温度采集系统数据库

温度采集系统数据库
温度采集系统数据库

(天气温度)温度采集系统数据库的(管理应用)

摘要:

关键词

前言

实现原理

系统的支持工具

温度传感器,SQL数据库对采集到的温度数据进行存储、管理、转发等操作,以实现温度的监控与利用。

数据库系统的优化

目前温度信息采集系统利用实时采集的温度数据资料,对末来一定时段内的温度变化情况作出较为精确的预测和报警,在人们的生产生活中有着重要的作用。

(1)、基本原理:

通过传感器等温度处理系统与一些终端设备连为一体,无线测控终端内置:CPU 模块、数据存储模块、控制模块、GPRS/CDMA数据通信模块。可现场接入多路模拟量、开关量、继电器信号等数据,然后直接通过GPRS无线模块将现场数据与远程控制中心连接,将采集数据实时发送到远程数据库服务器,并存储到数据库中。通过该系统,即使在远离观测现场的异地,也能方便地对气象如温度气候数据的采集读取,真正实现了远程监测和数据共享的功能。除数据远程采集、实时监控外,系统还可实现远程手机报警,并通过用户手机远程控制现场设备。

系统功能特点

1、功能

(1)24小时不间断实时监测、处理数据;

(3)自动报警–可通过短信、中心控制机软件等方式报警;

(4)监测数据的管理、分析和统计;定期生成监测报表;

(6)具备温度的自动采集功能,能自动采集到某一区间的温度,

(7)具备定时自报功能,按预先设置的定时时间间隔(可任意设置),向中心站发送当前的温度,

(8)数据库查询(分类、统计、表格生成)

(9)设备结构简单、维护方便、情况下正常运行。

2、特点

(1)、安全性

严格权限管理。提供审计跟踪功能,记录所有用户操作过程,具备事务日志功能。

(2)、实时性

实时采集现场中的温度,信息,并将其存在业务数据库中。具有较强的实时性和较高的处理效率,

(3)、实用性

操作界面简单,易于理解;系统维护方便快捷;二次开发接口必须标准化;灾难性故障的恢复要简单、可靠。

(4)、容错冗余

采集接口在具备条件的场合,实现冗余;采集软件要有容错处理机制;实时数据库系统具有容错能力,根据具体的硬件条件实现冗余。

(5)、先进性

建立一个开放的、标准的、可扩充、易管理、升级的实时数据库系统。不仅仅要做到配置上的先进,更主要的是开发上和应用上的先进。

(6)、多种报警方式

可以通过声光报警、手机短信报警等报警方式对气压超高等信息进行报警。

4 系统预期功能

(1)使用短信息无线通讯模块自动监测储藏粮食的温、湿度传感器的动态值,并实时显示在库房内的数据屏幕上。

(2)库房内数据屏幕配备远程无线通讯模块发信至业务管理部门的计算机上。

(3)计算机配备数据库管理程序按日记录库房温度湿度,管理堆垛粮食温度。

(4)管理程序可以查询按日变化粮温曲线,环境温度、湿度变化曲线。

(5)管理程序可以设置预警温度,及时提示超过预警温度的堆垛。

(6)管理程序具有报表功能:按粮食保管要求输出报表,打印温湿度变化的记录数据和曲线。

(7)利用因特网实现库房温度、湿度数据共享,相关部门或业务负责人均可通过网络及时查阅资料。

1数据库应用系统设计

1.1过程控制系统结构

热轧厂过程控制系统共配置4台服务器,其中3台是Alpha小型机,运行OpenVMS 操作系统,1台是PC服务器,运行Windows操作系统

系统还采用一台PC服务器作为数据中心机,它带有独立的RA4000磁盘阵列,内装有8块硬盘,构成一个5型的磁盘阵列,存储大量的生产过程、产品质量等历史数据,运行相应的数据应用程序,进行各种数据统计分析

1.2过程机的数据库应用

有1个磁盘镜像系统盘。操作系统、应用系统程序及数据库系统均安装在该本机盘上,数据库数据文件,其中包括系统表空间文件、应用系统数据表空间文件及索引文件等均配置在外置的磁盘阵列MA8000上。数据库系统的主要功能是:(1)存储应用系统的静态数据,包括数据等;(2)用于数据库间传送数据的通讯表。(3)存放现场采集数据。这类数据主要是供轧制模型进行计算用,以及作为向数据中心机传送数据的缓存。由于是来自于现场的采集数据,这类数据对表写入的频率很高,数据量也很大,但是保存时间不长,一般处理完以后就可以删除。

1.3数据中心机的数据库应用

数据中心机数据库的数据文件,其中包括系统表空间文件、应用系统数据表空间文件及索引文件等均配置在外置的磁盘阵列上,大约能存储3年的历史数据。

1.3.2管理系统

轧辊管理系统负责全厂所有轧辊的磨削、检测、保养以及轧制产量的考核和轧辊性能指标的评估。轧辊管理系统的数据库建立在数据中心,在精轧数据库上建立换辊操作数据库,其基本功能包括:(1)数据输入。包括轧辊计划的编制,新辊入库的填写,轧辊磨削、温度、硬度、探伤检测等数据的输入;(2)查询。可以查看新输入的数据,并验证其正确性,查询某根轧辊的使用记录,以及轧辊的最新情况;(4)统计分析功能。提供轧辊的使用报表,包括日报、周报、月报等,以及轧辊使用过程中异常情况统计,为轧辊的性能考核提供信息。

1.3.3质量统计分析和报表系统

质量统计分析和报表管理系统主要为质量管理部门、工艺部门和模型维护部门提供研究分析的依据,通过使用报表管理系统,质量工作人员对生产过程采集的数据进行分析,作出产品的质量判定,还可以对出现质量异议的钢卷进行原因调查和分析,同时模型维护人员可以根据报表信息检查模型的使用情况和设定精度,分析模型使用过程存在的问题,以便进一步优化精轧数学模型。

数据中心负责收集生产实绩数据。可以实现样本数据的描述和预处理,假设检验;可以进行方差分析、回归分析、线性分析、聚类分析等多种统计分析,并可以图形显示和生成报表。

2数据库应用系统的优化

系统投用之初,运行极不稳定。主要是由于在数据库的设计中存在一些问题,同时对数据库也没有进行一定的优化维护,随着数据量的增加,系统经常出现响应缓慢;被锁定的表无法自己释放,导致应用系统的进程死锁;数据库间的通讯时有中断,应用系统间丢失信息。

针对出现的问题,通过研究sql的各种优化方法,将其应用于温度数据库系统。

2.1优化内存

在Oracle中,内存参数的调整主要是指系统全局区(SGA)的调整。Oracle系统保留3个基本的内存高速缓存,数据字典高速缓存

数据块高速缓存和重做日志高速缓存。

2.1.1数据字典高速缓存的调整

数据字典高速缓存包含了有关数据库的结构、用户、实体信息。可通过查询v$librarycache表来了解数据字典高速缓存活动情况,以决定如何调整。

2.1.2数据块高速缓存的调整

DB_BLOCK_SIZE是指一个Oracle数据块的大小,它是在创建数据库时设置的,缺省值为8 kB,通常是越高越好。DB_BLOCK_BUFFERS是保存在内存中的Oracle 数据块的数量。该值应足够大以便产生一个有效的高速缓存命中率。

DB_BLOCK_SIZE值在数据库建立以后就不能改变,在实际应用中是通过调整

DB_BLOCK_BUFFERS来调整缓冲区高速缓存的大小。init.ora提供了3个缺省值,默认值是MEDIUM,考虑到该系统的并发用户数不会很多,但在做批量输入时共享数则可能较大,因此将该值设为2048,比标号为MEDIUM的值大一些。

2.1.3重做日志缓冲区的调整

重做日志缓冲区的大小是由LOG_BUFFER初始化参数决定,决定在内

中保留多少空间缓存重做日志项。如果这个值设置得过低,进程之间相互竞争,日志写入进程读出和写入缓存,有可能会导致性能问题。

LOG_BUFFER的缺省值为32768个字节,等于数据块尺寸的4倍,考虑到应用系统在某些时段运行的事务比较集中,为避免用户等待重做日志缓冲区,将该值由缺省值提高为65536。2.2优化I/O

磁盘的I/O速度对整个系统性能有重要影响。解决好磁盘I/O问题,可显著提高性能。影响磁盘I/O的性能的主要原因有磁盘竞争和数据块空间的分配管理。

2.2.1表空间与数据文件的磁盘存储

如果服务器上有多个磁盘,则可将文件分散存储到各个可用磁盘上,减少对数据库的数据文件及事务日志文件的竞争,从而有效地改善服务器的性能。

数据中心机承担大数据量的存储,同时还要对大量的查询作出及时的反应。在设计上单独为数据中心机配置了1台磁盘阵列RA4000,用8个磁盘构建一个5型磁盘阵列。5型阵列是最常用的磁盘阵列,数据可以平均分布到各个磁盘中去,大大减少了数据读写时的磁盘I/O时间。

有时候由于某些进程的影响或网络的原因,很多通讯数据表中的数据无法及时处理,导致这些表存储了大量的数据。而当故障排除,这些表中的数据被删除后,表占用的表空间却不会自动释放,由于通讯表的数量比较多,这种情况占用了大量的表空间,给系统性能带来了很大的影响。一般利用工厂检修时间,把相关的通讯表全部删除,再重建,目的是彻底释放这些表占用的表空间。

2.2.2分区的使用

分区可以把较大的数据库对象分解成更易于管理的较小段,可以改善表的维护、事务及查询性能,表和索引都能够被分区。数据中心机上有的数据表1年的存储量将近5G。系统刚投入运行时,并没有意识到这个问题的严重性,随着数据的不断增加,对这样的表的查询响应时间大幅上升,严重影响的系统的运行。

通过分析发现,对这些大表的查询一般是以月为单位进行操作的,可以用月范围来进

分区,把1年的数据分布到12个分区中,也就是分布到12个表空间中,这样虽然增加了表空间文件的数量,但是每个文件的大小变小了,以月为单位的查询只涉及到一个表空间,显著提高了查询的效率。

2.3优化SQL语句

SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率却很不相同。总得来讲,写SQL语句需要满足如下规则:(1)避

免对返回的行无任何限定条件,即不使用索引列进行查询;(2)避免条件列在表达式中使用;(3)避免条件中使用NULL或不相等;(4)在子查询中慎重使用in 或者not in语句;(5)慎重使用视图的联合查询。

系统投入运行一段时间后,专门组织人力对系统中所有的SQL语句进行了排查,依据上述原则进行了大量的修改,尤其是对一些涉及到多表连接且数据量较大的查询语句进行了仔细分析,对存在执行效率问题的SQL语句进行了优化重写。

例如在轧制计划的查询中,由于查询一个计划涉及到多个子表,最初开发人员只用了一条包含多表连接的SQL语句,随着数据量的增加,查询的响应时间越来越慢。通过修改,把多表的连接分解为几个对单一表的查询,把查询结果传送到客户端的内存中,由客户端程序处理数据。虽然客户端程序要稍微复杂一些,但总的查询响应时间只有修改前的30%,而且随着数据量的增加,性能下降并不明显。

2.5优化效果

综合运用上述各种措施,对系统进行了全面优化,取得了良好的效果,主要有:(1)基本杜绝了数据库锁表的现象;(2)过程机的进程不会因为过长时间等待数据库系统的响应而导致崩溃;(3)由于采用专用网段传送数据库间的数据,网络带宽得到了充分的保证,避免了因网络不稳定带来的系统不稳定现象,甚至是死机;(4)查询响应时间明显加快,尤其是对利用分区技术存储的表,效果更加明显,响应时间不到原来的四分之一;(5)客户端程序连接数据库时的等待时间明显缩短。

总之,通过优化,系统在运行中因数据库系统的原因导致的事故时间大大减少,有力地保证了生产的正常运行。

3结语

由于数据库系统的复杂性较高,很难将参数调整到使整个系统的所有环节性能都达到最优,项目组所能做的只是对系统不同方面的性能做出权衡,将系统调整到较为满意的状态。通过实践,认为数据库应用系统的设计优化工作,应当从以下几点来进行:(1)重视设计阶段的工作。由于设计阶段对系统分析不透彻,造成整个数据库逻辑或物理设计不合理,将会对系统的性能带来极大的影响,同时也会使运行后调整的代价大大增加;(2)设计或维护数据库系统时,应当制定明确的性能目标。突出重点,优先优化对应用系统影响大的性能指标,必要时,要牺牲一些次要的性能环节;(3)构建优化的实验环境。热轧过程控制系统的稳定运行直接关系到生产能否顺利进行,因此,有些结果不明确的优化措施,不应在该系统上直接实施的。应在实验室构建了一套和在线系统基本一样的实验环境,利用该环境来评估实际的优化效果,减小优化失败给在线系统造成不必要的停机时间

应用价值:通过得知当前温度情况,对一些条件下的事情采取措施,如路面浇水,通过历史温度曲线的变化更加形象的估计与预测当年同一时间的温度情况并作出比较。

温度采集工具的一些相关设备,这里主要讨论对采集到的数据进行的一些操作,如何实时显示出来,

系统的主要功能模块介绍(图)

应用数据库的设备要求

对于监控计算机,要完成与下位机现场实时数据的实时通信和数据库的访问功能。监控计算机和数据库服务器之间的信息交换采用ODBC调用来实现。ODBC 具有统一的用户接口,能够容易实现与各种数据库服务器进行交互的程序,对数据库类型依赖性较弱。选用Windows NT Server 和Internet Information Server 5.0构成Web服务器,选择SQL Server2000 构成数据库服务器,以ASP方式完成Web 与数据库的动态数据处理。用VB6.0编程实现与PLC之间实时数据的采集,转化,处理。用VB6.0的RDO对象模型,通过ODBC接口与数据库服务器进行信息交换。采集程序每10秒更新一次采集的温度,湿度数据参数,每隔1秒钟检测数据库是否有新的信息要下达到下位机。

4结论与展望

本系统性能良好,成本低,是一种远程实时监控温湿度变化的新尝试。只要适当更新前端传感器,还可监控库房、智宇楼等建筑设施内的其他设备。然而通过Internet对现场进行监控的最大障碍是网络传输的不确定性和传输延时,基于目前的Internet网,还无法进行监控的闭环控制。因此这里的远程控制一般仅仅用于远程启停某个设备(如本系统中除湿机、空调器的启动和停止),同时存在着传输的不确定性和不安全性,使得远程操作可实现的功能、方法及其步骤等都有待于不断地研究和实践。如何克服这些不利的影响是研究远程操作技术的重要内容。

各模块的代码实现

温度存储数据表

编号字段名称数据类型说明

1 时刻Char型必填,字段不允许

空串

2 温度Float数值必填,字段不允许

空串

3 日最高温度Float数值必填字段

4 日最低温度Float数值必填字段

5 自动编号Int型Primary key主键

温度数据采集系统

第三章系统硬件设计 温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。具有以下特点: (1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信; (2)具备多节点能力,能够简化分布式温度检测应用中的设计; (3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在3~5.5V; (5)在待机状态下可以不消耗电源电量; (6)测量温度范围在-55~+125℃; (7)在-10~+85℃时测量精度在±0.5℃; (8)可以用程序设定9~12 位分辨率; (9)用户可根据需要定义温度的上下限报警设置。 DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图 DS18B20 只有三个引脚。其中,引脚1 和3 分别是GND 和VDD,引脚2 是DQ 端,是用于数据信息的输入和输出。当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。在使用寄生电源情况下,可以向DS18B20 提供电源。 3.1.2 DS18B20 的内部结构 DS18B20的内部框图如图3.1.2所示。 图3.1.2 DS18B20的内部框图 DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度; 5、6和7字节作为内部保留使用。DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。 图3.1.3 DS18B20温度寄存器格式 温度的正负值是由符号为来说明的,正为0,负为1。表3.1给出一部分数字数据与温度的对应关系。 表3.1 DS18B20温度与数据对应关系

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

【CN109974256A】一种室内温湿度控制系统及控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910264380.2 (22)申请日 2019.04.03 (71)申请人 南京福加自动化科技有限公司 地址 210001 江苏省南京市经济技术开发 区恒业路6-3号 (72)发明人 李新美 王岑佳 刘守超 吴敢  (74)专利代理机构 南京经纬专利商标代理有限 公司 32200 代理人 曹翠珍 (51)Int.Cl. F24F 11/89(2018.01) (54)发明名称 一种室内温湿度控制系统及控制方法 (57)摘要 本发明涉及一种室内温湿度控制系统及控 制方法,运用自动化技术,实时检测获得送风侧 温湿度平均值和回风侧温湿度平均值,并据此针 对空调装置(1),实现表冷段(3)、蒸汽加热段 (4)、蒸汽加湿段(5)的精确控制输出,并通过左 右侧送回风向的定时切换,结合室内轴流风扇切 换控制组推动中间气流,提高左右侧室内空气混 合效率,使得室内各区域温湿度更加接近和均 衡,从而最终提高了整个室内环境的温湿度精 度, 进而提高了养殖质量和养殖收益。权利要求书2页 说明书5页 附图2页CN 109974256 A 2019.07.05 C N 109974256 A

权 利 要 求 书1/2页CN 109974256 A 1.一种室内温湿度控制系统,通过空调装置(1)实现对室内环境的恒温恒湿控制,其特征在于:包括控制模块(20)、送回风阀切换控制组和传感器检测组,其中,控制模块(20)与空调装置(1)相连接,进行制冷、制热、加湿、除湿功能控制,针对空调装置(1)内部回风区内气流实现温湿度控制,并输送至空调装置(1)内部的出风区;空调装置(1)内部出风区设置两个出风口,并定义为第一出风口和第二出风口,同时,空调装置(1)内部回风区设置两个进风口,并定义为第一进风口和第二进风口;室内环境中彼此相对的两侧壁上分别固定设置一组主导风装置,各组主导风装置分别均包括至少一个子导风装置,各子导风装置上分别均设置两端导风口,各子导风装置上的两端导风口敞开、且彼此连通; 送回风阀切换控制组包括左侧回风切换风阀(7)、左侧送风切换风阀(8)、右侧回风切换风阀(9)、右侧送风切换风阀(10),控制模块(20)分别与送回风阀切换控制组中的各切换风阀进行连接控制;第一出风口经管路对接左侧送风切换风阀(8)的其中一端,第一进风口经管路对接左侧回风切换风阀(7)的其中一端,左侧送风切换风阀(8)另一端与左侧回风切换风阀(7)另一端相对接,并且该对接位置经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;第二出风口经管路对接右侧送风切换风阀(10)的其中一端,第二进风口经管路对接右侧回风切换风阀(9)的其中一端,右侧送风切换风阀(10)另一端与右侧回风切换风阀(9)另一端相对接,并且该对接位置经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口; 传感器检测组包括两个温湿度检测组,各温湿度检测组分别与各组主导风装置彼此一一对应,各温湿度检测组分别均包括至少一个温湿度传感器,各温湿度检测组中温湿度传感器的数量与对应主导风装置中子导风装置的数量相同,温湿度检测组中各个温湿度传感器分别与对应主导风装置中各个子导风装置一一对应,各温湿度检测组中各温湿度传感器分别设置于对应主导风装置中对应子导风装置上的另一端导风口,控制模块(20)分别与各个温湿度传感器相连,分别获取对应子导风装置上导风口位置的温湿度数据。 2.根据权利要求1所述一种室内温湿度控制系统,其特征在于:还包括室内轴流风扇切换控制组,室内轴流风扇切换控制组包括至少一个送风轴流风扇组,室内轴流风扇切换控制组设置于所述室内环境中、两组主导风装置之间的位置,各送风轴流风扇组分别均包括正向送风轴流风扇组和反向送风轴流风扇组,所述控制模块(20)分别与各送风轴流风扇组中的正向送风轴流风扇组、反向送风轴流风扇组相连接、进行两向送风控制,针对两组主导风装置之间的气流进行引导。 3.根据权利要求2所述一种室内温湿度控制系统,其特征在于:还包括左侧送风风压传感器(21)和右侧送风风压传感器(6),所述左侧送风切换风阀(8)另一端与所述左侧回风切换风阀(7)另一端相对接位置串联左侧送风风压传感器(21)后、经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;所述右侧送风切换风阀(10)另一端与所述右侧回风切换风阀(9)另一端相对接位置串联右侧送风风压传感器(6)后、经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口;所述控制模块(20)分别与左侧送风风压传感器(21)、右侧送风风压传感器(6)相连接,获取各个风压传感器所设管路位置中气流流动的压力数据。 4.根据权利要求2所述一种室内温湿度控制系统,其特征在于:所述各组主导风装置分别均包括三个子导风装置,各组主导风装置中各个子导风装置呈纵向排列布局设置,即上 2

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

单片机在温度控制系统中的应用分析

单片机在温度控制系统中的应用分析 摘要对工业生产而言,对产品质量及设备寿命具有决定性作用的因素为温度高度,对温度进行控制,使其始终处于所设定范围内,具有的现实意义自然不言而喻。文章首先对单片机温度控制系统的原理和构成进行了概述,然后运用理论与实际相结合的方式,从温度采集模块、报警系统、软件以及硬件四个方面出发,分别围绕着温度控制系统中单片机的具体应用展开了分析,以期能够在某些方面给人以帮助。 关键词单片机;温度控制系统;具体应用 引言 在发展速度极快的当今社会,无论是温度测量还是温度控制,其重要性与过去相比都具有明显提升,如何保证所获取温度信息的准确性,为后续温度控制工作的开展奠定良好基础,自然成为人们关注的重点。而单片机具有的体积小、成本低以及处理能力强的特点,使其占据着越来越大的市场份额,将单片机与温度控制系统相结合是大势所趋,实践结果表明,应用单片机的温度控制系统,与传统控制系统相比,存在精度高、范围广等诸多优点。 1 单片机温度控制系统的概述 无论是在日常生活还是在工业生产中,人们针对温度控制系统提出的要求,均可以概括如下:保证温度始终在所规定温度范围内波动或变化,不振荡并具有良好的稳定性,但是在系统快速性方面并为提出过于严格的要求。下面就围绕着应用单片机的温度控制系统的设计与实现展开分析:首先是利用温度传感器对现场温度进行采样,并将采样所得温度向电压信号进行转换,其次经由低通滤波将干扰信号进行过滤,接下来将过滤后的电压信号送至放大器,将其向数字信号进行转换,在此基础上完成将数字信号送至单片机的工作,最后以所规定温度范围为依据,经由继电器对加热设备进行控制,达到控制温度的效果[1]。需要注意的是,在这一过程中,单片机主要负责逻辑运算,如果想要对温度进行实时的检测与控制,在条件允许的前提下,可以通过键盘对温度控制范围进行人为设定,即使实际温度低于或高于所规定温度范围,系统也会通过自动调节的方式,使温度满足所设定的范围。目前,在市场上较为常见的应用单片机的温度控制系统,通常以1℃为单位对温度进行区分,就是说在正常情况下,温度控制不会存在>0.5℃的误差,这也从侧面间接表明了該系统具有灵活性优、稳定性好以及可靠性高等诸多优点。 2 单片机在温度控制系统中的应用 2.1 温度采集模块的应用 对应用单片机的温度控制系统而言,为了保证测量结果的精确程度,采集温

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

基于PDA的地下管线数据采集系统

基于PDA的地下管线数据采集系统 1、管线普查现状存在的主要问题 1)目前管线普查所采用的基本流程图(图1) 2)管线普查中目前存在的主要问题 (1)手工纸质记录维护难度大、查找困难: 由于纸质记录的局限性,当数据量增大时,对图纸记录维护和查询将变得越来越来困难,如果作业小组的草图没有及时的建立成内业数据库,则重号、错连、漏入等人为出错几率会直线增加。 (2)由外业管线探测到内业建立数据库,中间环节多,出错几率大:现有的管线普查流程可以看出,由外业管线探测到内业建立数据库,白天外业采集作业,晚上内业加班录入数据,现在还有的做法是同一管线属性(如埋深、管径数值型属性)事先记录在草图上,再由草图抄写管线探测手簿,然后根据管线探测手簿由内业人员建立成管线数据库,管线属性和连接关系至少经过两到三道工序才能建立到数据库中,在不同人员,不同工序的影响下,加大了的数据出错的几率。 (3)填写管线探测手簿与内业建库加大了内业处理工作量: 由于管线外业探测的不确定性,同一管线属性可能会多次进行修改,此过程在整个管线普查的过程持续存在。因此对每一项管线属性的修改必须同时修改草图、数据库、管线探测手簿,特别是对管线探测手簿的填写,平均必须抄写两遍以上或更多,加大了内业处理工作量。 (4)项目部无法对作业进度和各物探小组的作业情况进行全面跟踪掌握:对于纸质记录的外业管线探测手簿,如果没有及时进行整理或内业没有及时录入到数据库中,则项目部无法对实际已经完成的物探外业工作量进行情细的统计与查询,也无法对各物探小组每天的工作情况进行细致全面的进行跟踪了解。 2、系统总体介绍 1)为什么要采用PDA方式进行数据采集

基于labview温度监测系统

课题基于labview的温度监测系统班级 12电信 学号 201210350120 姓名邹临昌 时间 2015.12 .12-2016.1.12 景德镇陶瓷学院

摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行。

1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估。

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

计算机温度控制系统课程设计

目录摘要2 1.设计目的3 2.设计要求和设计指标3 3. 总体方案设计 3 4.硬件选择以及相关电路设计3 温度传感器的选择3 模数转换器4 内部结构4 信号引脚5 工作时序与使用说明6 控制器89C51 7 数码管显示电路8 LED数码管的组成8 数码管显示方式9 控制算法10 6. 各子程序流程图11 PID控制程序流程图11 A/D转换程序流程图11 显示程序流程图11 温度控制总程序流程图12 心得体会12

参考文献13 附录1:温度控制系统总电路图14 附录2:温度控制系统程序清单16 摘要 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本设计介绍了以AD590集成温度传感器为采集器、AT89C51为控制器、ADC0809为A/D转换器对温度进行智能控制的温度控制系统。其主要过程如下:利用传感器对将非电量信号转化成电信号,转换后的电信号再入A/D转换成数字量,传递给单片机进行数据处理,并向外围设备发出控制信号。 论文首先介绍了单片机控制系统的整体方案设计及原理,然后具体介绍了控制系统的温度传感器部分、A/D转换部分、控制器89C51部分以及数码管显示和键盘控制部分,接着相信介绍了温度控制系统各个单元电路的设计,最后阐述了温度控制系统软件设计的主程序和各个子程序。 关键字:单片机89C51 温度传感器A/D转换器温度控制

计算机温度测控系统 1.设计目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过实践过程掌握温度的几种控制方法,了解利用计算机进行自动控制的系统结构。 2.设计要求和设计指标 1、每组4~5同学,每个小组根据设计室提供的设备及设计要求,设计出实际电路组成一个完整的计算机温度测控系统。 2、根据设备情况以及被控对象,选择1~2种合适的控制算法, 框图和源程序,并进行实际操作和调试通过。 编制程序温度指标:60~80℃之间任选;偏差:1℃。 总体方案设计 本系统主要由数据采集、信号放大、模数转换等模块构成。设计思想是通过温度传感器将温度信号转变为电流(电压)信号,但我们要知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果是非常不明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制烘箱的电炉加热,并且使数码管显示实时温度,从而实现温度的高精度控制。 4.硬件选择以及相关电路设计 温度传感器的选择 传感器的选取目前市场上温度传感器繁多就此我们提出了以下三种选取方案:方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。 方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±℃,其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制新风高温冷源 1 引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºc,相对湿度60%,此时露点温度为16.6ºc。空调排热排湿的任务可以看成是从25ºc 环境中向外界抽取热量,在16.6ºc的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºc的露点温度需要约7ºc的冷源温度,这是现有空调系统采用5~7ºc的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºc的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºc的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、co2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。 综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为: 加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

相关文档
最新文档