专题练习:抽象函数定义域求解及换元法求函数解析式

专题练习:抽象函数定义域求解及换元法求函数解析式

专题练习:抽象函数定义域求解及换元法求函数解析式

班级 姓名

1、已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域

2、已知函数)(2x f 的定义域是[1,2],求f (x )的定义域

3、函数定义域是,则的定义域是

4、若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域

5、若函数y = f (x )的定义域是[-2,2],则函数(1)(1)()f x f x x x ?++-=

的定义 域为

6、已知1(21)f x x

+=

,求()f x 的解析式.

7、已知2(21)2f x x x -=+,求f 的值.

8、设函数()23,(2)()f x x g x f x =++=,求2(1)g x +的解析式.

41033??????, [1,4] []40-, [)(]0110,-?,

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题 1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ 换元法(3)13)2(2++=-x x x f D P C P A P B

待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

抽象函数定义域问题的教学反思

抽象函数定义域问题的教学反思 【摘要】抽象函数定义域问题一直是学生学习的难点,如何行之有效的解决此类问题是值得我们反思的,故笔者从四个方面提出一点自己的教学思考,以期与同行齐思共想。 【关键词】抽象概念形象化具体化逐步渗透 函数出现在苏教版必修一第二章节,作为高考的必考内容,函数占了相当大的比例和分量,而其中抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是初学时求其定义域,许多同学解答起来总感觉到棘手.所以如何行之有效的解决此类问题是值得我们反思的,故笔者提出一点自己的教学思考,以期与同行齐思共想。 1、理解函数概念,追溯问题源头 新课改以来,概念教学的重要性日益提高,李邦河院士说:“数学根本上是玩概念的,不是玩技巧,技巧不足道也!”但在实际的一线教学中,许多教师并不重视概念教学,一到概念教学就觉得“没意思,没用,难教”等等,往往就走走过场,既没有在概念的背景上下工夫,也不让学生经历概念的概括生成过程,以解题教学代替概念教学。 抽象函数定义域问题归根结底还是要回归到函数概念上。抽象函数通常指一类没有给出具体解析式的函数,其概念是非常简单的形式定义,它的意象表征抽象而又比较灵活,学生理解有相当难度,很难明确概念的内涵,并对概念的本质属性 准确揭示。而抽象概念学习是整个抽象函数的基础,概念不清就谈不上进一步讨论抽象函数的其它问题。一般地,设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的每一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数,其中x叫做自变量,x的取值范围也就是集合A叫做函数的定义域.因此任何函数的定义域都是指自变量x 的取值范围.正是由于定义域中自变量x的首先变化,引起了函数值的变化,所以,函数的定义域确切的说是函数中首先变化的那个量的所有取值组成的集合。 2、抽象知识形象化,激发学生的学习兴趣 本人任教农村中学的高中数学,学生基础较差,接受能力较弱。绝大多数同学学不好数学,在于上课听不懂,对抽象知识难以理解。这就需要教师时时刻刻地站

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 整理:河南省郸厂城县才源高中 王保社 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

抽象函数习题精选精讲1

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴ lg(1),0 ()lg(1),0x x f x x x +≥?=? --

高一必修一数学抽象函数定义域求法专题讲解及专项练习

函数定义域求法总结 一、定义域是函数)(x f y =中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1。 (5)x y tan =中2ππ+ ≠k x 。 (6)0x 中0≠x 二、复合函数的定义域 题型一、已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出()][x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 例1、已知函数)(x f 的定义域为[]5,2,函数)3(+x f 的定义域为 。 例2、已知函数)(x f 的定义域为[]4,1,函数)2(x f 的定义域为 。 题型二、已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 例3、已知函数)3 (x f 的定义域为[]6,3-,函数)(x f 的定义域为 。 例4、已知函数)23(-x f 的定义域为[]7,4,函数)(x f 的定义域为 。 题型三、已知复合函数()][x g f 的定义域,求()][x h f 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得)(x f 的定义域,再由)(x f 的定义域求得()][x h f 的定义域。 例5、已知函数)14(-x f 的定义域为[]3,1-,函数)3(+x f 的定义域为 。 例6、已知函数)32(+x f 的定义域为[]8,3,函数)2 3( +x f 的定义域为 。

求抽象函数解析式的几种方法及适用范围

求抽象函数解析式的几种方法及适用范围 Last revised by LE LE in 2021

求函数的解析式的几种方法 一: 方法名称:配凑法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有 g(x)的形式 2再把g(x)用h(x)代替 例: 的解析式。 已知求的解析式。 已知f(x+1)=x-3,求f(x)的解析式。 已知,求的解析式。 二: 方法名称:换元法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围) 2在用一个只含有t的式子把x表示出来 3然后把这个式子在解析式的右端的x中,使右边只含有t 4再把t用h(x)代替。 例题: 已知求的解析式。 已知f()=x2+5x,则f(x)的解析式。 三 方法名称:待定系数法 适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)

方法步骤:1先设出函数解析式(如f(x)=ax+b) 2把解析式的左端用这个函数模型表示出来 4求出函数模型的系数 例: 四 方法名称:方程组法 适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。等号右边也含有变量x。 方法步骤:将左边的两个抽象函数看成两个变量。变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式 例: 设f(x)满足关系式,求函数的解析式. 五: 方法名称:赋值法 适用范围:一般包含一句话“对任意实数满足” 方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。 例:

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

抽象函数定义域问题

抽象函数定义域问题 这类题往往困扰着高一同学,大家总弄不明白一会x是这个范围,怎么一会又是另一个范围了,在讲解这类题目之前请大家明确3个问题: 1)凡是函数的定义域,永远是指自变量x的取值范围。 2)f( )表示的是同一对应法则,同一对应法则括号里的范围一致 3)f( )与g( )表示不同的对应法则括号里范围不一致 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:根据张老师总结的三个问题,列表格解决 【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 函数定义域括号里的范围 F(x) 0≦x≦30≦x≦3 F(3+2x) 3/2≦x≦00≦3+2x≦3易知F(3+2x)的定义域为{x|3/2≦x≦0}括号里范围一致 根据括号里范围求x范围定义域是指自变量x的取值范围

【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的 定义域? 思路分析:根据张老师总结的三个问题,列表格解决 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解: 函数 定义域 括号里的范围 F(2x-1) 0≦x ≦3 -1≦2x-1≦5 F(x) -1≦x ≦5 -1≦x ≦5 v 易知F(x)的定义域为{x|-1≦x ≦5} 【题型三】已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))的定义域? 思路分析:根据张老师总结的三个问题,列表格解决 【例题3】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 解:思路分析:根据张老师总结的三个问题,列表格解决 函数 定义域 括号里的范围 F(2x-1) 0≦x ≦3 -1≦2x-1≦5 F(3+x) -4≦x ≦2 -1≦3+x ≦5 v 易知易知F(x)的定义域为{x|-4≦x ≦2} 根据括号里范围求x 范围 括 号 里 范 围一致 定义域是指自变量x 的取值范围 根据x 范围求括号里范围 根据括号里范围求x 范围 括 号 里 范 围一致 定义域是指自变量x 的取值范围 根据x 范围求括号里范围

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

赋值法解答抽象函数的赋值

赋值法解答抽象函数问题的赋值技巧与策略 函数是高中数学的重要内容,也是高考的热点.对于没有明确给出具体表达式的函数,称之为抽象函数.解答抽象函数问题的方法较多,其中用赋值法进行解答就是一种行之有效的方法.赋值主要从以下方面考虑:①令x=…、﹣2、﹣1、0、1、2…等特殊值求抽象函数的函数值;②令x=x 2,y=x 1或y=1 x 1,且x 10、y>0时,恒有f(xy)=f(x)+f(y). (1)求证:当x>0时,f(1 x )=﹣f(x);(2)若x>1时恒有f(x)<0,求证:f(x)必有反函数; 解析:(1)在f(xy)=f(x)+f(y)中,令x=y=1,得f(1)=0,又令y=1x ,得f(x)+f(1x )=f(x ·1 x )= f(1)=0, ∴当x>0时,f(1 x )=﹣f(x); (2)设x 1>0、x 2>0且x 11,∴f(x 2x 1)<0,又在f(xy)=f(x)+f(y)中,令x= x 2,y=1 x 1 , ∴f(x 2·1x 1)=f(x 2)+f(1x 1).由(1)得,f(1x 1)=﹣f(x 1),∴f(x 2 x 1 )=f(x 2)﹣f(x 1) <0,∴f(x 2)0时,f(x)>0.试判

抽象函数定义域快速理解.doc

抽象函数定义域的求法 抽象函数是指只给出函数的一些性质,而未给出函数解析式的一类函数。 抽象函数一般以中学阶段所学的基本函数为背景,且构思新颖 ,条件隐蔽 ,技巧性强,解法灵活 .由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策 . 在人教版必修 1 的教学中涉及到抽象函数定义域的求解,学生普遍感到难以理解,我们从如下方面,并结合例题看看常考题型。 首先让学生明确两点: ①单独看某个函数,定义域一定是指单位x (自变量)的取值范围(无论是已知的定义域还是所求的定义域)——绝对情况。 ②几个函数在一起,函数y f与函数y f(其中,是关于x的表达式)中,即括号内,看作整体,它们的范围相同——相对情况。 1、函数 f(x) 的定义域为 [a,b]是指谁的范围? 2、函数 f(2x+1) 的定义域为 [a,b]是指谁的范围? 3、函数 f(x) 的定义域为 [a,b],则函数 f(2x+1) 中谁的范围是 [a,b]? 4、函数 f(2x+1) 的定义域为 [a,b],则函数 f(x) 的定义域为 [a,b]对吗? 在给学生充分解释这两点的含义之后再让学生做下面的题目组: 1、已知函数 f(x) 的定义域为 [ -1,5] ,求 f(3x-5) 的定义域; 2、已知函数 f(3x-5) 的定义域为 [ -1,5] ,求 f(x) 的定义域; 3、已知函数 f(1-2x) 的定义域为 [ -1,5] ,求 f(3x-5) 的定义域; 4、已知函数 f(1-2x) 的定义域为 [ -1,5] ,求 f(-x) +f(x2)的定义域; 第 1 页共 1 页

求抽象函数表达式常见五种方法

求抽象函数表达式常见五种方法 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法 解培养学生的灵活性及变形能力。 例1:已知 ()211 x f x x =++,求()f x . 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知3311()f x x x x +=+,求()f x 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知 ()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 例5.一已知 ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x

参考答案: 例1:解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1) 例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()4 1321,1,22 22a c a a b c b +=??=?===??=?∴ 21 3 ()22f x x x =++ 例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

抽象函数定义域的类型与求法.doc

抽象函数定义域 的类型及求法 抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难 度,特别是求其定义域时, 许多同学解答起来总感棘手. 下面结合实例具体介绍一下抽象函数定义域问题的几种题型及求法. 一、已知 f ( x) 的定义域,求 f g( x) 的定义域 其解法是:若 f ( x) 的定义域为 a ≤ x ≤ b ,则在 f g( x) 中, a ≤ g ( x) ≤ b ,从中 解得 x 的取值范围即为 f g( x) 的定义域. 例 1 已知函数 f (x) 的定义域为 15, ,求 f (3 x 5) 的定义域. 分析:该函数是由 u 3x 5 和 f (u) 构成的复合函数,其中 x 是自变量, u 是中 间变量,由于 f ( x) 与 f (u) 是 同一个函数,因此这里是 已知 1≤ u ≤ 5 ,即 1≤ 3x 5≤ 5,求 x 的取值范围. 解: f ( x) 的定义域为 15, , 1≤ 3x 5 ≤ 5 , 4 ≤ x ≤ 10 . 3 3 故函数 f (3 x 5) 的定义域为 4 10 3 , . 3 二、已知 f g( x) 的定义域,求 f (x) 的定义域 其解法是:若 f g ( x) 的定义域为 m ≤ x ≤ n ,则由 m ≤ x ≤ n 确定的 g (x) 的范 围即为 f ( x) 的定义域. 例 2 已知函数 f (x 2 2x 2) 的定义域为 0,3 ,求函数 f ( x) 的定义域. 分析: 令 u x 2 2x 2 ,则 f ( x 2 2x 2) f (u) , 由于 f (u) 与 f ( x) 是同一函数,因此 u 的取值范围即为 f ( x) 的定义域. 解:由 0 ≤ x ≤ 3 ,得 1≤ x 2 2x 2 ≤ 5 . 令 u x 2 2x 2 ,则 f ( x 2 2x 2) f (u) , 1≤ u ≤ 5 . 故 f ( x) 的定义域为 15, . 三、运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各

高中数学函数的解析式和抽象函数定义域练习题

1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ D P C P A P B

换元法(3)13)2(2++=-x x x f 待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

高考数学经典常考题型之抽象函数 含详解

1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ), 试判断f (x )的奇偶性。 2 已知定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1-m )

抽象函数定义域的类型及求法

抽象函数定义域的类型及求法 抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感棘手.下面结合实例具体介绍一下抽象函数定义域问题的几种题型及求法. 一、已知()f x 的定义域,求[]()f g x 的定义域 其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域. 例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围. 解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤. 故函数(35)f x -的定义域为41033?????? ,. 二、已知[]()f g x 的定义域,求()f x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域. 例2 已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=, 由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤. 令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 三、运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各

相关文档
最新文档