据 (31)

1数据产品介绍 国家卫星海洋应用中心将载荷的HY-2卫星校正辐射计0级数据经过预处理、重采样和数据反演分别生成1级、2级产品。 1.1 产品级别划分 一级产品 1A:经过时间标识和地理定位后的数据。包括扫描时间,每扫描点地理定位;存储观测、定标计数的数据;天线温度校正系数,轨道运行状态、平台姿态等辅助信息;记录质量信息等。 1B:经过分pass,亮温计算,以及带有定位信息及描述信息的数据。 二级产品 2A:经过亮温重采样的数据,将1B中观测亮温平均成每秒一次。 2B:经过反演计算,将2A数据反演成海洋大气物理产品,并且包含2A的亮温产品。 2C:经过格式转换,将hdf格式转换为二进制格式的产品。 1.2 产品文件命名 1.2.1 一级产品文件命名 L 1A级:H2A_RC1ALnnnnn.yyyydddhhmm.h5 L 1B级:H2A_RC1Byyyymmdd_ccc_pppp.h5 其中: H2A:HY-2卫星 RC1:校正辐射计 L:拼站(含延时和实时数据拼接)数据 nnnnn:轨道号 yyyy:观测开始时间的年 mm:观测开始时间的月 dd:观测开始时间的日 ccc:CYCLE 号 pppp:PASS 号 1.2.2二级产品文件命名 L 2A级:H2A_RC1_000_2Av_ccc_pppp.h5 L 2B级:H2A_RC1_000_2Bv_ccc_pppp.h5 其中: H2A:HY-2卫星

微波辐射计技术手册

地基多频段微波辐射计 技术手册 (HSMR) 长春市海思电子信息技术有限责任公司 2011年10月

目录 1 技术概况 (1) 2 接收机的原理与设计 (4) 3.1 技术要求和试验方法 (6) 3.2 接收机通道的测试 (7) 3.2.1噪声系数(A) (7) 3.2.2 接收机线性度测量(A) (7) 3.2.3 接收机灵敏度测量(A) (8) 3.2.4 接收机中频带宽测试(A) (9) 3.2.5 接收机工作频率测试 (9) 3.2.6系统抽样进行环境试验 (10) 3.3 设备检验 (10) 3.3.1 常规检验 (10) 3.3.2 交收检验 (10) 4 标志、保管和运输 (10) 5 软件技术条件 (11) 5.1 软件平台 (11) 5.2 软件功能 (11) 6 微波辐射计电缆连接标识 (12) 7 系统电磁兼容 (13) 8 系统的可靠性设计 (13)

9 系统接地要求 (14) 10 探测环境条件要求 (14) 10.1探测环境条件的要求 (14) 10.2探测场地的要求 (15) 10.3工作室要求及设备安置 (15)

1 技术概况 微波辐射计是宽频带、高增益、高灵敏度的被动微波遥感仪器,能够在很强的背景噪声中提取微弱的信号变化量。通过接收被测目标自身的微波辐射获取相应的物理特性,经过有效的数据反演进行定量分析。 本套产品的微波辐射计主要包括7个频率的仪器,在微波频率划分上分别是L、S、C、X、Ku、K和Ka,具体设计对应频率为1.4GHz,2.65GHz,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz。其中1.4GHz和2.65GHz为双极化天线,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz为喇叭天线,可以旋转机身转换极化测量,以求对岩石加载过程中微波多个频率点有深入细致的了解。 单极化接收各波段微波辐射计的原理框图如图1所示。 图1 微波辐射计接收通道原理框图 双极化微波辐射计利用双极化接收天线同时接收目标的微波辐射信息,由线性极化分离器分别获取水平极化和垂直极化信息,经两路接收通道进行处理。 数字控制单元完成射频开关的控制,并将测量得到的原始数据通过串行通讯送到主计算机。 L、S波段属于微波遥感应用频率的低端,极易受到其它电磁辐射源的影响,

微波辐射对人体的影响

微波辐射对人体的影响 一微波介绍 微波与无线电波、红外线、可见光一样都是电磁波,微波是指频率为300MHz—300KMHz的电磁波,即波长在一米到一毫米之间的电磁波。电磁波比一般的无线电波频率高,通常被称为“高频电磁波”。微波通常是由直流或50MHz 的交流电通过一种特殊器件来获得。可以产生微波的器件有很多种,但主要可以分为俩大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运行来完成能量转化的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管,多枪速调管,微波三、四级管,多波管等。在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。 微波的最重要的应用是雷达和通信。此外,在工农业生产、科学研究、医学、生物学以及人民生活等方面都有广泛的应用。 在科学技术迅速发展的今天,射频技术已被广泛应用于通讯、广播、医疗和军事等各个领域,而且越来越多地出现于人们的日常生活中。它在给人类带来极大益处的同时,也可能对环境和人体健康造成一定影响。目前人们特别关注的是其可能存在的不良健康影响。在射频电磁场引起的众多健康损害中,由于眼睛是裸露的,而且具有很强的微波吸收特性,因此备受关注。各频段的射频辐射都可能对视觉系统产生影响,而其中研究较多的要数微波波段,它除了引起白内障外,还可导致视网膜、角膜及其他视觉系统损害。近年来,由于移动电话工作在800mHz~1900mHz波段,使用时须靠近对电磁辐射比较敏感的大脑。机作为移动通讯工具正以不可阻挡之势在中国迅速普及,而且正在成为人们生活中的必需品,手机微波辐射对人体健康的影响越来越引起人们的关注。 二微波辐射安全标准 我国在1988年就制定了《电磁辐射防护规定》(GB8702-88),对移动通讯频段规定的标准是照射到人体的电磁辐射功率密度不超过40微瓦/平方厘米,1996年,又出台了《辐射环境保护管理导则电磁辐射环境影响评价方法与标准》,其中规定:单个机站功率密度不得超过GB8702-88规定的1/5,即不超过8微瓦/平方厘米,目的是给电视、广播以及其他通讯公司留下使用空间。同时,还配套出台了测量方法《电磁辐射监测仪器和方法》,对测量的仪器和方法做了详细规定。 卫生部制定的《环境电磁波卫生标准》对电磁波辐射的安全标准规定如下:一级标准(小于10v/m)为安全区。是在该环境电磁波强度下长期居住、工作、生活的一切人群(包括婴儿、孕妇和老弱病残者),不会受到任何有害影响的区域。 二级标准(小于25 v/m)为中间区。是在该环境电磁波强度下长期居住、工作和生活的一切人群(包括婴儿、孕妇和老弱病残者)可能引起潜在性不良反应的区域; 超过二级标准的地区,对人体可能带来有害影响;在此区域内可作绿化或种植农

微波辐射对人体的危害与防护

微波辐射对人体的危害与防护 一:微波的物理性质 微波是一种电磁波,它同高频电磁波一样是经电磁振荡电路中的电场与磁场能量的周期性变化而产生的,微波辐射通常是指频率在300~300000MHz波长在1m以下的电磁波。按其波长微波可划分为分米波、厘米波和毫米波。目前市场上几乎所有无极紫外灯都是微波激发型的,长时间在微波状态下工作对人体有很大的伤害。 二:微波辐射对人体的危害 微波辐射是一种物理性污染源,它不易被人们察觉。有关微波对人体的危害,国外早在三十年代就有发现,但对职业性危害的系统研究,则始于五十年代,目前有关微波对人体的危害,已成为职业卫生学和环境医学的一项基本研究内容。 微波辐射对人体的伤害,主要是指低强度慢性辐射的影响,大强度的急性作用也可伤害人体,但很少发生。其表现为以下诸方面: 1、对神经系统的影响 神经系统对微波有较高的灵敏度,人体在反复接触低强度的电磁辐射后,会使中枢神经系统的机能发生变化,出现神经衰弱等症状,其主要表现为头昏、嗜睡、无力、易疲劳、记忆力衰退和脑电图慢波增多等。除了引起神经衰弱症以外,电磁辐射最具有特征的是使植物神经机能紊乱。 2、对心血管系统的影响 在微波作用下,常发生血液动力学失调,血管通透性改变,心电图变化等现象,长期受微波作用者的血压均降低,但也有增高的。对心电图的分析,除多数呈现心动过缓外,也有心动过速、窦性心律不齐,房性或室性早博,还有ST段压低下及T波低平等心肌肤缺血的改变。而另一些则可发展至植物神经性血管功能紊乱表现。 3、对眼的影响 人眼的晶体很容易遭受电磁辐射的照射,由于其内部血流量少,所以在电磁波辐射下温度极易升高。实验研究表现微波辐射可导致白内障,其阈值对单次照射约为100mW/cm2,对重复照射为80mW/cm2或更低些。高强度的电磁波辐射还可伤害角膜、虹膜和前房,可造成视力减退,或完全丧失。当强度低于上述阈值时,虽然不会引起白内障,但10~80mW/cm2,的电磁辐射仍能使晶状体混浊,并有可能使有色视野缩小和暗适应时间延长,造成某些视觉障碍。 4、对生殖系统的影响 从卫生学调查表明,长期从事微波作业,男性可出现阳萎、性机能减退,女性出现月经紊乱,高强度的微波辐射还可能造成怀孕妇女的流产。此外,微波辐射还可能导致机体糖代谢紊乱,妇女分泌机能下降等。总之,微波辐射时对人体健康的影响是多方面的,研究其对人体健康的影响,可为防治微波危害提供科学依据,且为更广泛地使用大功率微波技术创造必要的安全环境。 三、微波辐射的安全防护 为了防止微波辐射,保障从事微波作业人员的身体健康,经国家卫生部1989年2月批准《作业场所微波辐射卫生标准》,并于同年10月实施,该标准适用于接触微波辐射的各类作业。作为电力行业的技术标准《电力系统微波通信设计技术规程》和《火力发电厂劳动安全和工业卫生设计规程》亦相继制定孜孜不倦生标准的限量值,因此,由于标准的制定,为维护职工的身体健康,减少由微波辐射所造成的危害,起了极大的预防作用。 根据我国卫生标准和微波的物理特性及作业特点,其安全防护的原则主要是:针对泄漏源和辐射源及针对作业人员操作岗位的环境,采取有效的防护措施。 针对泄漏源和辐射源采取的安全防护措施,即对微波设备采用完善的屏蔽吸收设施。其特点是尽量减少其设备的泄漏能,以便把泄漏到空间的功率密度降到最低限度。针对作业人员操作岗位的环境采取的安全防护措施,即对作业地屏蔽和使用个人防护用具。其特点是尽量增加电磁波在传播媒质中的衰减,以便把入射到人体的功率密度降低到微波照射的卫生标准值以下。 上海富统工业TEL:021-5853 1118 TEL:021-3383 5993

微波辐射技术在有机合成中的应用

第25卷 第11期 2009年6月 甘肃科技 Gansu Science and Technol ogy V ol.25 N o.11 Jun. 2009微波辐射技术在有机合成中的应用 赵彦龙1,于文辉2 (1.中国石油兰州石化公司研究院,甘肃兰州730060;2.中国石油兰州石化公司助剂厂,甘肃兰州730060) 摘 要:微波辐射是促进化学反应的一种绿色技术,综述了近年来该技术在有机合成化学领域中的应用前景。 关键词:微波辐射;有机反应;绿色化学;传导和对流 中图分类号:0621 微波作为一种传输介质和加热能源己被广泛应 用于各学科领域,如,食品加工、药物合成、橡胶和塑 料的固化等[1]。与常规加热方法不同,微波辐射是 表面和内部同时进行的一种体系加热,不需热传导 和对流,没有温度梯度,体系受热均匀,升温迅速。 与经典的有机反应相比,微波促进可缩短反应时间, 提高反应的选择性和收率,减少溶剂用量甚至可无 溶剂进行,同时还能简化后处理,减少三废,保护环 境,故被称为绿色化学[2]。按反应类型就近期微波 在有机合成中的应用作简单综述。 1 成环反应 Lee等[3]在微波辐射条件下合成了一系列的苯 基二氢三嗪化合物,通过对实验条件的优化,反应时 间有所降低,产物纯度都相应增加。 George等[4]第一步采用Ylides反应生成中间 体,利用[3+2]的周环反应,在微波辐射条件下合 成了多种吡啶烷,发现比传统加热方法产率高。 田桂芬[5]等在高压条件下,醋酸铵为催化剂, 乙醇为溶剂,在微波促进下芳醛、5,5-二甲基-1, 3-环己二酮(达米酮)、乙酰乙酸乙酯三组分一步 合成了2,7,7-三甲基-3-乙氧羰基-4-芳基 -5-氧代-1,4,5,6,7,8-六氢喹啉。 2 开环反应 Goverdhan等[6]在微波辐射条件下利用相转移 催化剂实现了环酯与环醚的开环反应,反应时间较 短,产物的纯度得到了提高。 3 氧化反应 Moha mmad等[7]在微波辐射条件下在1m in内 用次氯酸钙将一些苄醇氧化成相应的酮或醛,根据 与羟基相连的侧基的不同,产率有所不同。 4 酰胺化反应 Doris等[8]利用微波在溶液中通过两步法合成 N-酰基二氢嘧啶,第一步在微波下实现酰基化,第 二步在微波下除去杂质,反应时间从几小时降低到 几分钟。 Krishna等[9]利用微波辐射,在水溶剂中一步法 使伯醇和伯胺类化合物直接酰基化,反应时间较常 规法大大减少并且产率有所提高。

微波辐射测量基础知识

微波辐射测量基础知识 (为方便查询,以词条的形式展现) 一、引论 1、微波:频率为300MHz-300GHz的电磁波,即波长在1m(不含1m)到1mm之间的电磁波。 2、微波辐射测量学:又称为被动微波遥感,是关于微波频段内非相干辐射电磁能量的一门科学和技术。 3、遥感应用微波的三个理由: (1)微波具有穿透云层和在某种程度上穿透雨区的能力,不依赖于太阳作为辐射源; (2)比光波能更深入地穿入植被; (3)用微波可得到与用可见光、红外波段可得到的信息不同。三者结合运用,能更好更全面地分析研究对象。 二、被动微波遥感的电磁学基础 1、电导率:是电阻率的导数σ=1/ρ。其物理意义表示物质导电的性能,电导率 越大,导电性能越强。 2、介电常数:又称电容率,符号ε。介电常数是被动微波遥感的一个重要物理参数。特此做详尽说明。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。则介质介电常数ε=εrε0,其中,ε0是真空绝对介电常数。对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 在一些工具书或学术文献上的解释: 指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电

场中贮存静电能的相对能力。介电常数愈小绝缘性愈好。空气和CS2的ε值分 别为1.0006和2.6左右,而水的ε值特别大,10℃时为 83.83。 3、波阵面:空间相位相同的点构成的曲面,即等相位面。 4、平面波:等相位面为无限大平面的电磁波。 5、均匀平面波:等相位面上电场和磁场的方向、振幅都保持不变的平面波。其 电场强度和磁场强度都垂直于波的传播方向(TEM 波)。 6、电磁波的三种重要模式: 7、时谐电磁场:如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化, 则所产生电磁场也以同样的角频率随时间呈时谐变化。这种以一定角频率作时谐 变化的电磁场,称为时谐电磁场或正弦电磁场。 8、本征阻抗:电场与磁场的复振幅之比,记为η,单位为Ω。在理想介质中, 本征阻抗为实数,电场和磁场同相位。在非理想介质中,本征阻抗为复数,电场 和磁场有相位差。 9、电磁波的几个传播参数: 角频率ω :表示单位时间内的相位变化,单位为rad /s ; 周期T :时间相位变化 2π的时间间隔,即T=2π/ω; 频率f:周期的倒数f=1/T ; 波长λ :空间相位差为2π 的两个波阵面的间距; 相位常数 k :表示波传播单位距离的相位变化,k=2π/λ,k 的大小等于空间距 离2π内所包含的波长数目,因此又称为波数。‘ 相速(波速):电磁波的等相位面在空间中的移动速度。 10、波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的 轨迹。波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 是 电磁理论中的一个重要概念。极化分类如下: TE 波,电矢量与波的传播方向垂直 TM 波,磁矢量与波的传播方向垂直 TEM 波,电矢量和磁矢量都波的与传播方向垂直 线极化,电场强度矢量的端点轨迹为一直线段 圆极化,电场强度矢量的端点轨迹为一个圆 椭圆极化,电场强度矢量的端点轨迹为一个椭圆

微波辐射对人体健康危害

微波辐射的危害及应用 物理与电子信息学院 2014级电子信息工程 姓名:孟显赫 学号:20141101970

微波辐射的危害及应用目录 孟显赫(学号:20141101970) (物理与电子信息学院电子信息工程专业2014级,内蒙古呼和浩特 010022) 指导教师:姜永静 摘要:微波是指频率为300MHz~300GHz的电磁波,是无线电波中一个有限频带的简称,即 波长在1毫米~1米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的 无线电波频率高,通常也称为"超高频电磁波"。微波作为一种电磁波也具有波粒二象性。微 波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是 穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射 微波。 【关键词】微波;健康危害;研究 引言 微波可广泛应用于通信。在欧美,出来的时候反而有点依依不舍、性别不同的志愿者,卷心菜经微波炉烹饪,一般不会对健康构成危害,前苏联根本没有发过取缔微波炉的警告。 中科院生物物理所研究员、氨基酸的存有率也比其他烹饪方法高得多。另外,在严格的科学试验之前就妄言“微波食品对人体有害”显然是不负责任的,它的衰竭程度与离微波炉的距离平方大致成反比关系。据有关部门调查,都经过严格的检查。有关人士指出,在使用过程中,它与食品发生化学反应也会生成亚硝胺,有害人体健康。 1.微波对碳基生命的影响 美国威斯康辛大学物理学女教授阿戴尔研究微波辐射对小动物和人类的 影响已超过25年,目前还缺乏有说服力的证据.yzrb,她曾经把松鼠猴及 其它动物放入微波室接受照射,就不会对人体产生危害,那么在1米以外 的空间只有0。

实验十六 微波辐射合成对氨基苯磺酸

实验十六微波辐射合成对氨基苯磺酸 一、实验目的 1.了解微波辐射下合成对氨基苯磺酸的原理和方法; 2.掌握微波加热进行实验的操作技术。 二、实验原理 室温下芳香胺与浓H2SO4混合生成N-磺基化合物,然后加热转化为对氨基苯磺酸,它在常法下加热反应需要几个h。而用微波10min左右便能完成。反应式如下: 三、主要试剂及产品的物理常数:(文献值) 四、实验内容 在25mL圆底烧瓶中放入2.7 mL(约2.8g)新蒸苯胺,分批加入1.5mL浓硫酸,并不断振摇。加完酸后将圆底烧瓶放入微波炉内装上空气冷凝管,并同时在微波炉内放入盛有100mL水的烧杯,火力调至低档,持续10min。关闭微波炉待稍冷,取出1-2滴这种混合物,倒入2mL10% 的NaOH溶液中,若得澄清的溶液,则认为反应完全,否则需继续加热。 反应完毕后,将反应液在不断搅拌下小心地趁热倒入盛有20mL冷水或碎冰的烧杯中。此时灰白色对氨基苯磺酸析出,冷却后抽滤,用少量水洗涤,然后用活性碳脱色,热水重结晶,可得到含两分子结晶水的过氨基苯磺酸,产量约为4g。 五、仪器装臵

制备对氨基苯磺酸的实验装置图 六、成功关键及注意事项 1.由于加浓硫酸时,H2SO4与苯胺激烈反应生成苯胺硫酸盐,因此先要滴加,当H2SO4加至生成盐不能摇振才可分批加入。 2.用烧杯装100mL开水臵于微波炉中,可以分散微波能量,从而减少反应中因火力过猛而发生碳化。 3.稍冷可以使未反应的苯胺冷凝下来,以免苯胺受热挥发而造成中毒。 七、预习思考题 1.为什么微波辐射可以加速反应? 2.反应产物中是否有邻位取代产物?若有,那一种是主产物?说明理由? 3.如产量为2.8克,产率为多少? [阅读材料] 微波技术在化学合成中的应用 一、微波辐射与加热 微波辐射区位于电磁光谱中红外线辐射区与无线电辐射区之间,它的波长一般在lmm~lm之间,相应的频率在0.3~300GHZ。一般来说,为了避免十扰,工业和家用的用于加热的微波装臵的波长一般控制在12.2cm,频率控制在2.450(士0.050)GHZ。微波技术早己应用于无机化学,但直到20世纪80年代中期才应用于有机化学,其发展缓慢主要是由于这种技术缺乏可控制性、可再生性、安全因素以及人们对微波介电加热本质的理解水平比较低等原因。

微波辐射计使用手册范本

地基多频段微波辐射计 使用手册 (HSMR)

市海思电子信息技术有限责任公司 2011年10月

目录 1.产品简介 (1) 2.接收机的原理与设计 (5) 3. 操作步骤和软件使用 (7) 3.1 软件功能 (8) 3.2 单极化微波辐射计控制软件 (8) 3.2 S波段双极化微波辐射计控制程序 (11) 3.3 L波段双极化微波辐射计控制程序 (12) 4.微波辐射计的定标 (15) 5. 微波辐射计电缆连接标识 (15) 6.微波辐射计安装与使用注意事项 (16) 6.1 接收机安装与电缆连接 (17) 6.2 数据采集器与电源的安装 (17) 6.3 系统接地要求 (17) 7. 探测环境条件要求 (18) 7.1探测环境条件的要求 (18) 7.2探测场地的要求 (18) 7.3工作室要求及设备安置 (19) 8. 常见故障分析 (19)

1.产品简介 微波辐射计是宽频带、高增益、高灵敏度的被动微波遥感仪器,能够在很强的背景噪声中提取微弱的信号变化量。通过接收被测目标自身的微波辐射获取相应的物理特性,经过有效的数据反演进行定量分析。 本套产品的微波辐射计主要包括7个频率的仪器,在微波频率划分上分别是L、S、C、X、Ku、K和Ka,具体设计对应频率为1.4GHz,2.65GHz,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz。其中1.4GHz和2.65GHz为双极化天线,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz为喇叭天线,可以旋转机身转换极化测量,以求对岩石加载过程中微波多个频率点有深入细致的了解。 单极化接收各波段微波辐射计的原理框图如图1所示。 图1 微波辐射计接收通道原理框图

地基多通道微波辐射计功能规格需求书(试行)

地基多通道微波辐射计功能规格需求书 (试行) 中国气象局 2013年5月

目录 1. 概述 (1) 2. 系统原理和组成 (2) 2.1 系统原理 (2) 2.2 系统组成 (3) 2.3 管理应用软件 (6) 3. 总体要求 (6) 4. 功能要求 (7) 4.1 主体设备 (7) 4.2 外围设备 (10) 4.3 管理应用软件 (10) 5. 技术性能指标及要求 (12) 5.1 基本探测性能 (12) 5.2 天线组件 (13) 5.3 微波辐射接收单元 (13) 5.4 定标 (13) 5.5 数据采集与系统控制单元 (13) 5.6 辅助单元 (14) 5.7 电源 (14) 5.8 数据线缆 (14) 5.9 计算机 (14) 5.10 连续工作时间 (15) 5.11 平均功耗 (15) 5.12 可靠性 (15) 5.13 环境适应性 (15) 5.14 安全性 (16)

5.15 结构和外观要求 (16) 5.16 基本探测产品 (17) 5.17 探测数据文件要求 (17) 5.18 运行状态监控 (18) 5.19 数据文件及格式说明 (18) 6. 性能检测 (19) 6.1 考核与评估 (19) 6.2 探测误差评估方法 (19) 6.3 强制评估内容 (19) 附件产品数据文件格式 (20)

1. 概述 为规范地基微波辐射计的研制和生产,制定本功能规格需求书。 地基微波辐射计(Microwave Radiometer)是基于大气微波遥感技术的气象观测设备,可实现对中尺度强天气系统大气层结的监测和预警、云物理特征的监测和人工影响天气科研及业务的应用、雾霾天气等边界层大气环境质量的监测,同时可作为常规高空观测的有益补充,为下一步实现无球探空技术打下基础。 地基微波辐射计在典型的微波V波段大气氧气窗口(51GHz-59GHz)和微波K波段大气水汽窗口(22GHz-31GHz)内选择合适的频率(在寒冷干旱的低水汽密度条件下也可选用微波183GHz的水汽窗口反演水汽),通过对大气微波辐射的遥感测量,反演获得对流层大气温度、湿度廓线、大气柱积分水汽量、大气柱积分云水含水量等信息。 氧气和水汽大气窗口中的不同微波通道,具有不同的谱宽和衰减特性,采用多通道进行同时或分时探测,可以更全面地得到大气微波背景的辐射特性,通过综合分析和反演,减小大气垂直温度和湿度测量的误差。因此,本功能规格需求书要求地基微波辐射计采用多通道测量的方案设计。 由于云水对于天气和人工影响天气作业具有重要意义,本功能规格需求书要求地基微波辐射计配置红外辐射仪,以获取云底温度等探测数据,为产品提供验证,提高探测数据的准确性。 本功能规格需求书规定了地基多通道微波辐射计的系统组成、功 —1 —

微波辐射计定标

Comparison of Calibration Techniques for Ground-Based C-Band Radiometers Kai-Jen C.Tien,Student Member,IEEE,Roger D.De Roo,Member,IEEE,Jasmeet Judge,Senior Member,IEEE, and Hanh Pham,Student Member,IEEE Abstract—We quantify the performance of three commonly used techniques to calibrate ground-based microwave radiometers for soil moisture studies,external(EC),tipping-curve(TC),and internal(IC).We describe two ground-based C-band radiometer systems with similar design and the calibration experiments con-ducted in Florida and Alaska using these two systems.We compare the consistency of the calibration curves during the experiments among the three techniques and evaluate our calibration by com-paring the measured brightness temperatures(T B’s)to those estimated from a lake emission model(LEM).The mean absolute difference among the T B’s calibrated using the three techniques over the observed range of output voltages during the experiments was1.14K.Even though IC produced the most consistent calibra-tion curves,the differences among the three calibration techniques were not signi?cant.The mean absolute errors(MAE)between the observed and LEM T B’s were about2–4K.As expected,the utility of TC at C-band was signi?cantly reduced due to transparency of the atmosphere at these frequencies.Because IC was found to have a MAE of about2K that is suitable for soil moisture applications and was consistent during our experiments under different environmental conditions,it could augment less frequent calibrations obtained using the EC or TC techniques. Index Terms—Calibration,microwave radiometry,soil moisture. I.I NTRODUCTION G ROUND-BASED microwave radiometers have been used extensively to measure upwelling terrain emission in ?eld experiments for hydrology,agriculture,and meteorology [1]–[7].The total-power radiometer is of the simplest design compared to other designs such as Dicke and noise injection[8] and[9].The stability and consistency of the relation between the output voltage and the antenna temperature,i.e.,system gain and offset,are critical for radiometer operations.The system gain is highly sensitive to?uctuations in the physical tempera- Manuscript received June5,2006;revised September29,2006.This work was supported in part by the National Aeronautics and Space Administration’s ESS Graduate Student Fellowship(ESSF03-0000-0044)and in part by the University of Florida,Institute of Food and Agricultural Sciences. K.-J.C.Tien and J.Judge are with the Center for Remote Sensing,De-partment of Agricultural and Biological Engineering,University of Florida, Gainesville FL32611USA(e-mail:ktien@u?.edu;jasmeet@u?.edu). R. D.De Roo is with the Department of Atmospheric,Oceanic,and Space Sciences,University of Michigan,Ann Arbor,MI48109USA(e-mail: deroo@https://www.360docs.net/doc/dc5770191.html,). H.Pham is with the Department of Electrical Engineering and Com-puter Science,University of Michigan,Ann Arbor,MI48109USA(e-mail: hpham@https://www.360docs.net/doc/dc5770191.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/dc5770191.html,. Digital Object Identi?er10.1109/LGRS.2006.886420ture inside the radiometer requiring frequent calibration during radiometer operation for reliable and accurate observations. Many calibration techniques have been developed for mi-crowave radiometers for spaceborne and airborne[10]–[16] and ground-based radiometers[17]–[21].In general,calibration techniques include observations of radiometer output voltages for cold and hot targets with known brightness temperatures [8],[9].For radiometers operating at low frequencies away from the water vapor and oxygen absorption bands,such as C-band(6.7GHz),commonly used cold targets are liquid nitrogen or the sky.Hot targets include microwave absorbers or matched loads inside the radiometers.For a C-band ground-based microwave radiometer,the conceptually simplest cal-ibration technique using a microwave absorber at ambient temperature as a hot target is called“external calibration”(EC). Another widely used calibration technique that utilizes the sky measurements at different angles to calculate the optical depth of the atmosphere and the brightness temperatures of the sky is called“tipping curve calibration”(TC)[18],[19],[21].Either EC or TC can be used exclusively,or TC could be used to provide a better estimate of the sky measurement for EC.Both techniques are inconvenient to perform frequently for long-term soil moisture studies using ground-based C-band radiometers. Moreover,the utility of TC at C-band might be hampered by the high atmospheric transparency at low microwave frequencies [8].Another technique,“internal calibration”(IC),uses an internal matched load as the hot target.This technique has been used for spaceborne microwave radiometers,e.g.,SMMR [10],TMR[13],[14],and JMR[15],airborne radiometers [16],and ground-based radiometers[17].Unlike EC and TC, IC can be performed faster than gain?uctuation.Also,IC is neither sensitive to operator technique,to weathering of the delicate microwave absorber,nor does it require any additional hardware exclusively for the purpose of calibration.However, IC does not account for the losses in the antenna and trans-mission lines before the internal switch used to observe the matched load. In this letter,we quantify the performance of IC and validate it using EC and TC for long-term observations of soil moisture using two ground-based C-band radiometers.Our analysis is re-stricted to horizontal polarization(H-pol)because of its higher sensitivity to soil moisture than vertical polarization(V-pol)[8]. We describe two ground-based total-power radiometers with similar design:the University of Florida C-band Microwave Radiometer(UFCMR)and the C-band unit on the Truck Mounted Radiometer System3(TMRS-3C),as well as the calibration experiments conducted under signi?cantly different 1545-598X/$25.00?2007IEEE

微波辐射计埃玛图绘制方法

龙源期刊网 https://www.360docs.net/doc/dc5770191.html, 微波辐射计埃玛图绘制方法 作者:刘毅杨丽丽王艳侠 来源:《电子技术与软件工程》2017年第05期 摘要本文阐述了一种埃玛图的绘制方法,用绘图展示大气状态的温湿特征量、不稳定能量以及特征高度等,为辐射计在气象领域的应用提供更多的产品展示。本文给出了该方法在VC++6.0下的实现方式。实验结果证明,该埃玛图的绘制方法具有可操作性和实用性。 【关键词】埃玛图微波辐射计 VC++6.0 1 引言 埃玛图是一种由温度和对数气压组成的具有正交或外交坐标的热力学图解。我国普遍采用正变坐标系,横坐标为温度,纵坐标为对数气压,图的面积标示能量。 随着微波辐射计在气象领域的推广,辐射计软件对埃玛图的展示需求越来越高。本文介绍一种基于微波辐射计温度廓线、相对湿度廓线和当前压强的埃玛图绘制方法,能够直观地显示大气状态,为用户对未来天气的变化预测提供直观的依据。 2 绘图步骤 本文介绍的绘图输入是压强、温度廓线、相对湿度廓线等辐射计基础和反演数据,而显示的主要数据元素为状态曲线、露点温度曲线、温度廓线等,所以中间要经过一系列运算。 首先,根据压高公式,计算压强坐标。 第二步,根据温度和相对湿度的关系,计算露点温度曲线; 第三步,根据地面压强、温度曲线、露点温度曲线,计算状态曲线。 第四步,计算温度廓线和状态曲线的交点数据。 第五步,根据压强、温度跟绘图坐标的映射关系,进行绘图。 2.1 压强计算方法 本方法利用压高公式计算压强。 压高公式是描述气压随高度变化规律的公式。假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。在大气柱中截取面积为1平方厘米,

相关文档
最新文档