电磁场在科学技术中的应用

电磁场在科学技术中的应用
电磁场在科学技术中的应用

电磁场在科学技术中的应用

命题趋势

电磁场的问题历来是高考的热点,随着高中新课程计划的实施,高考改革的深化,这方面的问题依然是热门关注的焦点,往往以在科学技术中的应用的形式出现在问题的情景中,将其他信号转化成电信号的问题较多的会在选择题和填空题中出现;而用电磁场的作用力来控制运动的问题在各种题型中都可能出现,一般难度和分值也会大些,甚至作为压轴题。

知识概要

电磁场在科学技术中的应用,主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用,来控制其

密立根实验—电场力与

重力实验速度选择器—电场力与洛伦兹力的平衡

直线加速器—电场的加

质谱仪—磁场偏转

示波管—电场的加速和

偏转回旋加速器—电场加速、磁

场偏转

电流表—安培力矩电视机显像管—电场加速、

磁场偏转

电动机—安培力矩磁流体发电—电场力与洛

伦兹力的平衡

霍尔效应—电场力与洛伦兹力作用下的偏转与

平衡磁流体发电机—电场力与洛伦兹力作用下的偏转与

平衡

【例题1】(2001年高考理综卷)如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束

轰击,失去一个电子变成正一价的

分子离子。分子离子从狭缝s1以很

小的速度进入电压为U的加速电场

区(初速不计),加速后,再通过狭

缝s2、s3射入磁感应强度为B的匀

强磁场,方向垂直于磁场区的界面

PQ。最后,分子离子打到感光片上,

形成垂直于纸面而且平行于狭缝s3

的细线。若测得细线到狭缝s3的距离为d,导出分子离子的质量m 的表达式。

【例题2】如图为质谱仪原理示意图,电荷量为q 、质量为m 的带正电的粒子从静止开始经过电势差为U 的加速电场后进入粒子速度选择器。选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E 、方向水平向右。已知带电粒子能够沿直线穿过速度选择器,从G 点垂直MN 进入偏转磁场,

该偏转磁场是一个以直线MN 为边界、

方向垂直纸面向外的匀强磁场。带电粒子经偏转磁场后,最终到达照相底片的

H 点。可测量出G 、H 间的距离为l 。带电粒子的重力可忽略不计。求:(1)粒子从加速电场射出时速度v 的大小。(2)粒子速度选择器中匀强磁场的磁感应强度B 1的大小和方向。(3)偏转磁场的磁感应强度B 2的大小。

【例题3】质谱法是测定有机化合物分子结构的重要方法,

其特点之一是:用极少量(10-9g)的化合物即可记录到它的质谱,从而得知有关分子结构的信息以及化合物的准确分子量和分子式。质谱仪的大致结构

如图甲所示。图中G

的作用是使样品气

体分子离子化或碎

裂成离子,若离子均

带一个单位电荷,质

量为m ,初速度为零,

离子在匀强磁场中

运动轨迹的半径为

R ,试根据上述内容回答下列问题:

(1)在图中相应部位用“·”或“×”标明磁场的方向;

(2)若在磁感应强度为B 特斯

拉时,记录仪记录到一个明显信

号,求与该信号对应的离子质荷

比(m/e)。电源高压为U 。

(3)某科技小组设想使质谱仪加速电场 速度选择器 偏转磁场 U G H M N + - + 高频电源

进一步小型化,你认为其研究方向正确的是。

A.加大进气量

B.增大电子枪的发射功率

C.开发新型超强可变磁场材料

D.使用大规模集成电路,改造电信号放大器

【例题4】如图所示是某种质谱

仪的原理示意图,它由加速电场、静

电分析器和磁分析器等组成,若静电

分析器通道的半径为R,均匀辐向电

场的场强为E,磁分析器中有垂直纸

面向外的匀强磁场,磁感应强度为

B,忽略重力的影响,试问:

(1)为了使位于A处电量为q、

质量为m的离子,从静止开始经加

速电场加速后沿图中虚线通过静电

分析器,加速电场的电压U应为多大?

(2)离子由P点进入磁分析器后,最终打在感光胶片上的Q 点,该点距入射点P有多远?若有一群离子从静止开始通过该质谱仪后落在同一点Q,则该群离子具有什么共同特征?

【例题5】一种称为" 质量分析器" 的装置如图所示,A表示发射带电粒子的离子源,发射的粒子在加速管B中加速,获得一定速率后于C 处进人圆形细弯管(四分之一圈弧), 在磁场力作用下发生偏转, 然后进入漂移管道D, 若粒子

质量不同或电荷量不同或速率不同, 在一

定磁场中的偏转程度也不同。如果给定偏转

管道中心轴线的半径、磁场的磁感应强度、

粒子的电荷量和速率,则只有一定质量的粒

子能从漂移管道D中引出。已知带有正电

荷q=1.6×10-19C 的磷离子, 质量为m

=51.1×10-27Kg, 初速率可认为是零, 经加

速管B 加速后速率为U =7.9×105m/s,求(保留一位有效数字)

(1) 加速管B两端的加速电压应为多大?

(2) 若圆形弯管中心轴线的半径R=0.28m, 为了使磷离子能从漂移管道引出, 则在图中虚线正方形区域内应加磁感应强为多大的匀强磁场?

二、加速器

【例题1】串列加速器是用来产生高能离子的装置。图中虚线

框内为其主体的原理示意图,

其中加速管中的中部b 处有很

高的正电势U ,a 、c 两端均有

电极接地(电势为零)。现将

速度很低的负一价碳离子从a

端输入,当离子到达b 处时,

可被设在b 处的特殊装置将其

电子剥离,成为正n 价正离子,

而不改变其速度大小,这些正n 价碳离子从c 端飞出后进入一与其速度方向垂直的、磁感强度为B 的匀强磁场中,在磁场中做半径为R 的圆周运动。已知碳离子的质量kg 100.2m 26-?=,V 105.7U 5?=,50T .0B =,2n =,基元电荷C 106.1e 19-?=,求R.

【例题2】(04天津)正电子发射计算机断层(PET )是分子

水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段。

(1)PET 在心脏疾病诊疗中,需要使用放

射正电子的同位素氮13示踪剂。氮13是由小型回旋加速器输出的高速质子轰击氧16获得

的,反应中同时还产生另一个粒子,试写出该

核反应方程。

(2)PET 所用回旋加速器示意如图,其中

置于高真空中的金属D 形盒的半径为R ,两盒

间距为d ,在左侧D 形盒圆心处放有粒子源S ,

匀强磁场的磁感应强度为B ,方向如图所示。

质子质量为m ,电荷量为q 。设质子从粒子源S

进入加速电场时的初速度不计,质子在加速器

中运动的总时间为t (其中已略去了质子在加速电场中的运动时间),质子在电场中的加速次数与回旋半周的次数相同,加速质子时的电压大小可视为不变。求此加速器所需的高频电源频率f 和加速电压U 。

(3)试推证当R >>d 时,质子在电场中加速的总时间相对S 导向板

B

于在D形盒中回旋的时间可忽略不计(质子在电场中运动时,不考虑磁场的影响)。

【例题3】电子感应加速器是利用变化磁场产生的电场来加速电子的,如图所示.在圆形磁铁的两极之间有一环形真空室,用交变电流充磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速.被加速的电子同时在洛伦兹力的作用下沿圆形轨道运动,设法把高能电子引入靶室,能使其进一步加速.在一个半径为r=0.84m的电子感应加速器中,电子在被加速的4.2×10-3s时间内获得的能量为120MeV,这期间电子轨道内的高频交变磁场是线性变化的,磁通量从零增到1.8Wb,求:(1)电子在环形真空

室中共绕行了多少周?

(2)有人说,根据麦

克斯韦电磁场理论及法

拉第电磁感应定律,电

子感应加速器要完成电

子的加速过程,电子轨

道内的高频交变磁场也

可以是线性减弱的,效

果将完全一样,你同意吗?请简述理由.

【例题4】(93上海)如图所示为一种获得高能粒子的装置。环形区域内存在垂直纸面向外、大小可调节的均匀磁场。质量为m、电量为+q的粒子在环中做半径为R的圆周运动。A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A

板电势升高为+U,B板电势仍为零,粒子在两板间的电场中得到加速。每当粒子离开时,A板电势又降为零。粒子在电场一次次加速下动能不断增大,而绕行半径不变。

⑴设t=0时,粒子静止在A板小孔处,在电场作用下加速,并开始绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n。

⑵为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时磁感应强度B n。

⑶求粒子绕行n圈所需的总时间t n(设极板间距远小R)

⑷在图中画出A板电势u与时间t的关系(从t=0起画到粒子第四次离开B极板)

⑸在粒子绕行的整个过程中,A板电势是否可始终保持+U?为什么?

三、电子的荷质比

【例题1】(03江苏)汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点:加上偏转电压U后,亮点偏离到O′点,O′与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示)。

(1)求打在荧光屏O点的电子速度的大小.(2)推导出电子的比荷的表达式.

O

t u

A +U

B 0 R

【例题2】如图所示是测定光电效应产生的光电子荷质比的简要实验原理图。两块平行板相距为d,其中N为金属板,受紫外线照射后将发射出沿不同方向运动的光电子形成电流,从而引起电流计指针偏转。若调节R逐渐增大板

间电压,可以发现电流逐渐减小,

当电压表示数为U时,电流恰好

为零,切断开关,在MN间加上垂

直与纸面的匀强磁场,逐渐增大

磁感应强度,也能使电流为零。

当磁感应强度为B时,电流恰好为零。求光电子的荷质比e/m。

四、霍尔模型的应用

(一)霍尔模型

【例题1】(2000年高考理综卷)如图所示,厚度为h、宽为d 的导体板放在垂直于它的磁感应强度为B的均匀磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A′之间会产生电势差,这种现象称为霍尔效应。实验表明,当磁场不太强时电势差U,电流I和B的关系为U=kIB/d,式中的比例系数k称为霍尔系数。

霍尔效应可解释如

下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。

设电流I 是由电子定向流动形成的,电子的平均定向速度为v ,

电量为e ,回答下列问题:

(1)达到稳定状态时,导体板上侧面A的电势 下侧

面A的电势(填高于、低于或等于)。

(2)电子所受的洛伦兹力的大小为 。

(3)当导体板上下两侧之间的电势差为U 时,电子所受的静

电力的大小为 .

(4)由静电力和洛伦兹力平衡的条件,证明霍尔系数K=1/ne ,

其中n 代表导体板单位体积中电子的个数。

【例题2】(半导体是导电性介于导体和绝缘体之间的材料.参

与半导体导电的粒子——载流子有两种:自由电子和空穴,自由电子导电是大家所熟悉的,不过半导体中的自由电子浓度比金属中小得多.“空穴”可以看成是带正电粒子,空穴的定向移动也形成电流,那就是空穴导电,这样我们就可以以参与导电的载流子不同而将半导体分为两类:P 型半导体和N 型半导体,以空穴导电为主的半导体叫P 型半导体,以自由电子导电为主的半导体叫N 型半导体.如图所示,是为了检验半导体材料的类型和对材料性能进行测试的装置示意图,图中一块半导体样品板放在垂直于板平面水平向里的匀强磁场中,当有大小为I 的恒定电流垂直于磁场方向通过样品板时,在板的上、下两个侧面之间会产生个恒定的电势差21U U -.

(1)如果测得0U U 21>-,则这块样品板的载流子是正电荷还

是负电荷?说明理由.

(2)设磁场的磁感应强度为B ,

样品板的厚度为d ,宽度为b ,每个载

流子所带电量的绝对值为e .证明,样

品板在单位体积内参与导电的载流子数目为21U U 1ed BI n -?=.

【例题3】一种半导体材料称为“霍尔材料”,用它制成的元件

称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为1元电荷,即C 106.119-?=q ,霍尔元件在自动检测、控制领域得到广泛应用,

如录像机中用来测量录像磁鼓的转

速、电梯中用来检测电梯门是否关闭

以自动控制升降电动机的电源的通断

等.

在一次实验中,一块霍尔材料制

成的薄片宽m 100.12-?=ab 、长

m 100.42-?=bc 、厚m 100.13-?=h ,水平放

置在竖直向上的磁感强度B =2.0T 的匀强磁场中,bc 方向通有A 0.3=I 的电流,如图所示,由于磁场的作用,稳定后,在沿宽度方向上产生V 100.15-?的横向电压.

(1)假定载流子是电子,a 、b 两端中哪端电势较高?

(2)薄板中形成电流I 的载流子定向运动的速率多大?

(3)这块霍尔材料中单位体积内的载流子个数为多少?

【例题4】1879年美国物理学家霍尔在研究载流导体在磁场中

受力性质时,发现了一种前所未知的电磁效应:若将通电导体置于磁场中,磁感应强度B 垂直于电流I 方向,如图所示,则在导体中垂直于电流和磁场的方向会产生一

个横向电势差U H ,称其为霍尔电势差,

根据这一效应,在测出霍尔电势差U H、

导体宽度d 、厚度b 、电流I 及该导体

的霍尔系数H (H =1/nq ,其中n 为单位

体积内载流子即定向移动的电荷的数

目,q 为载流子的电量),可精确地计算出所加磁场的磁感应强度表达式是什么?

【例题5】据报道,我国最近实施的“双星”计划所发射的卫

星中放置一种磁强计,用于测定地磁场的磁感应强度等研究项

目。磁强计的原理如图所示,电路中有一段金属导体,它的横截面是宽为a 、高为b 的长方形,放在沿y 轴正方向的匀强磁场中,导体中通有沿x 轴正方向、电流强度为I 的电流。已知金属导体单位体积中的自由电子数为n ,电子电量为e 。金属导电过程中,自由电子所做的定向移动可视为匀速运动。测出金属导体前后两个侧面间的电势差为U 。

(1)金属导体前后两个侧面哪个电势较高?

(2)求磁场磁感应强度B 的大小。

(二)电磁流量计

【例题1】(01全国理综)电磁流量计广泛应用于测量可导电

流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c .流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感强度为B 的匀强

磁场,磁场方向垂直于

前后两面.当导电流体

稳定地流经流量计时,

在管外将流量计上、下

两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为

A .)(c b aR

B I ρ+ B .)(a c bR B I ρ+

C .)(b a cR B I ρ+

D .)(a bc R B I ρ+

【例题2】如图是磁流量计的示意图,在非磁性材料做成的圆

管道外加一匀强磁场区,当管中的导电液体流过此磁场区域时,小灯泡就会发光.如果导电液体流过磁场区域能使额定电压为U =3.0V 的小灯泡正常发光,已知磁场的

磁感强度为B=0.20T ,测得圆管的直径为

d =0.10m ,导电液体的电阻忽略不计,又

假设导电液体充满圆管流过,则管中的液体流量(液体流量为单位

时间内流过液体的体积)的表达式Q = ,其数值为 m 3/s .

模型区别:在原子反应堆中抽动液态金属与在医疗器械中抽动

血液等导电液体时,由于不允许传动的机械部分与这些液体相接触,常使用一种电磁泵,如图所示这种电磁泵的结构,将导管放在磁场中,当电流穿过导电液体

时,这种液体即被驱动,问:

(1)这种电磁泵的原理是怎

样的?

(2)若导管内截面积为ω×

h ,磁场的宽度为L ,磁感应强度

为B (看成匀强磁场),液体穿过

磁场区域的电流强度为I ,如图所

示,求驱动力造成的压强差为多

少?

(三)磁流体发电机

【例题1】(04年天津理综)磁流体发电是一种新型发电方式,

如图是其工作原理示意图。左图中的长方体是发电导管,其中空部分的长、高、宽分别为l 、a 、b ,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻L R 相连。整个发电导管处于右图中磁场线圈产生的匀强磁场里,磁感应强度为B ,方向如图所示。发电导管内有电阻率为ρ的高温、高速电离气体沿导管向右流动,并通过专用管道导出。由于运动的电离气体受到磁场作用,产生了电动势。发电导管内电离气体流速随磁场有无而不同。设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为0v ,电离气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差p ?维持恒定,求:

(1)不存在磁场时电离气体所受的摩擦阻力F 多大;

(2)磁流体发电机的电动势E 的大小;

(3)磁流体发电机发电导管的输入功率P。

【例题2】磁流体发电机示意图如图所示,a、b两金属板相距为d,板间有磁感应强度为B的匀强磁场,一束截面积为S,速度为υ的等离子体自左向右穿过两板后速度大小仍为υ,截面积仍为S,只是等离子体压强减小了。设两板之间单位体积内等离子体的数目为n,每个离子的电量为q,板间部分的等离子体等效内阻为r,外电路电阻为R。求:

(1)等离子体进出磁场前后的压强差△P;

(2)若等离子体在板间受到摩擦阻力f,压强差△P′又为多少;(3)若R阻值可以改变,试讨论R中电流的变化情况,求出其最大值I m,并在图中坐标上定性画出I随R变化的图线。

【例题3】炸药发电机是一种将高能炸药爆炸时产生的能量转化成电能,提供脉冲电压的装置。其主要有两种类型,即磁场浓缩型(MC型)和磁流体动力型(MHD型)。MHD型的发电原理如图,炸药爆炸时冲击活塞,压缩容器中的高压氩气体,产生气压达3万个大气压的高密度等离子体,此时隔板被冲开,等离子体高速喷入平行金属板间(已知板长为L,间距为d ),由于板间存在磁场,而使正负离子落到极板上产生电压。

(1)设隔板被冲开时容器内的压强为P,从喷口喷出的等离子流单位体积内的正离子数为n,电子质量不计,每个正离子的质量为m,喷口的横截面

积为S,求离子冲入极

板间的速度υ。

(2)若极板间的

磁感应强度为B0,此

发电机产生的最高脉

冲电压为多大?

【例题4】由于受地球信风带和盛西风带的影响,在海洋中形成一种河流称为海流。海流中蕴藏着巨大的动力资源。据统计,世界大洋中所有海洋的发电能力达109kW。早在19世纪法拉第就曾设想,利用磁场使海流发电,因为海水中含有大量的带电离子,这些离子随海流作定向运动,如果有足够强的磁场能使这些带电离子向相反方向偏转,便有可能发出电来。目前,日本的一些科学家将计划利用海流建造一座容量为1500kW的磁流体发电机。

如图所示为一磁流体发电机的原理

示意图,上、下两块金属板M、N水平

放置浸没在海水里,金属板面积均为S

=1×103m2,板间相距d=100m,海水

的电阻率ρ=0.25Ω·m。在金属板之间

加一匀强磁场,磁感应强度B=0.1T,

方向由南向北,海水从东向西以速度v

=5m/s流过两金属板之间,将在两板之间形成电势差。

(1)达到稳定状态时,哪块金属板的电势较高?

(2)由金属板和海水流动所构成的电源的电动势E及其内电阻r各为多少?

(3)若用此发电装置给一电阻为20Ω的航标灯供电,则在8h内航标灯所消耗的电能为多少?

电磁场在社会中的应用解读

电磁场在社会中的应用 麦克斯韦全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场” 和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础。 麦克斯韦方程组是麦克斯韦建立的描述电场与磁场的四个方程。 方程组的微分形式,通常称为麦克斯韦方程。在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的。另外,这个理论被广泛地应用到技术领域。 麦克斯韦方程组的积分形式如下: (1) (2) (3) (4) 上面四个方程可逐一说明如下:在电磁场中任一点处 (1)电位移的散度等于该点处自由电荷的体密度 ; (2)磁感强度的散度处处等于零。 (3)电场强度的旋度等于该点处磁感强度变化率的负值; (4)磁场强度的旋度等于该点处传导电流密度与位移电流密度的矢量和; 在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而 完整地概括了电磁场的基本规律,并预言了电磁波的存在。 1 CDMA 技术 CDMA ,就是利用展频的通讯技术,因而可以减少手机之间的干扰,并且可以增加用 户的容量,而且手机的功率还可以做的比较低,不但可以使使用时间更长,更重要的是可以降低电磁波辐射对人的伤害。 CDMA 的带宽可以扩展较大,还可以传输影像呢,这是第三代手机为什么选用CDMA 的原因。就安全性能而言,CDMA 不但有良好的认证体制,更因为其传输的特性,用码来区分用户,防止被人盗听的能力大大地增强。 目前CDMA 系统正快速发展中。 Wideband CDMA(WCDMA)宽带码分多址传输技术,为IMT-2000的重要基础技术,将是第三代数字无线通信系统的标准之一。 1.1 CDMA 技术背景 CDMA 技术的出现源自于人类对更高质量无线通信的需求。第二次世界大战期间因战 争的需要而研究开发出CDMA 技术,其思想初衷是防止敌方对己方通讯的干扰,在战争期间广泛应用于军事抗干扰通信,后来由美国高通公司更新成为商用蜂窝电信技术。1995年,第一个CDMA 商用系统(被称为IS-95)运行之后,CDMA 技术理论上的诸多优势在实践中得到了检验,从而在北美、南美和亚洲等地得到了迅速推广和应用。全球许多国家和地区,包括中国大陆、中国香港、韩国、日本、美国都已建有CDMA 商用网络。 S d t D J s l d H c S )(??+=???S d t B l d H S S ????-=?dV S d D V V S ??=?ρ 0=??S S d B

最新电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任 意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度在直角坐标系的表达式 z A y A x A z y x A A ??????++ = ??=ρ ρdiv ; 散度在圆柱坐标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右 手螺旋法则。当S 点P 时,存在极限环量密度。二者的关系 n dS dC e A ρρ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该 点最 大环量密度的方向。 4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点 标量函数 ?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的 方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与 梯度的关系是梯度的大小为该点标量函数 ?的最大变化率,即该点最 大方向导数; 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数 的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达 式 ;

7、直角坐标系下方向导数 u ?的数学表达式是 ,梯度的表达式 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。 9、麦克斯韦方程组的积分形式分别为 ()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+????????r r r r r r r r g r r r r r g ???? 其物理描述分别为 10、麦克斯韦方程组的微分形式分别为 2 0E /E /t B 0 B //t B c J E ρεε??=??=-????=??=+??r r r r r r r 其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的 场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。 12、坡印廷矢量的数学表达式 2 0S c E B E H ε=?=?r r r r r ,其物理意义表示了单 位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式 ()s E H dS ??r r r g ?的物理意义穿过包围体积v 的封闭面S 的功率。 13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出

电磁场在科学技术中的应用

电磁场在科学技术中的应用 命题趋势 电磁场的问题历来是高考的热点,随着高中新课程计划的实施,高考改革的深化,这方面的问题依然是热门关注的焦点,往往以在科学技术中的应用的形式出现在问题的情景中,将其他信号转化成电信号的问题较多的会在选择题和填空题中出现;而用电磁场的作用力来控制运动的问题在各种题型中都可能出现,一般难度和分值也会大些,甚至作为压轴题。 知识概要 电磁场在科学技术中的应用,主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用,来控制其运动,使其平衡、加速、偏转或转动,已达到预定的目 密立根实验—电场力与重力实验速度选择器—电场力与洛伦兹力的平衡 直线加速器—电场的加速质谱仪—磁场偏转 示波管—电场的加速和偏转回旋加速器—电场加速、磁场偏转 电流表—安培力矩电视机显像管—电场加速、磁场偏转 电动机—安培力矩磁流体发电—电场力与洛伦兹力的平衡 霍尔效应—电场力与洛伦兹力作用 下的偏转与平衡磁流体发电机—电场力与洛伦兹力作用 下的偏转与平衡 【例题1】(2001年高考理综卷)如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分子离子从狭缝s1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s2、s3射入磁感应强度为B的匀强磁场,方向垂直于磁场区的界面PQ。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝s3的细线。若测得细线到狭缝s3的距离为d,导出分子离子的质量m的表达式。 【例题2】如图为质谱仪原理示意图,电荷量为q、质 量为m的带正电的粒子从静止开始经过电势差为U的加速 电场后进入粒子速度选择器。选择器中存在相互垂直的匀 强电场和匀强磁场,匀强电场的场强为E、方向水平向右。 已知带电粒子能够沿直线穿过速度选择器,从G点垂直 MN进入偏转磁场,该偏转磁场是一个以直线MN为边界、 方向垂直纸面向外的匀强磁场。带电粒子经偏转磁场后, 最终到达照相底片的H点。可测量出G、H间的距离为l。 带电粒子的重力可忽略不计。求:(1)粒子从加速电场射 出时速度v的大小。(2)粒子速度选择器中匀强磁场的磁 感应强度B1的大小和方向。(3)偏转磁场的磁感应强度 B2的大小。 【例题3】质谱法是测定有机化合物分子结构的重 要方法,其特点之一是:用极少量(10-9g)的化合物 即可记录到它的质谱,从而得知有关分子结构的信 息以及化合物的准确分子量和分子式。质谱仪的大 致结构如图甲所示。图中G的作用是使样品气体分 子离子化或碎裂成离子,若离子均带一个单位电 荷,质量为m,初速度为零,离子在匀强磁场中运 动轨迹的半径为R,试根据上述内容回答下列问题: (1)在图中相应部位用“·”或“×”标明磁场的方向; (2)若在磁感应强度为B特斯拉时,记录仪记录到一个明显信号, 求与该信号对应的离子质荷比(m/e)。电源高压为U。 (3)某科技小组设想使质谱仪进一步小型化,你认为其研究方 向正确的是。 A.加大进气量 B.增大电子枪的发射功率 C.开发新型超强可变磁场材料 D.使用大规模集成电路,改造 电信号放大器 加速电场 速度选择器 偏转磁场 U G H M N + - +

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么就是等值面?什么就是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么就是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则就是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向与传播方向。 3.什么就是电偶极子?电偶极矩矢量就是如何定义的?电偶极子的电磁场分布就是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量与间距的乘积,方向由负电荷指向正电荷。

4、麦克斯韦积分与微分方程组的瞬时形式与复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5、结构方程

6、什么就是电磁场边界条件?它们就是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件就是在无限大平面的情况得到的,但就是它们适用于曲率半径足够大的光滑曲面。 7、不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量与磁感应强度的法向分量永远就是连续的 (2)理想导体表面的边界条件 ★理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流与面电荷。

电磁场与电磁波设计报告

电磁场与电磁波设计报告 题目:电磁场与电磁波设计报告 系别: 班级: 姓名: 指导老师:

目录: 静电场的基本概念------------------------------------------3 恒定磁场的基本概念----------------------------------------5 时变磁场的基本概念----------------------------------------6 电场和磁场之间的关系--------------------------------------7 电磁场应用之变频电磁场处理油田水防垢技术------------------8 背景---------------------------------------------------8 原理结构图--------------------------------------------11 除垢、防垢工作原理------------------------------------12 电磁场处理对溶液电导率的影响--------------------------13 电磁场对溶液表面张力的影响----------------------------13 电磁场处理对溶液pH值的影响---------------------------14 实验结果分析------------------------------------------16 从水分子的结构方面---------------------------------16 电磁场诱导微晶的形成-------------------------------18

电磁场与微波技术在日常生活中的应用

电磁场与微波技术在日常生活中的应用 学院:信息科学与工程学院 专业班级:电子0803班 姓名:叶琳琳 学号:20082722

电磁场与微波技术在日常生活中的应用 电磁场与微波技术在日常生活中的应用是非常广泛的,其应用大致体现在电磁起重机,磁悬浮列车小到电动机,指南针,扬声器,变压器,电磁炉,微波炉,以及微波技术在食品中的应用,微波加热,微波杀菌等等。 其中,电磁炉,微波炉,以及微波技术在食品工业中的应用等等。 电磁炉是厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场,当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流,涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能,使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高,鉴于电磁炉的种种优点,现在大量使用。 电磁炉的优势首先表现在它的热效率极高。作为倡导"绿色厨房文化"的高科技产品,电磁炉的应用原理是电流通过线圈产生磁场,磁场内的磁力线通过含铁物质(铁锅、不锈钢锅、搪瓷锅等)的底部时,促使铁分子高速运动,产生无数小涡流,因此热效率高。相比之下,传统炉具,如电热炉、石油气炉、煤气炉及电饭锅的加热原理是先烧红器皿底部直接加热锅内食物,另有部分热耗用在燃烧空气,热效率在40%-70%之间,热能耗量大、煮食慢。而电磁炉的热效率普遍高于80%,连盟电磁炉热效率能够达到93%。用传统炉灶明火烧开一壶水需要9分钟,而放到电磁炉上则只需2~3分钟,大大节省了能源。连盟电磁炉不受锅具种类和大小的左右,独有的热能强力制御开发, 2200W的电磁炉产生的极高的热值相当于4800 KCAL/m3的煤气炉发出的高火力。 微波炉是利用了微波是一种电磁波,其能量比通常的无线电波大得多。微波一碰到金属就发生反射,金属根本没有办法吸收或传导它。微波可以穿过玻璃、陶瓷、塑料等绝缘材料,但不会消耗能量;而含有水分的食物,微波不但不能透过,其能量反而会被吸收。微波炉正是利用微波的这些特性制作的。微波炉的外壳用不锈钢等金属材料制成,可以阻挡微波从炉内逃出,以免影响人们的身体健康。装食物的容器则用绝缘材料制成。微波炉的心脏是磁控管。这个叫磁控管的电子管是个微波发生器,它能产生每秒钟振动频率为24.5亿次的微波。这种肉眼看不见的微波,能穿透食物达5cm深,并使食物中的水分子也随之运动,剧烈的运动产生了大量的热能,食物就会被煮熟了,这就是微波炉加热的原理。用普通炉灶煮食物时,热量总是从食物外部逐渐进入食物内部的。而用微波炉烹饪,热量则是直接深入食物内部,所以烹饪速度比其它炉灶快4至10倍,热效率高达80%以上。微波炉由于烹饪的时间很短,进而能很好地保持食物中的维生素和天然风味,满足人们的需求。 微波技术在食品行业中的应用也是相当的广泛。鉴于微波具有加热迅速、均匀、节能高效、防霉保鲜、可连续生产、安全无害、设备占地面积小、改善劳动条件等优点,已被广泛应引用于粉状、颗粒、片状等各种食品、营养品、调味品、

电磁场与电磁波运用

电磁场与电磁波在生活中的应用 【摘要】:磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有 500 年前的 50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’就是因缺磁而’造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”“磁穴疗法”是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 【关键词】:磁疗磁疗保健生物电磁学电磁对抗电磁环境运用发展 引言:生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。电磁对抗主要是运用在军事方面,利用电磁波的特性制造出一系列的战争武器或战略武器。主要涉及各种频段的电磁波的运用。 【正文】: 一、电磁学在医疗上的应用 生物电磁学在医疗上的应用,简称磁疗。是 20 世纪九十年代才广泛兴起的一种自然疗法,用磁能作用于人体,通过磁的一系列生物与生物电磁学效应达到调整人体生理活动、实现身体保健和治疗疾病的目的。确切地说,磁疗是一种物理能量疗法。由于磁疗安全、方便、简捷、省时、无毒副作用、疗效肯定受到人们的认可和喜爱,被世界卫生组织推荐为最有前途的绿色疗法。从严格意义上说,磁疗还未真正地走进现代生命科学的殿堂,尚处于研究、探索、试用阶段,属于生命科学中一门崭新的边缘学科。本文所述的磁生物与生物电磁生理学效应是对近十年来人们使用磁性保健产品临床效果的总结和理性思考,也是第一次提出“磁生物与生物电磁生理学效应”这一概念,有关人体这一弱电磁生物体与磁场相互作用的具体细节及其量化表述有待进一步实验结果的充实。 在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。但是对电磁辐射,要正确认识,而且要科学防护。事实上,电磁波也如同大气和水资源一样,只有当人们规划、使用不当时才会造成危害。一定量的辐射对人体是有益的,医疗上的烤电、理疗等方法都是利用适量电磁波来治病健身 生物电磁场保健 将人体置于姜氏场导舱内接受载有青春信息的植物幼苗发射的生物电磁波。结果发现:人体红细胞膜的渗透脆性降低,韧性增强;甲状腺素、性激素分泌增加;免疫功能提高;肾上腺皮质激素分泌无明显变化。提示:植物幼苗电磁波有助于红细胞功能的发挥,促进机

职高物理复习专题讲析——考点12 电磁场在科学技术中的应用

职高物理复习专题讲析 考点12 电磁场在科学技术中的应用 命题趋势 电磁场的问题历来是高考的热点,随着高中新课程计划的实施,高考改革的深化,这方面的问题依然是热门关注的焦点,往往以在科学技术中的应用的形式出现在问题的情景中,这几年在理科综合能力测试中更是如此。2000年理科综合考霍尔效应,占16分;2001年理科综合考卷电磁流量计(6分)、质谱仪(14分),占20分;2002年、2003年也均有此类考题。每年都考,且分值均较高。 将其他信号转化成电信号的问题较多的会在选择题和填空题中出现;而用电磁场的作用力来控制运动的问题在各种题型中都可能出现,一般难度和分值也会大些,甚至作为压轴题。知识概要 电磁场在科学技术中的应用,主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用, 讨论与电磁场 先应通过分析将其 提炼成纯粹的物理 问题,然后用解决物 理问题的方法进行 分析。这里较多的是 用分析力学问题的 方法;对于带电粒子 在磁场中的运动,还 特别应注意运用几 何知识寻找关系。 解决实际问题的一般过程: 点拨解疑

【例题1】(2001年高考理综卷)图1是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝s 3的细线。若测得细线到狭缝s 3的距离为d (1)导出分子离子的质量m 的表达式。 (2)根据分子离子的质量数M 可用推测有机化合物的结构简式。若某种含C 、H 和卤素的化合物的M 为48,写出其结构简式。 (3)现有某种含C 、H 和卤素的化合物,测得两个M 值,分别为64和66。试说明原因,并写出它们的结构简式。 【点拨解疑】(1)为测定分子离子的质量,该装置用已知的电场和磁场控制其运动,实际的运动现象应能反映分子离子的质量。这里先是电场的加速作用,后是磁场的偏转作用,分别讨论这两个运动应能得到答案。 以m 、q 表示离子的质量电量,以v 表示离子从狭缝s 2射出时的速度,由功能关系可得 qU mv =22 1 ① 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 R v m qvB 2 = ② 式中R 为圆的半径。感光片上的细黑线到s 3缝的距离 d =2R ③ 解得 U d qB m 82 2= ④ (2)CH 3CH 2F (3)从M 的数值判断该化合物不可能含Br 而只可能含Cl ,又因为Cl 存在两个含量较多的同位素,即35Cl 和37 Cl ,所以测得题设含C 、H 和卤素的某有机化合物有两个M 值,其对应的分子结构简式为CH 3CH 235Cl M =64;CH 3CH 237Cl M =66 【例题2】(2000年高考理综卷)如图2所示,厚度为h 、宽为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应。实验表明,当磁场不太强时电势差U ,电流I

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将

电磁场与电磁波论文

电磁场与电磁波论文 院系:电子信息学院 班级:电气11003班 学号:201005792 序号:33 姓名:张友强

电磁场与电磁波的应用 摘要: 磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 关键词:磁疗、电磁生物体、生物磁场、磁疗保健 电磁场与电磁波简介: 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。。生物电磁学与工程电磁场与微波技术的不同主要体现在:1、后者的作用对象是具有个体差异的生命物质;2、后者的作用对象是根据人为需要而选取并加工的电磁媒质或单元而前者的作用要让测量系统服从于作用对象。生物电磁学的研究内容主要设计五个方面:1、电磁场(波)的生物学效应,研究在电磁场(波)作用下生物系统产生了什么;2、生物学效应机理,研究在电磁场(波)作用下为什么会产生什么;3、生物电磁剂量学,研究在什么条件下会产生什么;4、生物组织的电磁特性,研究在电磁场(波)作用下产生什么的生物学本质;5、生物学效应的作用,研究产生的效应做什么和如何做。 正文: (一)在生产、生活上的应用 静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。在所有的例子中带电粒子偏转都是通过两个平行板之间的电位差来实的。 1.磁悬浮列车 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被

电磁学知识在生产生活中的应用举例

电磁学知识在生产生活中的应用举例 2006年12月13日 教学目标: 知识与技能:1、懂得生活用电安全知识(C层) 2、会用学过的知识解释生活用电问题(B层) 3、了解传感器的作用,会对一些简单传感器的原理用中学物理知识作解释(AB层) 过程与方法:1、通过本节教学,引导学生把所学知识结合实际,养成理论联系实际的习惯;2、指导学生分析实际应用试题步骤、审题抓住要点,把题目分解成一个个小小问题的习惯。 教学重点:用电磁学知识解决新科技在生产生活中的应用。 教学方法:分层教学,主体合作 本学期复习完了3-1,请回顾一下这本书我们学了哪些知识? 电场恒定电流磁场 各章重点知识有哪些? 电功电阻定律、欧姆定律、闭合电路欧姆定律焦耳定律传感器的应用电流与磁场的关系——安培定则,磁场对运动电荷的作用力(安培

力、洛伦兹力)的方向判断——左手定则:。 一、生活用电题 1、如上图所示是楼梯电灯照明电路图,电键 K 1和K 2分别是装在楼上和楼下两个位置的双 联开关,拨动其中任何一个开关,都能使楼梯 电灯发光或熄灭,试问这四种接法中,那一种 接法是正确的?( ) 2、家用电热灭蚊器中电热部分的主要元件是PTC ,PTC 元件是由钛 等半导体材料制成的电阻器,其电阻率与温度的关系如所示,由于这种特性,因此,PTC 元件具有发热、控温双重功能,对此,以下判断中正确的组合是( ) ①通电后,其电功率先增大后减小 ②通电后,其电功率先减小后增大 ③当其产生的热量与散发的热量相等时,温度保持在t1 或t2不变 ④当其产生的热量与散发的热量相等时,温度保持在 t1~t2的某一值不变 A 、①② B 、②④ C 、①④ D 、②③ 本题要点:①会读图;②电热灭蚊器属于纯电阻用电器,电功等于电热。 3、下表为一双桶洗衣机铭牌上所标电动机的工作参数. 由上表回答:该洗衣机洗涤一次衣服共耗电多少?(洗涤一次衣服洗涤时间 为15min ,脱水时间为2min ).用欧姆定律R U I 求出的电流强度与电动机中的实际工作电流是否相同?为什么?

《走向高考》2013高考物理总复习 8-4电磁场在实际中的应用

8-4电磁场在实际中的应用 一、选择题 1.设回旋加速器中的匀强磁场的磁感应强度为B,粒子的质量为m,所带电荷量为q,刚进入磁场的速度为v0,回旋加速器的最大半径为R,那么两极间所加的交变电压的周期T和该粒子的最大速度v分别为() A.T=2πm qB,v不超过 qBR m B.T= πm qB,v不超过 qBR m C.T=2πm qB,v不超过 qBR 2m D.T= πm qB,v不超过 qBR 2m [答案] A [解析]粒子做匀圆周运动周期为T=2πm qB,故电源周期须与粒 子运动周期同步,粒子的最大速度由最大半径R决定。 2.(2012·北京西城抽样)如图是磁流体发电机的原理示意图,金属板M、N正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R。在极板间有垂直于纸面向里的匀强磁场。当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是() A.N板的电势高于M板的电势 B.M板的电势高于N板的电势

C.R中有由b向a方向的电流 D.R中有由a向b方向的电流 [答案]BD [解析]根据左手定则可以判断,当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,正粒子向上偏转,所以M板的电势高于N板的电势,B选项正确,A选项错误;在电源外部电流从高电势流向低电势,R中有由a向b方向的电流,D选项正确,C选项错误。 3.如图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是() A.质谱仪是分析同位素的重要工具 B.速度选择器中的磁场方向垂直纸面向外 C.能通过狭缝P的带电粒子的速率等于E/B D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小 [答案]ABC

带电粒子在电磁场中运动的科技应用

带电粒子在电磁场中运动的科技应用 新课程教材在习题的选择上突出“一道好习题,就是一个科学问题”的理念,强调“应多选择有实际背景或以真实的生活现象为依据的问题,即训练学生的科学思维能力,又联系科学、生产和生活的实际”。带电粒子在电磁场中运动的问题,既源于教材,是教材中的例题、习题或其他栏目,又是历年来是高考的热点。为此,笔者撰写此文,望引起考生对现代科学、技术、社会(STS)的关注,笔者预测在2011年的高考中仍会出现带电粒子在电磁场中运动的试题,愿对考生有所助益。 一、源于教材 带电粒子在电磁场中运动的科技应用主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用,来控制其运动,使其平衡、加速、偏转或转动,以达到预定的目的。如下表中的各种类型。 二、科技应用赏析 纵观近几年的高考试题,常常以加速器、示波管、质谱仪、速度选择器为背景,结合最新的现代科技知识与情景,考查带电粒子在电场中的加速、偏转和在磁场中的偏转。 1.加速器

带电粒子在电场中加速的科技应用主要是加速器。加速加速器直线加速器、回旋加速器、电子感应加速器有三种,在高考试题中,直线加速器往往不单独命题,常常与磁偏转和回旋加速器结合起来,考查单一问题的多过程问题;回旋加速器有时单独命题,也常常与直线加速器结合起来命题,如卷2008年第25题、2010年第25题的计算题就是这样命题的;而电子感应加速器还未考查,笔者提醒敬请关注。 例1.(08·)1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图1所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说确的是() A.离子由加速器的中心附近进入加速器 B.离子由加速器的边缘进入加速器 C.离子从磁场中获得能量 D.离子从电场中获得能量 答案:AD 解析:离子由加速器的中心附近进入加速器,在电场中加速获得能量,在磁场中偏转时,洛伦兹力不做功,能量不变,由于进入磁场的速度越来越大,所以转动的半径也越来越大,故选项AD正确。 例2.电子感应加速器工作原理如图2所示(上图为侧视图、下图为真空室的俯视图),它主要有上、下电磁铁磁极和环形真空室组成。当电磁铁绕组通以交变电流时,产生交变磁场,穿过真空盒所包围的区域的磁通量随时间变化,这时真空盒空间就产生感应涡旋电场。电子将在涡旋电场作用下得到加速。

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

电磁场与电磁波理论 概念归纳.(DOC)

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场和电磁波的应用

本科生学年论文(课程设计)题目:电磁场与电磁波的应用 学院物理科学与技术学院 学科门类理学 专业应用物理 学号2012437019 姓名郭天凯 指导教师闫正 2015年11月18日

电磁场与电磁波的应用 摘要 随着社会的不断进步与发展,科学技术的不断改革创新,电磁场与电磁波已经应用于社会生活的方方面面,受到了越来越多人的高度重视和关注。电子通信产品的随处可见,手机通信,微波通讯以及无线电视等;电磁波极化在雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面的应用;电磁场在金属材料加工、合成与制备中的应用;电磁波随钻遥测技术在钻井中的应用;电磁场的生物效应在电磁治疗方面的应用等都离不开电磁成与电磁波。本文将进一步对电磁场与电磁波在通讯、科技开发、工业生产、生物科学、材料科学等方面的应用展开分析和探讨。 关键词:电磁场;电磁波;极化;电子通信技术;电磁波的应用

目录 1 电磁场与电磁波的概况 (1) 2 电磁场与电磁波在通讯方面的应用 (2) 2.1 在无线电广播中的应用 (2) 2.2 在电视广播中的应用 (2) 2.3 在移动通信中的应用 (2) 2.4 在卫星通信中的应用 (2) 3 电磁波极化的应用 (3) 3.1 利用极化实现最佳发射和接收 (3) 3.2 利用极化技术提高通信容量 (3) 3.3 极化在雷达目标识别、检测和成像中的应用 (3) 3.4 极化在抗干扰中的应用 (4) 4 电磁波随钻遥测技术在钻井中的应用 (5) 4.1 采用数据融合技术,优化产品性能,提高传输深度 (5) 4.2 采用广播芯片技术,提高信息传输能力 (5) 5 在生物医学中的应用 (6) 5.1 电磁场的生物效应及其发展 (6) 5.2 电磁场作用的机理 (6) 6 电磁场在材料科学中的应用 (7) 7 结束语 (7) 参考文献 (8)

电磁学在生活中的应用

电磁学在生活中的应用 材料与化学工程学院 高分子材料与工程 541004010122 李祥祥

电磁学在生活中的应用电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 电磁学在生活中应用也比较广泛,下面举例说明电磁学在生活中应用。 指南针 指南针是用以判别方位的一种简单仪器。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。地球是个大磁体,其地磁南极在地理北极附近,地磁北极在地理南极附近。指南针在地球的磁场中受磁场力的作用,所以会一端指南一端指北。电磁炉 电磁炉作为厨具市场的一种新型灶具。它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁原子高速无规则运动,原

子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。因此,在电磁炉较普及的一些国家里,人们誉之为“烹饪之神”和“绿色炉具”。 电磁炉工作过程中热量由锅底直接感应磁场产生涡流来产生的,因此应该选择对磁敏感的铁来作为炊具,由于铁对磁场的吸收充分、屏蔽效果也非常好,这样减少了很多的磁辐射,所以铁锅比其他任何材质的炊具也都更加安全。此外,铁是对人体健康有益的物质,也是人体长期需要摄取的必要元素。 电磁起重机 电磁起重机是利用电磁原理搬运钢铁物品的机器。电磁起重机的主要部分是磁铁。接通电流,电磁铁便把钢铁物品牢牢吸住,吊运到指定的地方。切断电流,磁性消失,钢铁物品就放下来了。电磁起重机使用十分方便,但必须有电流才可以使用,可以应用在废钢铁回收部门和炼钢车间等。 利用电磁铁来搬运钢铁材料的装置叫做电磁起重机。电磁起重机能产生强大的磁场力,几十吨重的铁片、铁丝、铁钉、废铁和其他各种铁料,不装箱不打包也不用捆扎,就能很方便地收集和搬运,不但

相关文档
最新文档