判定线性代数中矩阵相似关系的原理和方法

判定线性代数中矩阵相似关系的原理和方法
判定线性代数中矩阵相似关系的原理和方法

一[收稿日期]2018G09G28;一[修改日期]2018G12G04一[基金项目]国家自然科学基金青年项目(11601470);云南省高等学校卓越青年教师特殊培养计划项目(C 6152704)

;云南大学校级教改项目(WX 162072);云南大学校级本科教材建设项目(WX 162072

)一[作者简介]李源(1978-),男,硕士,副教授,从事计算数学和大学数学课程的教学和研究.E m a i l :l i y u a n @y n u .e d u .c n 第35卷第2期大一学一数一学V o l .35,?.22019年4月C O L L E G E MA T H E MA T I C S A p

r .2019判定线性代数中矩阵相似关系的

原理和方法

李一源1,一郝小枝2(1.云南大学数学与统计学院,昆明650500;一2.云南中医药大学信息学院,昆明650021

)一一[摘一要]指出教育部考试中心2019版考研数学考试分析中关于矩阵相似试题解答中的一个错误.

系统梳理了高等代数和线性代数课程中关于相似矩阵刻画的角度和方法,明确了在线性代数课程体系中3类可以作出相似判定的矩阵类别及其对应的判别方法,给出不能一般判定相似关系的第4类矩阵的基本特征,并结合实例给出在特殊情形下解决第4类矩阵相似关系判定的方法.[关键词]线性代数;相似矩阵;相似对角化;特征多项式[中图分类号]O 177.5一一[文献标识码]C 一一[文章编号]1672G1454(2019)02G0122G05

1一引一一言

矩阵相似的判定是近年考研数学命题的热点问题,也是线性代数教学中的难点之一.由于所需方法

具有较高的综合性,学生在判定矩阵相似时的各种错误逻辑频现,甚至在教育部考试中心2019年版的数学考试分析中对2018年全国硕士研究生招生考试数学科考试(

数学一二二二三)中的一道试题的解答均出现疏误!为明确起见,将其摘录如下:

下列矩阵中,与矩阵110011001?è?????÷÷÷相似的为[1](一一)(A )11-1011001?è?????÷÷÷.一(B )10-1011001?è?????÷÷÷.(C )11-1010001?è?????÷÷÷.一(D )10-1010001?è?????

÷÷÷.解一易知矩阵110011001?è?????÷÷÷的特征值为λ=1(3重),其线性无关的特征向量只有1个,即ξ1=100?è?????

÷÷÷.对于选项中的4个矩阵,都是以λ=1为3重特征值的矩阵.选项(A )中的矩阵11-1011001?è?????÷÷÷只有1个线性无关的特征向量ξ1=100?è?????

÷÷÷;

选项(B )中的矩阵10-1011001?è?????÷÷÷有2个线性无关的特征向量ξ1=100?è?????÷÷÷和ξ2=110?è?????÷÷÷;选项(C )中的矩阵11-1010001?è?????÷÷÷也有2个线性无关的特征向量ξ1=100?è?????÷÷÷和ξ2=011?è?????

÷÷÷;选项(D )中的矩阵10-1010001?è?????÷÷÷也有2个线性无关的特征向量ξ1=100?è?????÷÷÷和ξ2=010?è?????

÷÷÷.因为相似矩阵有相同的特征值和特征向量,所以只有选项(A )符合要求.故正确选项为(A ).

上述解答的根本错误在于,其判定矩阵相似的依据是基于 相似矩阵有相同的特征值和特征向量 这一典型的假命题!

事实上,设A ,B 是n 阶矩阵,且A 相似于B ,即?可逆矩阵P ,有P -1A P =B .

又设矩阵A 的属于特征值λ的特征向量为α,即A α=λα,

且α?0.从而有P -1A P ()P -1α=λ(P -1α),即B (P -1α)=λ(P -1α),且P -1α?0.

这表明:矩阵A 相似于B 时,二者必有相同的特征值,但未必有相同的特征向量.且,如果A 的属于

特征值λ的特征向量为α,则α也是B 的属于特征值λ的特征向量的充分必要条件是P -1α=α,其中矩阵P 是从矩阵A 到B 的相似变换矩阵.例如:

令A =11-1010001?è?????÷÷÷,取初等矩阵E 13=001010100?è?????

÷÷÷为相似变换矩阵,由于E -113=E 13,故E -113A E 13=001010100?è?????÷÷÷11-1010001?è?????÷÷÷001010100?è?????÷÷÷=100010-111?è?????÷÷÷=B .由矩阵相似定义可知矩阵A 相似于矩阵B ,但A 的属于3重特征值λ=1的特征向量为ξ1=100?è?????

÷÷÷和ξ2=011?è?????÷÷÷,而B 的属于3重特征值λ=1的特征向量为η1=001?è?????÷÷÷和η2=110?è?????

÷÷÷.显然二者的特征向量并不相同.

由于上述错误在线性代数的教学中具有典型性,而考研数学作为为国选拔人才的招生考试的重要组成部分,其指导思想是既有利于国家对高层次人才的选拔,又有利于高等学校各类数学课程教学质量的提高.通过考试这根 指挥棒 正确引导高等学校的数学教学向培养应用数学能力的方向发展,使得学生学而有用,学而会用,从而对数学教学质量的提高起到积极的促进作用.如何在考研数学大纲划定的考试内容范围内解决两个矩阵是否相似的问题,对于本科线性代数的教学有重要的参照意义,本文对此做一些讨论.2一高等代数与线性代数刻画矩阵相似的角度和方法

2.1一高等代数和线性代数关于矩阵相似刻画方法的差异

在高等代数中,矩阵的相似关系刻画了线性空间中的线性变换在两组不同基下对应矩阵的关联.寻求一组基使线性变换在这组基下的矩阵尽可能简单是线性变换的一个重要主题,而问题的解决最终归

21第2期一一一一一一李源,等:判定线性代数中矩阵相似关系的原理和方法

结为矩阵间的相似关系.为了得到矩阵相似的充要条件,不得不突破数字矩阵的研究范畴,通过λG矩阵的工具最终得到如下定理.

定理1[2]一设A ,B 是数域K 上的n 阶矩阵,

则A 相似于B 的充要条件是:(i )特征矩阵λE -A 与λE -B 等价;

(i i )A 与B 的行列式因子相同;

(i i i )A 与B 的不变因子相同;

(i v )A 与B 的初等因子相同.尽管定理1中给出的充要条件已经在理论上解决了如何判定矩阵相似的问题,但这些条件无一例

外的突破了本科线性代数课程(本文中所谈的线性代数课程指为理工类和经管类等非数学本科专业开

设的公共基础课)的教学基本要求[3],同时也超出了考研数学大纲[4]界定的考试范围和要求.实际上,在线性代数课程的本科教学基本要求内并不涉及线性变换在不同基下的矩阵关系,课程的相似关系通常由矩阵的相似对角化问题引入,其基本的知识脉络如下:

(i

)为解决方阵高次方幂A n 的计算,提出A 相似于对角矩阵Λ(称为A 可相似对角化)的构想,即利用P -1A P =Λ,得出A =P ΛP -1,进而有A n =PΛn P -1.(i i )为寻求相似变换矩阵P 和对角矩阵Λ,引入矩阵特征值与特征向量的定义.(i i i )为实现矩阵的相似对角化,依次展开对特征值与特征向量的性质二矩阵相似关系和性质的讨论,并给出了矩阵可相似对角化的充分必要条件.(i v )由于一般方阵未必相似于对角矩阵,为此课程着重讨论了一类必定可以相似对角化的矩阵实例,即实对称矩阵的相似对角化问题.这同时也为二次型利用正交变换化为标准形提供了理论依据.

2.2一线性代数课程体系中与相似判定有关的概念和性质

2.2.1一矩阵相似的定义.

定义1[5,P 231]一设A ,B 是n 阶矩阵,若存在n 阶可逆矩阵P ,使得P -1A P =B ,

则称矩阵A 与B 相似,记为A ~B .2.2.2一矩阵相似的必要条件.

定理2[5,P 232]一若A ~B ,则λE -A =λE -B .

这表明,若A ~B ,则A 和B 有相同的特征值.进而有相似矩阵有相同的迹二相同的行列式.此外,由

矩阵相似的定义可知,相似矩阵有相同的秩.

2.2.3一矩阵相似的性质.定理3[5,P 231](传递性)一若A ~B ,B ~C ,则A ~C .定理4一A ~B 的充分必要条件是λE -A ~λE -B ,其中λ为A ,B 的特征值.

证(必要性)一若A ~B ,则?可逆矩阵P ,使得P -1A P =B ,进而有λE -P -1A P =λE -B ,即P -1(λE -A )P =λE -B ,故λE -A ~λE -B .

(充分性)一若λE -A ~λE -B ,则?可逆矩阵P ,使得P -1(λE -A )P =λE -B ,进而有λE -P -1A P

=λE -B ,即有P -1A P =B ,故A ~B .这表明,两矩阵相似的充要条件是它们的特征矩阵相似.

2.2.4一矩阵可相似对角化的充分必要条件

定义2一设A 是n 阶矩阵,若存在n 阶可逆矩阵P ,使得P -1A P 为对角矩阵,

则称A 可相似对角化.定理5[5,P 233]一设A 是n 阶矩阵,则A 可相似对角化的充分必要条件是A 有n 个线性无关的特征向量.

根据矩阵特征值和特征向量的性质,进一步可知:

定理6[5,P 237]一设A 是n 阶矩阵,则A 可相似对角化的充分必要条件是A 的k i 重特征值λi 恰有k i

个线性无关的特征向量,即n -r λi E -A ()=k i ,其中r λi E -A ()是矩阵λi E -A 的秩,i =1,2, ,s ,且k 1+k 2+ +k s =

n .421大一学一数一学一一一一一一一一一一一一一一第35卷

3一线性代数课程体系中矩阵相似关系判定的策略

3.1一利用矩阵相似的必要条件判定某些矩阵不具有相似关系.由于A ~B 时,必有t r (A )=t r (B ),|A |=|B |,r (A )=r (B ),λE -A =λE -B .

这表明,两个矩阵的秩二迹二行列式二特征多项式对应相等是它们相似的前提条件.换言之,只要上述条件其中之一不相等的矩阵必然不相似.

3.2一利用相似对角化理论对满足相似必要条件的矩阵作进一步讨论.

定理7一设A ,B 均为n 阶矩阵,若λE -A =λE -B ,且A 为对角矩阵,则A ~B 的充要条件是B 有n 个线性无关的特征向量.

定理7表明:在两个矩阵的特征值对应相同,且其中之一为对角矩阵时,二者相似的充要条件是另一矩阵可相似对角化.

定理8一设A ,B 均为n 阶矩阵,若λE -A =λE -B ,且A ,B 都不是对角矩阵.(i )若A ,B 均可相似对角化,则A ~B ;(i i )若A ,B 仅有其中之一可相似对角化,则A ,B 不相似.证一(i )由于λE -A =λE -B ,即A ,B 的特征值相等,不妨设为λ1,λ2, ,λn .又A ,B 均可相似对角化,即A ~Λ,B ~Λ,其中Λ=d i a g (λ1,λ2, ,λn )

.由传递性知:A ~B .(i i )(反证法)倘若A ~B ,且A ~Λ,则由传递性可知B ~Λ,矛盾.当然,上述所考虑的情形并不完善.事实上,可能有λE -A =λE -B ,且A ,B 均不可相似对角化时,此时如何判断A ,B 是否相似?在笔者看来,

在线性代数的教学内容中对此情形尚无一般有效的方法,但通常可从以下角度考虑:

(i )由定理4可推知:A ~B 的充分必要条件是特征矩阵λE -A ~λE -B .如果特征矩阵λE -A ,λE -B 不相似,必有矩阵A ,B 不相似.(i i )用定义证明矩阵A ,B 相似,即寻找适当的可逆矩阵P ,使得P -1A P =B .4一应用实例

下面给出前述引例的两种解法.

为讨论方便,分别记A =110011001?è?????÷÷÷,B 1=11-1011001?è?????÷÷÷,B 2=10-1011001?è?????÷÷÷,B 3=11-1010001?è?????÷÷÷,B 4=10-1010001?è?????

÷÷÷.问题为在B 1,B 2,B 3,B 4中找出与A 相似的矩阵.容易看出:上述5个矩阵都是以λ=1为3重特征值的矩阵,且都不能相似对角化.方法1一考虑特征矩阵λE -B i 与λE -A 相似的必要条件.注意到r (E -A )=2,而r (E -B 2)=r (E -B 3)=r (E -B 4)=1,故E -A 与E -B i (i =2,3,4)不相似,进而可知A 与B 2,B 3,B 4不相似,由排除法可知A 与B 1相似.由于r (E -A )=r (E -B 1)=2,在高等代数中根据定理1中的充要条件(i )可判定A 与B 1相似.但在线性代数中这只是E -A 与E -B 1相似的必要条件,

因而也只是A 与B 1相似的必要条件.因此它只能否定相似,而不能肯定相似,故这种逻辑通常只能在单项选择题中奏效.

方法2一用定义证明A 与B 1相似.注意到A 和B 1,B 2,B 3,B 4的元素特征,

利用初等矩阵与初等变换的关系.令P =E 21(1)=110010001?è?????÷÷÷,则P -1=E 21(-1)=1-10010001?è?????÷÷÷,且521第2期一一一一一一李源,等:判定线性代数中矩阵相似关系的原理和方法

P-1A P=1-10

010

001

?

è

?

??

?

?

÷

÷÷

110

011

001

?

è

?

??

?

?

÷

÷÷

110

010

001

?

è

?

??

?

?

÷

÷÷=

11-1

011

001

?

è

?

??

?

?

÷

÷÷=B1,

这表明A与B1相似.

应当指出,利用定义证明两矩阵的相似关系,需要直接构造出满足要求的可逆矩阵P,对于形式较复杂的矩阵而言这种构造并不具有一般地可操作性.

5一结束语

在线性代数的本科教学基本要求和考研数学的考试要求范围内,可以解决3类矩阵相似关系判别,即

第1类一特征多项式不相等的矩阵必不相似;

第2类一特征多项式相等,且仅其中之一可相似对角化的矩阵必不相似;

第3类一特征多项式相等,且二者均可相似对角化的矩阵必相似.

而对于特征多项式相等,且二者均不可相似对角化的第4类矩阵,分两种情形:

情形1一当二者不相似时,必定有二者特征矩阵不等秩,进而由二者特征矩阵的不相似得出二者不相似;

情形2一当二者相似时,只能设法直接构造出二者之间的相似变换矩阵,利用定义证明二者的相似关系,但这通常不是一般可行的.这表明:在线性代数的知识体系内,尚不能一般有效地解决这类矩阵相似关系的判定.

[参一考一文一献]

[1]一教育部考试中心.全国硕士研究生招生考试数学考试分析(2019年版)[M].北京:高等教育出版社,2018:13.[2]一邱岫岩.两矩阵相似充要条件定理浅释[J].辽宁师范大学学报(自然科学版),1990,13(1):62-65.

[3]一教育部高等学校大学数学课程教学指导委员会.大学数学课程教学基本要求(2014年版)[M].北京:高等教育出版社,2015:8-10.

[4]一教育部考试中心.2019年全国硕士研究生招生考试数学考试大纲[M].北京:高等教育出版社,2018:14-17.[5]一居余马,胡金德,林翠琴,等.线性代数[M].2版.北京:清华大学出版社,2002.

T h eP r i n c i p l e a n dM e t h o dw i t h I d e n t i f i c a t i o nS i m i l a r

R e l a t i o n s h i p s o fM a t r i c e s i nL i n e a rA l g e b r a

L IY u a n1,一HA OX i a oGz h i2

(1.S c h o o l o fM a t h e m a t i c s a n dS t a t i s t i c s,Y u n n a nU n i v e r s i t y,K u n m i n g650500,C h i n a;

2.S c h o o l o f I n f o r m a t i o n,Y u n n a nU n i v e r s i t y o fT r a d i t i o n a l C h i n e s eM e d i c i n e,K u n m i n g650021,C h i n a)

A b s t r a c t:T h i s p a p e r p o i n t so u ta m i s t a k ei nt h ea n a l y s i so fs i m i l a r m a t r i xt e s t q u e s t i o n si nt h ee x a m i n a t i o no f M a t h e m a t i c s f o r p o s t g r a d u a t e e n t r a n c e e x a m i n a t i o n o f t h e e x a m i n a t i o n c e n t e r o f t h eM i n i s t r y o f E d u c a t i o n i n2019e d i t i o n.

I t s y s t e m a t i c a l l y c o m b s t h e a n g l e s a n dm e t h o d s o f d e s c r i b i n g s i m i l a rm a t r i c e s i n t h e c o u r s e s o f a d v a n c e d a l g e b r a a n d l i n e a r

a l g e

b r a a n dd e f i n e s t h r e ek i n d s o fm a t r i

c e sw h i c hc a nm a k e s i m i l a r j u

d g m

e n t s i n t h e c o u r s e s y s t e mo

f l i n e a r a l

g e b r a.T

h e

b a s i

c c h a r a c t e r i s t i c s o f c l a s s4m a t r i c e sw h i c hc a n?t j u

d g

e t h e s i m i l a r i t y r e l a t i o n i n g e n e r a l a r e g i v e nb y t h e c o r r e s p o n d i n g

d i s c r i m i n a n tm

e t h o d,a n d t h em e t h o d s t o d e t e r m i n e t h e s i m i l a r i t y r e l a t i o n o

f c l a s s4m a t r i c e s i n s p e c i a l c a s e s i s

g i v e n b y a n

e x a m p l e.

K e y w o r d s:l i n e a r a l g e b r a;s i m i l a rm a t r i x;s i m i l a r d i a g o n a l i z a t i o n;c h a r a c t e r i s t i c p o l y n o m i a l

621大一学一数一学一一一一一一一一一一一一一一第35卷

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数---特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1221222,1 1,21,1 1,11 2 ,1 (1)2 12,11 000000 00 000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------== =- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 00010002000199900 02000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!0199900 02000 000D ?---=-=--= 解法三:分块法 00010002000199900 02000000 002001 D = 利用分块行列式的结果可以得到

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

线性代数的基本运算

111 第5章 线性代数的基本运算 本章学习的主要目的: 1 复习线性代数中有关行列式、矩阵、矩阵初等变换、向量的线性相关性、线性方程组的求解、相似矩阵及二次型的相关知识. 2学会用MatLab 软件进行行列式的计算、矩阵的基本运算、矩阵初等变换、向量的线性相关性的判别、线性方程组的求解、二次型化标准形的运算. 5.1 行列式 5.1.1 n 阶行列式定义 由2n 个元素),,2,1,(n j i a ij 组成的记号 D=nn n n n n a a a a a a a a a 212222111211 称为n 阶行列式.其值是所有取自不同行不同列的n 个元素的乘积n np 2p 21p 1a a a 的代数和,各项的符号由n 级排列n p p p 21决定,即

112 D= ∑ -n p p p n p p p 21n np 2 p 21 p 1) 21( a a a )1(τ, 其中 ∑n p p p 21表示对所有n 级排列求和, ) ,,,(21n p p p τ是排列 n p p p 21的逆序数. 5.1.2 行列式的性质 (1) 行列式与它的转置行列式相等. (2) 互换行列式的两行(列),行列式变号. (3) 若行列式有两行(列)完全相同,则此行列式为零. (4) 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k 乘此行列式. (5) 若行列式有两行(列)元素成比例,则此行列式为零. (6) 若行列式的某一列(行)的元素是两数的和,则此行列式等 于对应两个行列式之和.即 nn n n ni n n i i nn n n ni n n i i nn n n ni ni n n i i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 21'2 1 '22221 '11211212 1 22221 112 1121'2 1 '222221'111211+ =+++ (7) 若行列式的某一行(列)的各元素乘以同一数加到另一行(列)对应的元素上去,行列式不变.

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

判定线性代数中矩阵相似关系的原理和方法

一[收稿日期]2018G09G28;一[修改日期]2018G12G04一[基金项目]国家自然科学基金青年项目(11601470);云南省高等学校卓越青年教师特殊培养计划项目(C 6152704) ;云南大学校级教改项目(WX 162072);云南大学校级本科教材建设项目(WX 162072 )一[作者简介]李源(1978-),男,硕士,副教授,从事计算数学和大学数学课程的教学和研究.E m a i l :l i y u a n @y n u .e d u .c n 第35卷第2期大一学一数一学V o l .35,?.22019年4月C O L L E G E MA T H E MA T I C S A p r .2019判定线性代数中矩阵相似关系的 原理和方法 李一源1,一郝小枝2(1.云南大学数学与统计学院,昆明650500;一2.云南中医药大学信息学院,昆明650021 )一一[摘一要]指出教育部考试中心2019版考研数学考试分析中关于矩阵相似试题解答中的一个错误. 系统梳理了高等代数和线性代数课程中关于相似矩阵刻画的角度和方法,明确了在线性代数课程体系中3类可以作出相似判定的矩阵类别及其对应的判别方法,给出不能一般判定相似关系的第4类矩阵的基本特征,并结合实例给出在特殊情形下解决第4类矩阵相似关系判定的方法.[关键词]线性代数;相似矩阵;相似对角化;特征多项式[中图分类号]O 177.5一一[文献标识码]C 一一[文章编号]1672G1454(2019)02G0122G05 1一引一一言 矩阵相似的判定是近年考研数学命题的热点问题,也是线性代数教学中的难点之一.由于所需方法 具有较高的综合性,学生在判定矩阵相似时的各种错误逻辑频现,甚至在教育部考试中心2019年版的数学考试分析中对2018年全国硕士研究生招生考试数学科考试( 数学一二二二三)中的一道试题的解答均出现疏误!为明确起见,将其摘录如下: 下列矩阵中,与矩阵110011001?è?????÷÷÷相似的为[1](一一)(A )11-1011001?è?????÷÷÷.一(B )10-1011001?è?????÷÷÷.(C )11-1010001?è?????÷÷÷.一(D )10-1010001?è????? ÷÷÷.解一易知矩阵110011001?è?????÷÷÷的特征值为λ=1(3重),其线性无关的特征向量只有1个,即ξ1=100?è????? ÷÷÷.对于选项中的4个矩阵,都是以λ=1为3重特征值的矩阵.选项(A )中的矩阵11-1011001?è?????÷÷÷只有1个线性无关的特征向量ξ1=100?è????? ÷÷÷;

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素及另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 2322 21 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数 第四章 相似矩阵 习题

第四章 相似矩阵 1.试用施密特法把下列向量组正交化: (1) ????? ??=931421111),,(321a a a ; (2) ???? ?? ? ??---=011101110111),,(321a a a 解 (1) 根据施密特正交化方法: 令? ???? ??==11111a b ,[][]???? ? ??-=-=101,,1112122b b b a b a b , [][][][]???? ? ??-=--=12131,,,,222321113133b b b a b b b b a b a b ,故得: ? ????? ?? ?? --=311132 013111),,(321b b b . 2.下列矩阵是不是正交阵: (1) ????? ?? ? ?? --- 12 13 12 1121312 11; (2) ??????? ? ??------ 97949 4949198949891. 解 (1) 第一个行向量非单位向量,故不是正交阵. (2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3.设A 与B 都是n 阶正交阵,证明AB 也是正交阵. 证明 因为B A ,是n 阶正交阵,故A A T =-1,B B T =-1 E AB A B AB A B AB AB T T T ===--11)()(,故AB 也是正交阵.

4.求下列矩阵的特征值和特征向量: (1)???? ??-4211; (2)????? ??633312321; (3)())0(,121 21≠? ??? ??? ??a a a a a a a n n . 并问它们的特征向量是否两两正交? 解 (1) ① )3)(2(42 11--=---= -λλλ λλE A 故A 的特征值为3,221==λλ. ② 当21=λ时,解方程0)2(=-x E A ,由 ???? ?????? ??--=-00112211)2(~E A 得基础解系???? ??-=111P 所以)0(111≠k P k 是对应于21=λ的全部特征值向量. 当32=λ时,解方程0)3(=-x E A ,由 ???? ?????? ??--=-00121212)3(~E A 得基础解系???? ??-=1212P 所以)0(222≠k P k 是对应于33=λ的全部特征向量. ③ 023 121)1,1(],[2121≠=???? ??--==P P P P T 故21,P P 不正交. (2) ① )9)(1(6333123 2 1-+-=---=-λλλλ λλλE A 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由

线性代数习题 第五章 相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则λA 为 的特征值。 ;.;.;.;.1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5、设矩阵???? ? ??--=314020 112A ,求A 的特征值及特征向量、

6.试用施密特法把向量组????? ???????---=011101110111),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也就是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 就是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =就是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关条件 2、对实对称阵?? ????-=??????=1001,1001B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3、 n 阶矩阵A 与对角阵相似的充要条件就是 。 a 、 矩阵A 有n 个特征值; b 、 矩阵A 有n 个线性无关的特征向量; c 、 矩阵A 的行列式0≠A ; d 、 矩阵A 的特征多项式有重根 4、 设n 阶矩阵A 与B 相似,则 。 a 、A 与B 正交; b 、 A 与B 有相同的特征向量; c 、 A 与B 等价; d 、 A 与B 相同的特征值。 5、若A 与B 就是相似矩阵,证明T A 与T B 也相似。 6、设方阵??????????------=12422421x A 与????????? ?-=Λ45y 相似,求x 与y 。 7、设三阶方阵A 的特征值1,—2,2,且2 35A A B -=,求B 的特征值与B 。 8、设矩阵?? ????--=3113A ,①求A 的特征值,②求E+1-A 的特征值。

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

(精选)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125____,|2A|=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

华东理工大学线性代数第一章矩阵复习

矩阵 第章 第一章矩阵

矩阵乘法转置求逆运算规律 1、矩阵乘法、转置、求逆运算规律); ()(BC A C AB =)); (),()()(为数其中λλλλB A B A AB ==A ; )(, )(CA BA A C B AC AB C B +=++=+. I A A A I n n m n m n m m ×××==般地则称若一般地,,,BA AB BA AB =≠B A 与. 是可交换的矩阵乘法一般不满足消去律,即: . Y X AY AX ==一般推不出

逆矩阵 定义,, 使如果存在矩阵阶方阵为设B n A ( 矩阵、满或非奇异的、非退化的是可逆的则称矩阵A I BA AB ==的逆矩阵唯的. ),的逆矩阵称为且矩阵秩的A B . ,, 1 A A A ?的逆 的逆矩阵是唯一的则有逆矩阵若A 矩阵记作

()() ; 1A A T T =() A A =??1 1()();2T T T B A B A +=+() ;1 1 1 ???+≠+B A B A ()(); 3T T A A λλ=T (). 111 ??=A A λ λ()(). 4T T A B AB =() . 1 11 ???=A B AB (?()). T T A A 11 ? =

一些特殊的矩阵2些特殊的矩阵 对称矩阵 T . ,,为对称矩阵则称如果阶方阵为设A A A n A =反对称矩阵 ,,为反对称则称如果阶方阵为设A A A n A T ?=. 矩阵幂等矩阵 . ,,2 为幂等矩阵则称如果阶方阵为设A A A n A =

正交矩阵 A A ,,正交矩阵为则称如果阶方阵为设A I A A n A T T ==.对角矩阵 其余素全角线阶阵,,其余元素全如果主对角线以外阶方阵为设n A . ,为对角矩阵则称为零 A

相关文档
最新文档