论文:电磁感应现象的应用

论文:电磁感应现象的应用
论文:电磁感应现象的应用

论文:电磁感应现象的应用

电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。

若闭合电路为一个n匝的线圈,则又可表示为:式中n 为线圈匝数,δφ为磁通量变化量,单位wb,δt为发生变化所用时间,单位为ε为产生的感应电动势,单位为v。因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。这种现象叫电磁感应现象。产生的电流称为感应电流。闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下:当穿过闭合电路的磁通量变化时电路中就有感应电流产生,这种利用磁场而产生的电流的现象叫感应电动势。

法拉第电磁感应定律,是计算感应电动势的大小:e=nδφ/δt。法拉第电磁感应定律,e:感应电动势(v),n:感应线圈匝数,δφ/δt:磁通量的变化率。e=blvsinα(切割磁感线运动)e=blv中的v和l不可以和磁感线平行,但可以不和磁感线垂直,其中sina为v或l与磁感线的夹角。l:有效长度(m)}em=nbsω(交流发电机最大的感应电动势)

{em:感应电动势峰值}e=b(l^2)ω/2(导体一端固定以ω旋转切割。角速度(rad/s),v:速度(m/s)}磁通量φ=bs sinα{φ:磁通量(wb),b:匀强磁场的磁感应强度(t),s:正对面积(m2)}。感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}。自感电动势e自=nδφ/δt=lδi/δt{l:自感系数(h)(线圈l有铁芯比无铁芯时要大),δi:变化电流,t:所用时间,

δi/δt:自感电流变化率。

感应电动势的产生的条件是:穿过电路δφ,无论电路闭合是否,只要磁通量变化了,就一定有感应电动势的产生。楞次定律是判断感应电流方向的。感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流磁通量的变化。首先明确闭合回路原磁场的方向。穿过闭合电路的δφ是增加还是减小。由楞次定律是判断出感应电流的方向。或者也可以用右手定则判断出感应电流的方向。楞次定律中的阻碍是磁通量的变化,而不是阻碍磁通量。当磁通量增加时,感应电流的磁场方向与原磁场方向相反。当磁通量减少时,感应电流的磁场方向与原磁场方向相同。即“增反减同”。阻碍导体的相对运动“来拒去留”。磁通量增加,线圈面积缩小,磁通量减小,线圈面积“扩招”。阻碍线圈自身电流变化自感现象。感应电流的方向的判断,可利用右手定则判断感应电流闭合电路的一部分导体做切割磁感线运动时感

应电流方向。我们经常遇到切割的几种情况:①导体平动切割磁感线。②导体转动切割磁感线。③导体不动,磁场运动,等效的磁场不动,导体反向运动切割磁感线。

若导体不动,回路中磁通量的变化,应该用楞次定律是判断出感应电流的方向而不要用右手定则判断感应电流。若是回路中一部分导体做切割磁感线运动产生感应电流。用右手定则判断较为简单。用楞次定律是判断也可以,但较麻烦。从研究对象上说,楞次定律研究的是整个回路,右手定则研究的是闭合电路的一部分导体,即一段导体做切割磁感线运动。从使用范围上说,楞次定律可以用于磁通量的变化引起的感应电流的各种情况。包括一部分导体切割磁感线运动的情况,右手定则只是由于一段导体在磁场中做切割磁感线运动的情况。因此,右手定则是楞次定律的一种特殊情况。

电磁感应在生活中的一些应用:在电磁感应式电缆的聚乙烯护套内,其上、下两部分空间有两块近于半弧形充有永久磁性的韧性磁性材料。它们被中间两根固定绝缘导线支撑着分离开来。两边的空隙正好是两个磁性材料建立起来的永久磁场,空隙中的活动导线是裸体导体,当此电缆受到外力的作用而产生震动时,导线就会在空隙中切割磁力线,由电磁感应产生电信号。当此信号超过一定的阈值时,便立刻触发报警电路报警,并通过音频系统监听电缆受到震动时的声响。控制器可以制成多个区域,多区域分段控制可以使目标

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

新材料概论课程论文

新材料概论课程论文 摘要 新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 一、概论 新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料技术是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。新材料按材料的属性划分,有金属材料、无机非多属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料的使用性能性能分,有结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求;功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。新材料在国防建设上作用重大。例如,超纯硅、砷化镓研制成功,导致大规模和超大规模集成电路的诞生,使计算机运算速度从每秒几十万次提高到现在的每秒百亿次以上;航空发动机材料的工作温度每提高100℃,推力可增大24%;隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现,等等。 新材料技术被称为“发明之母”和“产业粮食”。 二、新材料的应用

新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术、生物技术一起成为二十一世纪最重要和最具发展潜力的领域。同传统材料一样,新材料可以从结构组成、功能和应用领域等多种不同角度对其进行分类,不同的分类之间相互交叉和嵌套,目前,一般按应用领域和当今的研究热点把新材料分为以下的主要领域:电子信息材料、新能源材料、纳米材料、先进复合材料、先进陶瓷材料、生态环境材料、新型功能材料(含高温超导材料、磁性材料、金刚石薄膜、功能高分子材料等)、生物医用材料、高性能结构材料、智能材料、新型建筑及化工新材料等 三、新材料技术发展的方向 新材料技术的发展不仅促进了信息技术和生物技术的革命,而且对制造业、物资供应以及个人生活方式产生重大的影响。记者日前采访了中国科学院“高科技发展报告”课题组的有关专家,请他们介绍了当前世界上新材料技术的研究进展情况及发展趋势。材料技术的进步使得“芯片上的实验室”成为可能,大大促进了现代生物技术的发展。新材料技术的发展赋予材料科学新的内涵和广阔的发展空间。目前,新材料技术正朝着研制生产更小、更智能、多功能、环保型以及可定制的产品、元件等方向发展纳米材料20世纪90年代,全球逐步掀起了纳米材料研究热潮。由于纳米技术从根本上改变了材料和器件的制造方法,使得纳米材料在磁、光、电敏感性方面呈现出常规材料不具备的许多特性,在许多领域有着广阔的应用前景。专家预测,纳米材料的研究开发将是一次技术革命,进而将引起21世纪又一次产业革命。日本三井物产公司曾在去年末宣布该公司将批量生产碳纳米管,从2002年4月开始建立年产量120吨的生产设备,9月份投入试生产,这是世界上首次批量生产低价纳米产品。美国ibm公司的科研人员,在2001年4月,用碳纳米管制造出了第一批晶体管,这一利用电子的波性,而不是常规导线实现传递住处的技术突破,有可能导致更快更小的产品出现,并可能使现有的硅芯片技术逐渐被淘汰。在碳纳米管研究方兴未艾的同时,纳米事业的新秀--“纳米带”又问世了。在美国佐治亚理工学院工作的三位中国科学家2001年初利用高温气体固相法,在世界上首次合成了半导体化物纳米带状结构。这是继发现多壁碳纳米管和合成单壁纳米管以来,一维纳米材料合成领域的又一大突破。这种纳米带的横截面是一个窄矩形结构,带宽为30~300mm,厚度为5~10nm,而长度可达几毫米,是迄今为止合成的惟一具有结构可控且无缺陷的宽带半导体准一维带状结构。

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

公路工程对新技术新材料的运用论文

公路工程对新技术新材料的运用论文 近年来,我国社会主义市场经济呈现快速且稳定发展的趋势,生机勃勃的国民经济不仅改善了人民的生活水平,更加强了国家对于人民生活中基础设施的投资力度,我国公路建设已然进入了一个大发展时期,公路建设的持续发展不仅拉动了我国经济的发展,又满足了人民群众日益增长的需求,车流量的逐年增加也为公路工程带来极大挑战。为提升公路产品的使用性能,对建筑技术、建筑材料的进一步开发利用就显得尤为重要,因此,公路工程建设过程中所采用的施工技术与施工材料也开始成为人们共同关注的焦点。 由于我国社会发展水平的不断提高,人们对公路的使用性能也提出了进一步要求,为了解决这一问题,在公路工程中应用更为先进的技术不仅有利于提升公路工程的建设质量也能提高公路工程的施工效率。泡沫沥青冷再生技术与传统的热沥青制造技术相比,泡沫沥青冷再生技术省略了不必要的加热集料与烘干集料工序,施工人员只是需要将常温状态下的水浇入热沥青中就能够使得整个沥青产生相应的物理、化学反应,在呈现出发热膨胀状态的同时还产生大量的泡沫。当产生的泡沫碎裂之后,沥青就会变成细小的颗粒进入集料缝隙,最终形成具有超高稳定性的细料填缝料。从技术层面上说,要实现良好的填缝作用,就必须严格控制再生混合材料的配合比例,若材料配比不适宜,那么泡沫沥青冷

再生技术也将会丧失实用意义。共振碎石化技术将共振碎石化技术应用于公路工程施工时,不仅能够在短时间内在低成本的状态下进行施工,也具备了较好的修复混凝效果,能够避免路面在投入使用时出现受力不匀而产生形变的情况。此外,与传统的道路施工技术相比,公路上出现反射裂纹现象难以消除的困难就不再是困难,共振碎石化技术能在降低对路面损伤的同时收获优良的施工效果。喷锚技术喷锚技术属于路面施工中的一项保护技术,常用于给路堑边坡时的爆破工序。喷锚技术的根本作用在于保证路面施工的稳定性,在这项技术中,最重要的组成部分就是支护喷锚网,当施工工程在高坡上进行时,采用支护喷锚网对公路施工进行一定的保护,能够很好地预防由于地质岩石结构发生改变而导致的路面崎岖情况发生,从而保障了高坡建设的稳定性。在实际的施工过程中,喷锚技术的实现需要一系列技术共同支撑才能得以实现。 精细抗滑碎石精细抗滑碎石是构成精细抗滑保护层的主要材料,作为新型预防性路面养护技术的一种,精细抗滑保护层技术就是在小粒径碎石层上均匀地以撒布添加的方式将稳固材料与碎石层面进行紧密结合,从而形成具有防水、防开裂以及防滑作用的路面保护磨耗层。对碎石集料进行严格控制把关是保障精细抗滑保护层技术应用效果的关键所在,这是由于集料黏附性对于集料脱落、贴合程度等路

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

电磁感应现象的应用

重点难点突破 一、电磁感应现象中的力学问题 1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解. 2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点. 二、电磁感应中的能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是: 1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. 2.画出等效电路,求出回路中电阻消耗电功率的表达式. 3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程. 三、电能求解的思路主要有三种 1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功; 2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能; 3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能. 四、线圈穿越磁场的四种基本形式 1.恒速度穿越; 2.恒力作用穿越; 3.无外力作用穿越; 4.特殊磁场穿越. 典例精析 1.恒速度穿越 【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求: (1)线框进入磁场前距磁场下边界的距离H; (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少? 【解析】(1)线框进入磁场做匀速运动,设速度为v1,有: E=BLv1,I=ER,F安=BIL 根据线框在磁场中的受力,有F=mg+F安

新材料 新技术 新工艺的应用

11. 新材料、新技术、新工艺的应用 高性能混凝土技术 本工程将涉及防裂缝混凝土技术和清水混凝土技术。 混凝土裂缝防治技术的主要内容包括:设计的构造措施、混凝土原材料(水泥、掺合料、细骨料、粗骨料)的选择、混凝土配合比对抗裂性能影响因数、抗裂混凝土配合比设计以及抗裂混凝土配合比优化设计方法以及施工中的一些技术措施等。 清水混凝土是指结构混凝土硬化后不再对其表面进行任何装饰,以混凝土本色直接作为建筑物的外饰面。以清水混凝土作为装饰面,对美观、色差、表面气泡等方面都有很高要求,因此在混凝土配制、生产、施工、养护等方面都应采取相应的措施。本工程剪力墙和顶板要求达到清水混凝土的效果。其技术指标如下: ①混凝土表面无裂缝、无明显气泡、无明显色差、无明蜂窝麻面。 ②混凝土表面平整、光滑,轴线、体型尺寸准确。 ③大截面、变截面结构线条规则,棱角分明。 ④梁柱接头通顺,无明确槎痕。 粗直径钢筋直螺纹机械连接技术 粗直径钢筋连接采用直螺纹连接。该技术不仅保证工程质量,而且提

高工效,节约钢材,我公司对该技术有成熟的施工经验和专业技术人员。 新型模板和脚手架应用技术 现浇剪力墙采用全钢大模板,楼板模板采用竹胶合板,满足清水混凝土施工要求,配以可调桁架快拆支撑体系施工方案,可加快模板的周转,降低成本。采用定型化设计,保证砼成型尺寸。 主体结构外脚手架采用外挂脚手架,板、梁支撑采用碗扣式脚手架。 新型建筑防水技术 本工程地下防水采用高聚物改性沥青防水卷材。卫生间、浴室采用聚氨酯防水涂料。 建筑节能和新型墙体应用技术 本工程墙体砌筑材料为加气混凝土砌块,可节约资源,提高保温隔热性能。墙体外保温为聚苯板外保温。 应用计算机管理应用技术 采用建筑系统集成管理软件,应用网络技术和数据库技术,对合同管理、质量管理、安全管理、办公室管理、材料管理、施工进度管理、施工技术管理、施工资料管理、经济成本管理等项目进行跟踪和动态管理控制,保证各项计划的落实,降低管理及施工综合成本。

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应的应用论文

电磁感应现象在生活中的应用 摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。 动圈式话筒 在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。 磁带录音机 磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随

音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。 ③汽车车速表 汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。 永久磁铁一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

新技术、新工艺、新材料及新科技成果的应用

新技术、新工艺、新材料及新科技成果的应用 ⑴无机铝盐防水剂:BS1型防水剂配制的砂浆具有抗老性能好、使用寿命长(与水泥砂浆同等寿命)等特点。施工方便且不燃、无毒、无污染,施工安全,BS1防水层使结构找平、抹灰工程合二为一,省工省料, BS2防水剂具有防水、膨胀、减水、缓凝等功效,为理想的结构自身防水剂,此系列产品为建设部推广产品。 ⑵泵送砼:此技术可减轻劳动强度,保证砼质量,缩短施工周期,是一项应用较广泛的施工技术。 ⑶砼高效复合膨胀剂JEA:其膨胀可补偿因砼在硬化过程中的收缩,保证砼不渗水,另外本产品以不同比例配合,可配制无收缩水泥,微膨胀水泥,具有使用灵活、方便、造价低、缩短工期等特点。 ⑷WB-1止水条:此材料遇水能吸水膨胀,挤密新老砼之间的缝隙,形成不透水的可塑胶体,是一种解决施工缝渗漏问题的新型材料。 ⑸无粘结预应力技术:此为大跨度结构中应用较广的新技术,减少了传统后的张法中的铺管、穿筋、灌浆等工序,而且铺筋容易,具有予应力筋走向随构件内力弯矩变化而变化的特点,此技术起源于50年代的美国,我国80年代初开始应用,为90年代建设部重点推广的新技术。 ⑹冷轧带肋钢筋:是普通低碳钢或低合金钢热化圆盘条为母材,经冷轧或冷拨减径后在其表面冷轧成具有两面或三面月牙形横肋的钢筋,强度高、刚度大、不易变形,可节约材料且施工方便,是建设部推广的新材料。⑺竖向钢筋电渣压力焊、气压焊:此两项技术可

提高工效3-6倍,并可降低能源消耗,为建设部推广的新工艺。 ⑻砼加强带设置:加强带砼中添加14%膨胀剂JEA,以其自身的膨胀性防止砼硬化收缩及温度伸缩产生的裂缝,提高了工效,方便了施工。 ⑼扣件式钢管悬挑脚手架:此技术投入少周转快,经济合理,是建设部推广技术之一,行政大厦二层开始悬挑,每四层一个系统,外用绿色密目立网封闭。 ⑽空心砖:以空心砖代替传统的普通粘土实心砖,可减少建筑物自重荷载,降低能源消耗,列为建设部推广的新材料之一。 ⑾干挂花岗岩:外墙装饰面板安装干作法工序简单,施工周期短,质量容易保证,为建设部推广项目。 ⑿球形网架:为新型大跨结构,面积24m×32m。 ⒀聚氨脂防水涂膜:此材料防水抗渗性能好,施工方便,行政大厦屋面防水工程全部使用了这种材料,该涂膜列入总公司推广项目。

新材料论文

题目:形态记忆合金的研究进展 摘要:形态记忆合金是新兴的材料,形状记忆效应自1830s问世以来,已经在众多方面以其特有的功效展得以广泛应用。本文简单的介绍了形状记忆合金合金的发展历史及其在许多领域的应用以及未来的一些发展趋势。记忆合金作为一种使用价值比较广泛额材料,我们有理由相信形状记忆合金的发展前途是相当广泛的,也必将造福于人类。此外,通过这些介绍使人们能够真正的理解和认识这种新的材料——形态记忆合金。 关键字::形状记忆合金、探索、各领域应用、分类,技术、形状记忆合金效应 正文: 一,形态记忆合金简介。 何为记忆效应?记忆效应(金属)是指某种金属材料形变后,能够恢复之前形状之性质。而对于形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体

的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形态记忆合金的发展。 1932年瑞典人欧勒特在观察某种金镉合金的性能时,首次发现形状记忆效应。 1938年哈佛大学的研究人员在一种铜锌合金中发现了一种随温度的升高和降低而逐渐增大或缩小的形状变化,但是此时并未引起人们的广泛注意。 1962年美国海军实验室在开发新型舰船材料时,在Ti-Ni合金中发现把直条形的材料加工成弯曲形状,经加热后它的形状又恢复到原来的直条形,引起了材料科学界与工业界的重视,从此形状记忆合金引起了极大的关注。 三、形态记忆合金的分类及原理 形态记忆合金种类繁多,在现在情况来看,记忆合金主要分为以下几种: (1)单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 (2)双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 (3)全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

电磁感应在生活中的应用

电磁感应在生活中的应用 摘要:电磁感应现象是放在变化磁通量中的导体,会产生电动势,一般表现为两种形式,即动生电动势与感生电动势。对这两种电动势从产生机制、能量转换等角度分别进行描述,来理解它们的统一和区别。电磁感应现象在生活中有很多的应用,对常见的几种例子分别进行阐述,对该现象有更具体的理解。 关键词:电磁感应定律电动势应用 一、电磁感应定律 不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就产生感应电动势,电路已经具备了随时输出电能的能力。如果电路闭合,将会在回路中产生感应电流。这一现象是迈克尔·法拉第于1831年发现的,因此被称之为法拉第电磁感应定律。这是自奥斯特发现了电流产生磁场之后,在电磁学中的另一伟大发现,它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了基础。 通过实验表明,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电动势和感应电流。若电路不闭合,则电路没有电流,只存在感应电动势,感应电动势与穿过这一电路相对任一参照形成闭合环路的磁通量变化率成正比,方向用楞次定律判断。即无论回路是否闭合,都会产生感应电动势: ε = -dφ/dt 感应电动势的存在不以导体存在为前提,根据复合函数求导及磁通量与磁感应强度关系,当上式中线圈匝数 n = 1 时,又可写为 ε = -d( ∫BdS) / dt = -∫( B / t) dS -∫B ( dS) / t 二、电动势 上式中,第一项表示线圈不动时磁感应强度 B随时间变化所产生的感应电动势,又称感生电动势,变压器及无线信号的接收天线是其典型应用; 第二项表示空间磁场不变,线圈面积变化产生的感应电动势,又称动生电动势,其典型应用于发电机。 1.动生电动势 回路或其一部分在磁场中的相对运动所产生的感应电动势,即变,称之为动生电动势。动生电动势的产生是由于外力的作用,驱使导体在磁场内运动,整个过程中洛伦兹力与导 体的运动方向垂直,即洛伦兹力不做功。因此,动生电动势能量的变化是外力的机械能转化为电能。 2.感生电动势 仅由磁场的变化而产生的感应电动势,即变,称之感生电动势。感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛仑兹力。英国物理学家麦克斯韦指出:变化的磁场会在其周围空间激发出一种电场,称为感生电场,其电场线为闭合曲线,所以又称为涡旋电场。产生感生电动势的非静电力是感生电场力(或称为涡旋电场力)。 三、电磁感应的应用 电磁感应现象的发现为电和磁的转化铺平了道路,工程及生活应用中很多发明都是根据电磁感应原理制成的,如我们熟知的发电机、电磁炉以及将来肯定会普及的无接触式充电电池,等等。

建筑工程中新技术及新材料应用论文

浅谈建筑工程中新技术及新材料的应用摘要:新材料和新技术在节约能源,缓解能源危机,提高人民的生活质量和提高环境质量方面都发挥着重要的作用。近年来,随着新技术新材料在建筑工程中推广使用,使建筑工程得到一个好的发展。本文主要就对一些新技术新材料在建筑工程中的应用做一些论述。 关键词:建筑工程;新技术;新材料;应用 中图分类号: tu761 文献标识码:a 文章编号: abstract: new materials and new technology in saving energy, relieve the energy crisis, enhance the quality of people’s life and improve the environmental quality are played an important role. in recent years, along with the new technology, new material in construction project to promote the use of and the construction project for a good development. in this paper, some new technology of new material in the construction engineering application of some discusses. keywords: building engineering; new technology; new materials; application 引言:新材料和新技术是伴随着国际能源危机而产生的。另外,从目前我国建筑行业发展的状况来看,新材料和新技术的应用也是十分必要的。近些年,我国建筑行业快速发展,但是,这种发展是

电磁感应现象及其应用.doc

第九章电磁感应现象及其应用本章以磁场及电场等知识为基础,研究电磁感应的一系列现象,总结出产生感应电流的条件,形成了导体做切割磁感线运动而产生的感应电动势的计算公式,应用右手定则判断感应电动势的方向也是解决问题的关键。 [基本规律与概念] 一.电磁感应现象 1.感应电动势 2.感应电流产生的条件及方向的判断 二.电磁感应现象的应用 1.自感现象 2.交变电流 ①交变电流的定义 ②正弦交流电的产生及规律 a.产生 b.规律:函数形式:e=NBSωsinωt(从中性面开始计时) 图象 c.表征交流电的物理量 (1)瞬时值 (2)峰值 (3)有效值 (4)周期和频率 ③应用:(1)变压器(2)远距离输电 3.电磁场和电磁波 a.麦克斯韦电磁场理论 b.电磁波 [应用] 1.用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁 场,右边没有磁场。 (1)金属环的摆动会很快停下来,试解释这一现象。 (2)若整个空间都有向外的匀强磁场,会有这种现象吗?2.如图所示,矩形线圈abcd质量为m,电阻为R,宽为d,长为L,在竖直平面内由静止开始自由下落,其下方存在如图示方向的磁感强度为B的匀强磁场,磁场上、下边界水平,宽度也为d。 (1)线圈ab进入磁场时,感应电流的方向? (2)如果矩形线圈在ab边刚进入磁场就开始做匀速直线运动,那么,矩形线圈的ab边应该距离磁场的上边界多高的位置开始下落? 3.上海的部分交通线路上已开始使用“非接触式IC卡”。该卡应用到物理学上的电磁感应原理。持卡者只要将卡在车门口的一台小机器前一晃,机器就能发出通过的信号。 (1)电磁感应现象的最早发现者是(A) A.法拉第 B.格拉姆 C.西门子 D.爱迪生 (2)与这一发现有关的科技革命的突出成就不包括 ...(D) A.电力的广泛应用 B.内燃机和新交通工具的创新 C.新的通讯手段的发明 D.计算机信息技术的出现 4.照明电路中,为了安全,一般在电能表后面电路上按接一个漏电保护器,如右图所示,当漏电保护器的ef两端未有电压时,脱扣开关K 能始终保持接通。当ef两端一有电压时,脱扣 开关K立即会断开,下列说法正确的是 A.当用户家的电流超过一定值时,脱扣开关 会自动断开,即有过流保护作用 B.当相线和零线间电压太高时,脱扣开关会 自动断开,即有过压保护作用 C.站在地面上的人触及b线时(单线触电),脱扣开关会自动断开,即有触电保护作用 B O a b c d

新材料论文

关与新材料的应用发展前景及与重防腐涂料结合的论文 姓名:刘敏 学院:生物与化工学院 专业班级:海洋化工生产技术13-1 学号: 201338042122 指导老师:左常江

一、摘要(abstract): 新材料技术是21世纪三大关键技术之一,化工新材料是新材料产业的主要组成部分,是化学工业中最具活力和发展潜力的新领域。与传统化工材料相比,它们主要包括有机氟材料、有机硅材料、工程塑料、聚氨酯、高性能纤维、纳米化工材料、无机功能材料等。具有优异性能或特殊功能,化工新材料具有质量轻、性能优异、功能性强、技术含量高,附加值高等特点。对发展化工新材料产业对国民经济各个领域,尤其是高技术及尖端技术领域都具有重要的支撑作用。 二、关键词(key words): 高分子材料、复合材料、重防腐涂料、腐蚀 三、正文: 1.作为高新技术的基础和先导,新材料应用范围极其广泛,它同信息技术、生物技术一起成为二十一世纪最重要和最具发展潜力的领域。新材料产业始终是我国重点发展的高新技术之一,在2009年底,国务院总理温家宝发表题为《让科技引领中国可持续发展》的讲话,明确将新材料产业列为国家战略性新兴产业之一。 2.高分子材料 简介:高分子材料相对于传统材料如水泥、玻璃、陶瓷和钢铁而言是后起的材料,但其发展速度及应用的广泛性却大大超过了传统材料。它包括塑料、橡胶、纤维等方面。高分子材料科学的迅速发展,使其与其它许多学科相互交叉渗透,交叉渗透的结果又大大加快了高分子材料的发展。 2.1塑料 2.1.1性质及分类 塑料是指以合成树脂(和天然树脂改性)为主要成分,加入某些具有特定用途的添加剂,经加工成型而构成的固体材料。塑料的性能主要取决于树脂。目前比较通用的塑料分类方法有以下几种:从树脂制造的化学反应类别可分为加聚型塑料和缩聚型塑料。从塑料应用角度可分为通用塑料、工程塑料、功能塑料。从加工性能可分为热塑性塑料和热固性塑料。从成形方法和形态可分为模压塑料、层压塑料、粒料、粉料、糊塑料、塑料溶液等。 2.1.2实用性能及应用 (1)密度:塑料一般都比较轻。因此,对要求减轻自重的车辆、船舶、飞行器等机械装备和建筑来说,塑料有着特殊的意义。 (2)电性能:塑料材料在电性能方面有着极其广泛的性能指标,他们的介电指数小到2左右。大多塑料在低频、低压的情况下具有良好的电气绝缘性,不少塑料即使在高压、高频的条件下也能做电气绝缘和电容器介质材料 (3)热性能:塑料本身热导率极低,是热的不良导体或绝热体,通常塑料的热导率比金属要小上百到上千之多,而比静止空气高得多,塑料的这种重要性能是被用作绝热保温材料的依据。 (4)力学性能:塑料材料的机械性能随品种变化较大,大多数的模塑品的刚度与木材相近,属于坚韧固体材料。 (5)减震消音性能:由于某些塑料材料柔顺而富有粘弹性,当它受到外在的机械冲击振动或频繁的机振、声振等机械波作用时,材料内部产生粘弹内耗将机械能转变成热能。因此,工程上利用它们作为减震消音材料。

相关文档
最新文档