阀门定位器技术协议 FISHER

FISHER阀门定位器

技术协议书

2.2.2 防爆、防护要求

防爆环境:1区,ⅡC,T4组。

设备必须具有国内防爆合格证或国际公认的相应防爆认证。

设备防护等级IP66。

2.2.3 通用性:

Fisher DVC6200系列定位器,可以同时适用多种类型的气动调节阀,包括直行程、角行程,截止(Globe)型、角阀、蝶阀、偏心旋转阀、V型调节球阀等。DVC6200可直接用于单作用和双作用执行机构,无需通过配备反向放大器来实现双作用。

2.2.4 适应性:

Fisher DVC6200系列定位器,隔爆外壳(防护等级IP66),能够适应买方的环境与现场条件。定位器的电缆接线盒与电气功能部件独立设置,相互隔离,防止雨水与潮气侵入,所有电子元件全部塑封,能适应湖南多雨潮湿环境。产品对气源有较强的适应性,能克服气源中的偶尔出现固体颗粒(<40微米)与水露对定位器的影响。DVC6200具备分体式安装的功能,以满足高温或振动大的应用场合需要。

DVC6200采用无接触的磁感应连接,消除了连接死区,精度更高。同时避免了机械振动造成反馈连接脱离,提高了可靠性。无反馈无接触连接,没有金属连接件的腐蚀,使用寿命更长。

DVC6200保持了通用性,出来外壳、接线端子、及反馈部件同原产品不同以外,其他部件同原产品完全相同。

2.2.5 可靠性:

Fisher DVC6200定位器具有SIL3认证,可以用于SIS系统。

2.2.6 智能性:

Fisher DVC6200系列定位器,通过阀门性能诊断软件VALVELINK向用户提供功能丰富调节阀性能信息,其中包括:

●全行程(-5%-105%)的曲线与分析数据,提供8000个采样点;

●执行机构弹簧弹性系数,弹簧预紧力实际值;

●阀座情况分析,实际阀座关紧力;

●实际填料摩擦力以及理想的摩擦力范围;

●连续地,间断性地,或定时定期的阀门机械性能状态;

●计算阀门的摩擦与死区的数值,显示的趋势曲线;

●组态,校验,以及诊断曲线与数据;

● MS Office格式阀门诊断测试报告;

●能够内嵌于智能仪表设备管理系统(AMS)。

3、智能阀门定位器技术方案

定位器整机包括:定位器主机本体,压力表头。

Fisher DVC6200是模块化设计的高可靠性智能定位器。Fisher DVC6200 I/P 设计采用的是最不容易堵塞的喷嘴挡板结构,允许高达40μm的颗粒通过。通过内置多个个压力传/位置感器,可以实现全面的阀门性能诊断。通过475手操器或VALVELINK软件,实现自动整定,优化控制,行程分割、报警、生命周期管理等功能。

3.1产品描述与特点

3.1.1 产品描述

Fisher DVC6200智能阀门控制器是基于微处理器(CPU)把4-20mA电流信号转换成气动输出信号以精确地控制阀门的智能定位器。DVC6200由4-20mA回路供电,通过HART协议进行通讯。

3.1.2 产品特点

模块化设计,结构简单,维护方便;

所有电子元件塑封,消除静电干扰,防止潮湿或腐蚀气体损坏,延伸使用寿命;

安装简易,调校方便,漂移量小;

大量的测试与现场使用表明产品具有很高的可靠性;

可动部件少,受振动、温度等环境因素影响小;

适用于单/双作用执行机构,无需使用反向放大器;

输出能力大,可用来控制多种从小型到大型的执行机构;

通过HART协议对定位器进行组态、校验、以及诊断,具有完整的阀门诊断功能;

产品的功能与固件的升级可以通过HART协议下载来实现,无需增加或更换硬件;

3.2. 基本规格

输入信号范围:2线制4-20mA,可分程控制;

供气压力:0.14~1.03 MPa,空气质量按ISO8573-1;

工作电压:12~30V DC;

输出气压:

范围:0-0.95MPa;

应用范围:

角行程执行器,最大范围0-90度;

直线行程执行器,最大范围0-606mm;

行程极限:最大、最小极限(可在0~100%范围内自由设置);

作用方向:

正向:信号4~20mA=位置0~100%;

反向:信号20~4mA=位置0~100%;

性能曲线:①线性②等百分比③快开③客户自定义曲线(21个点);

通讯:符合HART协议5及以上版本,并能与支持FDT/DTM或EDDL的AMS 系统匹配;

通讯接口:符合国际标准的适配器及 FSK调制解调器(备选项);

环境适应性:操作环境温度为-20~85℃,采用分体式可提供更宽温度范围;

防爆等级:本质安全型/隔爆型,防爆标准IEC Ex ia IIC T5/T6;

防护等级:IEC IP66/NEMA4X;

外壳材料:ASTM B85 A036600低铜铝合金;

电气连接:1/2″NPT;

气动连接:1/4″NPT。

3.3控制功能

Fisher DVC6200定位器采用行程控制。同时具有压力控制模式,当行程传感器出现故障时,定位器自动地从行程控制模式切换到压力控制模式,确保阀门仍然运行,并给操作员报警,以减少无故障停车。

低电流时微处理器能自动重启。从低电流(如小于3.5mA)恢复到正常电流时,定位器自动重启,无需去现场手工断线再重新启动微处理器。

Fisher DVC6200定位器有小循环反馈功能,以提高定位器的响应速度,对大阀门也能作出精确的响应。

3.3.1 Fisher DVC6200基本诊断功能包括

状态监控:显示行程设定点,输入电流,阀门行程,执行机构压力,供气压力等信息;

显示报警:行程偏差报警,行程高低报警,行程高高报警与低低报警,驱动信号报警,阀门动作次数累计报警,行程累计报警;行程传感器故障报警,压力传感器故障报警,驱动电流故障报警,ROM故障报警,NVM故障报警,电子元件参考电压故障报警等。

硬件调整:行程传感器调整,压力传感器调整,气动放大器调整,驱动信号测试,驱动阀门状态跟踪报警记录。

3.3.2 高级诊断功能

定位器可以通过软件升级为高级诊断功能(AD),除了提供诊断曲线外,还能提供测试数据,将不同时间做的诊断历史数据和曲线进行叠加比较,以对阀门的性能与健康状态作出科学分析。

1、提供阀门特性曲线与分析数据

特性曲线为压力-全行程(-5%-105%)的曲线,

实际填料摩擦力以及理想的摩擦力范围,

实际阀座关紧力,

弹簧预紧力实际值,

阀座情况分析,

执行机构弹簧弹性系数,

曲线有8000个采样点,不同曲线可以叠加比较。

提供动态误差带曲线与分析数据

动态误差带曲线为全行程(-5%-105%)-输入信号的曲线,有8000个采样点,阀门动态线性度的数据,

阀门的滞后与死区的数据。

2、提供阶跃响应曲线与分析数据

30个阶跃,带分析数据

在线状态跟踪与报警

3.3.3 阀门数据库管理功能

阀门数据可以自由输入或输出AMS设备管理系统,以建立阀门数据库,数据文件有两种格式:

AMS设备管理系统可读格式,用于文件的输入输出,

微软Word格式的阀门测试报告,用于打印,阅读,保存,或归档。

阀门数据文件与测试报告包括所有的组态,校验,以及诊断数据。

3.3.4 其它高级功能

1、与AMS系统集成

支持DTM或EDDL技术,可以方便地集成到AMS系统里。可以与各个DSC 无缝集成。

2、升级功能

需要增加功能时可以通过HART协议下载来实现对仪表的升级,无需增加或更换硬件。

3.4 Fisher DVC6200性能参数指标

独立线性度:≤0.5% 的量程;

精度:跟阀门与执行机构的结构有关;

死区:≤0.125%;

重复性:≤0.15%;

输出飘移:<0.5%/6个月;

电磁干扰(EMI):≤±1%的输出,根据IEC 61326表A.1;

环境适应性:

相对湿度:≤75%(短时间为95%)无冷凝现象;

温度影响:± 3.0% 的标准量程,温度变化从-40°C到85°C;

振动影响:≤±1%,根据标准ISA S75.13-1996 第 5.3.5部分。

4、供货范围

4.1 智能定位器DVC6200系列供货范围

名称 规格 型号/产品系列数量 单位单价(RMB)

1 HART定位器 基本型号(不带压力表)(本安和隔爆一体) DVC6200 台

2 HC模块(必选项) 基本诊断功能 HC 台

3 AD模块(可选项) 高级诊断功能 AD 台

4 PD模块(可选项) 在线诊断功能 PD 台

5 SIS模块(可选项) 安全系统 SIS 台

6 集成式阀位回询和限位开关 TX TX 台

7 压力表(必选项)

8 单作用(必选项)

9 双作用(可选项) DBl DBl 台

10 直行程阀反馈磁条及安装支架(可选项)SSTEM ASSEMBLY(19,25,38,50,100) SS19...SS100 台

11 直行程阀反馈磁条及安装支架(可选项)Windows ASSEMBLY WA

12 旋转阀反馈磁条及安装支架(可选项) RSHAFT END ASSEMBLY 90 DEG RS90D 台

选择DVC6200系列智能定位器时,阀门供应商应根据以上表格提供具体的定位器型号,例如:需要一台直行程25mm,单作用,带基本诊断功能,带集成阀位反馈和位置开关带安装支架的DVC6200定位器,型号为DVC6200HCTXSS25。需要一台角行程,双作用,带高级诊断功能,不带集成阀位反馈和位置开关的DVC6200定位器,型号为DVC6200ADDBlRS90

对于阀门等级的选择用户可以遵循以下原则:

用户需要对阀门信息进行诊断和保存,应使用AD等级;其余可以使用HC 等级。对于工况比较恶劣,应使用AD等级;阀门口径≥ DN150,应使用AD等级;关键位置,应使用AD等级;DVC6200 AD为带高级诊断功能的型号。阀门供应商向买方交货时需要提供阀门测试报告。买方将以该阀门测试报告作为阀门验收的依据。

阀门测试报告应包括阀门的全部组态、在输入信号为50%时的状态监测数据、阀门动态误差带曲线与数据、阶跃响应测试曲线与数据、以及阀门特性曲线与数据。

阀门测试报告应提供两种格式:(1)阀门诊断软件ValveLink可读格式,(2)微软Word格式。

阀门测试报告可以使用Emerson公司生产的ValveLink软件来完成。

远程安装式DVC6205供货范围(用于高温或振动场合)

型号适用阀门类型适用行程范围备注

DVC6205AD 直通阀,Fisher

旋转阀,其它厂

家旋转阀

T<101.6mm 提供阀门测试报告

远程安装式DVC6205主要用于温度高或振动大的场合

4.2 与DVC6200系列配套用过滤减压阀组件

型号材质压力范围数量(台)备注

67CFR 铝0-35 Psi 铝0-60 Psi 铝0-125 Psi

合计

4.3 备品备件

序号制造厂原部件编号型号备注

1 PWB电子模块PWB 需要说明DVC等级(HC,AD,PD,SIS)

2 I/P转换器IP

3 气动放大器RELAY 需要说明动作方式(单作用还是双作用)

4 反馈磁条带安装支架需要说明具体型号SS19...SS100/ RS90D

5 压力表需要说明压力范围:0-4 kg/cm2 或0-11

kg/cm2

现场服务及售后服务

现场技术服务人员的目的是保证所提供的合同设备安全、正常投运。卖方将派出合格的、能独立解决问题的现场服务人员提供现场服务。

安装技术服务:卖方提供安装现场检查指导及服务。

卖方保证并承诺在质保期内,正常工作条件下所有产品都能达到招标文件要求的各项性能指标。卖方提供产品操作和检修的培训,并长期提供产品的技术咨询。艾默生过程控制有限公司亚太地区总部在新加坡,在天津设有备件库,保证10年以上的备品备件供应期。

附件一、

定位器分解图

附件二,定位器的典型安装形式

附件三产品样本

智能阀门定位器中压电阀工作原理

智能阀门定位器中压电 阀工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

0引言 阀门定位器是气动调节阀的配套产品,长期以来国产的阀门定位器是使用模拟信号和力平衡原理方法实现的。近年来,由于电子技术的发展,国外多家公司推出了智能阀门定位器,因为其控制精度高、可靠性好、抗振性好、调试方便、流量特性可在线修改、可远程通讯等优越性能,深受用户的青睐。我公司经过多年攻关,研制出HVP型智能阀门定位器,该产品由CPU模板、阀门电流反馈模板、HART通讯模板、报警模板、显示模板、精密位置传感器和I/P 转换单元组成。 I/P转换单元是阀门定位器重要的关键部件之一,其可控性、抗振动性、耗电量、耗气量指标都将直接影响整机性能,设计出优良的I/P转换单元是实 现阀门定位器智能化的重要步骤之一。 1I/P转换单元的类型 I/P转换单元主要作用是把电信号变换成气动信号,通过放大喷嘴的背压和流量控制,使其具有足够的功率去操作气动调节阀。I/P转换单元的种类可按空气消耗量分为:耗气式和不耗气式两种结构。其中由于不耗气式I/P转换

单元的耗气量小,气源压力易于稳定,压力放大倍数小,改善振荡现象,因此,不耗气式的I/P转换单元常常用于阀门定位器设计中。 I/P转换单元按结构形式可分为:线圈喷嘴挡板式、线圈滑阀式和压电阀式三种结构。由于线圈喷嘴挡板式I/P转换单元的结构简单、制造方便、成本低,因此,传统阀门定位器中的I/P转换单元绝大多数采用这种结构方式。线圈滑阀式主要在电磁阀中采用,压电阀式的I/P转换单元,最早出现是在二十世纪90年代西门子公司推出的SIPARTPS智能阀门定位器中,因其具有高抗振动性、高可靠性、低功耗、低耗气量和能够接受较高频率的控制信号等特点,非常适合智能阀门定位器对I/P转换单元的性能要求。 2压电阀工作原理和技术指标 (1)工作原理 压电阀实际是利用功能陶瓷片在电压作用下产生弯曲变形原理制成的一种两位式(或比例式)控制阀。控制压电阀动作只需提供足够的电压,电功耗几乎为零。其动作原理:压电阀的初始状态(不通电,如图1所示),功能陶瓷片作用在喷嘴口1上,这时,口2与喷嘴口3与先导腔连通,形成为一个整体。当压电阀接通电源时(如图2所示),功能陶瓷片变形向上翘,把喷嘴口 3压住,使得口2与喷嘴口1连通。

ABB定位器和FISHER阀门定位器调试步骤与方法

ABB定位器和FISHER阀门定位器 调试步骤与方法 一、ABB定位器 调试步骤: 1、定位器面板设置: 2、内部接线(4根)反馈和指令线。

3、调试前的重要参数切换方式: (1)切换就地、远方。按住MODE键不要松开,再点击↑↓键可以进行切换。 (2)用(1) 的方式进入1.1(远方控制)1.2(就地控制) (3)若要实现快开,则先按住↑键再按键↓键;实现快关,则先按住↓键再按住↑键,方可完成操作。 (4)用 (1)的方式进入1.3,出现单词SENS-POS,其意思是显示调节定位器后连杆与后旋钮弧度保持在对称的范围内。 4、调试步骤 (1) P1.0:将↑↓键同时按,然后点击”ENTER”键,出现单词“LINEAR”调节角行程和直行程。 (2)P1.1:按住MODE键,点击↑↓键,进入P1.1菜单。常按ENTER键3S,然后面板显示倒数计时为0后松开,就出现自整定,直到出现完成“COMPIETE”单词。 (3)P1.4:退出(EXIT)会显示“保存”和“不保存”,按住“ENTER”3S,则保存调试,若不保存,直接按↑键,退出到“放弃”单词,然后再按住“ENTER”3S,退出。 (4)P2.3出现REVERSE单词,显示的是调节阀门和定位器的正反作用。 (5)P3.2出现CW/CCW单词,调节的是DCS和就地

定位器指令的正反作用。 (6)P3.3出现EXIT单词,意思为退出。 (7)P8.2出现DIGEET单词,则调节的是DCS和就地定位器反馈的正反作用。 以上参数为重要参数调试步骤,详情请查看说明书! 二、FISHER阀门定位器 DVC6000调试步骤: 打开275/375手操器从主菜单(Main Menu)选择Hart应用(HART Application)从On line找到该定位器。依次进入Setup&Diag ——Detailed Setup——Mode——

(完整版)莱钢永锋-AV63技术协议(最终版)

山东莱钢永锋钢铁有限公司1000m3高炉轴流压缩机组 技术协议 设备型号:A V63-14轴流压缩机组 需方:山东莱钢永锋钢铁有限公司供方:西安陕鼓动力股份有限公司 2005年10月17日

目录 一概述 二技术规格 三图纸、资料及提供进度 四机组成套供货范围 五设计、制造、验收标准 六设备监制、检验、组装、试运转及验收七功能指标和考核方法 八技术服务及培训 九其它

一、概述 1、概述 西安陕鼓动力股份有限公司(以下简称供方)为山东莱钢永锋钢铁有限公司(以下简称需方)1000m3高炉提供A V63-14全静叶可调式轴流压缩机组,包括轴流压缩机、电动机、辅助设备及电控、自控系统。该机组具有世界先进水平,用于需方1000m3高炉送风,机组由供方总体设计,成套供货。供方对机组的技术性能、供货质量、控制系统的完整性全面负责。 2、设计、制造的先进性及特点 轴流压缩机的气动计算,是机组性能保证的关键环节之一。陕鼓使用先进的气动计算程序,利用叶栅吹风实验数据模化设计。供方拥有多种叶型,优化组合;采用三层缸结构,水平剖分,具有良好的密封性、刚度和减振降噪性能;转子采用等内径结构,叶顶平均周速低,叶片使用寿命长,效率高,长期使用有明显的优势;拥有世界上最先进的由德国马丁俱乐部开发的转子动力学计算程序,保证轴系安全。 3、设计、制造的质量保证体系 为了保证A V系列轴流压缩机的质量稳固提高,陕鼓按照GB/T19001(ISO9001)“设计/开发生产和服务的质量保证模式”建立了质量保证体系,经中质协质保中心1994年10月审核,并颁发了质量体系认证证书,后续复检连续合格。 二、技术规格 1、厂区公共工程条件 1.1 大气温度 年平均13.4℃ 夏季平均温度26.2℃ 冬季平均温度-7℃ 1.2 大气压力 年平均100.48kPa 夏季99.4 k Pa 冬季101.56 kPa 1.3 相对湿度 年平均66% 夏季75% 冬季58%

阀门定位器选型指南

阀门定位器选型指南 -------------------------------------------------------------------------------- 在众多的控制应用场合中,阀门定位器是调节阀最重要的附件之一。尤其是对于某个特定的应用场合,如果要选择一个最适用的(或者说最佳的)阀门定位器,那么就应注意考虑下列因素: 1)阀门定位器能否实现“分程(Split_ranging)”?实现“分程”是否容易、方便?具备“分程”功能就意味着阀门定位器只对输入信号的某个范围(如:4~12mA或0.02~0. 06MPaG)有响应。因此,如果能“分程”的话,就可以根据实际需要,只用一个输入信号实现先后控制两台或多台调节阀。 2)零点和量程的调校是否容易、方便?是不是不用打开盒盖就可以完成零点和量程的调校?但值得注意的是:有时候为了避免不正确的(或非法的)操作,这种随意就可进行调校的方式需要被禁止。 3)零点和量程的稳定性如何?如果零点和量程容易随着温度、振动、时间或输入压力的变化而产生漂移的话,那么阀门定位器就需要经常地被重新调校,以确保调节阀的行程动作准确无误。 4)阀门定位器的精度如何?在理想情况下,对应某一输入信号,调节阀的内件(Tri m Parts,包括阀芯、阀杆、阀座等)每次都应准确地定位在所要求的位置,而不管行程的方向或者调节阀的内件承受多大的负载。 5)阀门定位器对空气质量的要求如何?由于只有极少数供气装置能提供满足ISA 标准(有关仪表用空气质量的标准:ISA标准F7.3)所规定的空气,因此,对于气动(或电-气)阀门定位器,如果要经受得住现实环境的考验,就必须能承受一定数量的尘埃、水汽和油污。 6)零点和量程的标定两者是相互影响还是相互独立?如果相互影响,则零点和量程的调校就需要花费更多的时间,这是因为调校人员必须对这两个参数进行反复调整,以便逐步地达到准确的设定。 7)阀门定位器是否具备“旁路(Bypass)”,可允许输入信号直接作用于调节阀?这种“旁路”有时可简化或者省去执行机构装配设定(Actuator Settings)的校验,如:执行机构的“支座组件(Benchset)设定”和“弹簧座负载(Seat Load)设定”――这是因为在许多情况下,一些气动调节器的气动输出信号与执行机构的“支座组件设定”完全吻合匹配,用不着对其再进行设定(其实,在这种情况下,阀门定位器完全可以省去不用。当然,如果选用了,那么也可利用阀门定位器的“旁路”使气动调节器的气动输出信号直接作用于调节阀)。另外,具备“旁路”有时也可允许在线的对阀门定位器进行有限度的调校或维修维护(即利用阀门定位器的“旁路”使调节阀继续保持正常工作,无须强制调节阀离线)。 8)阀门定位器的作用是否快速?空气流量(Airflow)愈大(阀门定位器不断的比较输入信号和阀位,并根据它们之间的偏差,调节其本身的输出。如果阀门定位器对这种偏差响应快速,那么单位时间里空气的流动量就大),调节系统对设定点(Set

阀门定位器技术协议 FISHER

FISHER阀门定位器 技术协议书 2.2.2 防爆、防护要求 防爆环境:1区,ⅡC,T4组。 设备必须具有国内防爆合格证或国际公认的相应防爆认证。 设备防护等级IP66。 2.2.3 通用性: Fisher DVC6200系列定位器,可以同时适用多种类型的气动调节阀,包括直行程、角行程,截止(Globe)型、角阀、蝶阀、偏心旋转阀、V型调节球阀等。DVC6200可直接用于单作用和双作用执行机构,无需通过配备反向放大器来实现双作用。 2.2.4 适应性: Fisher DVC6200系列定位器,隔爆外壳(防护等级IP66),能够适应买方的环境与现场条件。定位器的电缆接线盒与电气功能部件独立设置,相互隔离,防止雨水与潮气侵入,所有电子元件全部塑封,能适应湖南多雨潮湿环境。产品对气源有较强的适应性,能克服气源中的偶尔出现固体颗粒(<40微米)与水露对定位器的影响。DVC6200具备分体式安装的功能,以满足高温或振动大的应用场合需要。 DVC6200采用无接触的磁感应连接,消除了连接死区,精度更高。同时避免了机械振动造成反馈连接脱离,提高了可靠性。无反馈无接触连接,没有金属连接件的腐蚀,使用寿命更长。 DVC6200保持了通用性,出来外壳、接线端子、及反馈部件同原产品不同以外,其他部件同原产品完全相同。

2.2.5 可靠性: Fisher DVC6200定位器具有SIL3认证,可以用于SIS系统。 2.2.6 智能性: Fisher DVC6200系列定位器,通过阀门性能诊断软件VALVELINK向用户提供功能丰富调节阀性能信息,其中包括: ●全行程(-5%-105%)的曲线与分析数据,提供8000个采样点; ●执行机构弹簧弹性系数,弹簧预紧力实际值; ●阀座情况分析,实际阀座关紧力; ●实际填料摩擦力以及理想的摩擦力范围; ●连续地,间断性地,或定时定期的阀门机械性能状态; ●计算阀门的摩擦与死区的数值,显示的趋势曲线; ●组态,校验,以及诊断曲线与数据; ● MS Office格式阀门诊断测试报告; ●能够内嵌于智能仪表设备管理系统(AMS)。 3、智能阀门定位器技术方案 定位器整机包括:定位器主机本体,压力表头。 Fisher DVC6200是模块化设计的高可靠性智能定位器。Fisher DVC6200 I/P 设计采用的是最不容易堵塞的喷嘴挡板结构,允许高达40μm的颗粒通过。通过内置多个个压力传/位置感器,可以实现全面的阀门性能诊断。通过475手操器或VALVELINK软件,实现自动整定,优化控制,行程分割、报警、生命周期管理等功能。 3.1产品描述与特点 3.1.1 产品描述 Fisher DVC6200智能阀门控制器是基于微处理器(CPU)把4-20mA电流信号转换成气动输出信号以精确地控制阀门的智能定位器。DVC6200由4-20mA回路供电,通过HART协议进行通讯。 3.1.2 产品特点 模块化设计,结构简单,维护方便; 所有电子元件塑封,消除静电干扰,防止潮湿或腐蚀气体损坏,延伸使用寿命;

阀门定位器讲解

智能电气阀门定位器在实际中的应用 一、前言 电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。 二、智能电气阀门定位器与传统定位器的对比 2.1 传统电气阀门定位器的工作原理 电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。其基本结构见图1: 反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 2.2 智能电气阀门定位器工作原理 虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPATT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示: 其具体工作原理如下: 由阀杆位置传感器拾取阀门的实际开度信号,通过A/D转换变为数字编码信号,与定位器的输入(设定)信号的数字编码在CPU 中进行对比,计算二者偏差值。如偏差值超出定位精度,则CPU输出指令使相应的开/关压电阀动作,即:当设定信号大于阀位反馈时,升压压电阀V一l打开,

费希尔阀门定位器接地电极说明书

安装时DVC6200的接地电极要留意 安装对于dvc6200来说异常重要,尽管只是一个接地电极的安装,就有许多细节需要注意, 所以用户安装前一定要了解所有的注意事项,确保安装正常进行。下面对现场可用的接地电 极许多细节来进行介绍。 1、条形或管装电极 dvc6200长度8英尺(2.44m),包含如下材料,dvc6200安装方式如下: ①电极的安装必须保证有8英尺(2.44m)的长度与土壤接触。必须埋在8英尺(2.44m)深的地下。 ②铁条或钢条电极直径为5/8英寸(15.87mm)。直径5/8英寸(15.87mm)的不锈钢条、或等效直径不小于1/2英寸(12.7mm)的有色金属条。 ③管或电线管电极的尺寸不应小于3/4英寸,若为铁质或钢质,外表面应该有镀层或其它防 腐金属涂层。 2、混凝土掩体的电极 dvc6200电极由厚度为2英寸(50.8mm)的混凝土掩体包裹,位于直接与大地接触的混凝土基 础或基座附近,其中包含1根20英尺(6.1m)以上且直径为1/2英寸(12.7mm)以上的全裸、镀 锌或其它导电性涂层的加强钢棒或钢条,或包含长度20英尺(6.1m)且型号不小于No.2 AWG(φ6.54mm)的裸露铜质导线。 3、dvc6200有效接地的建筑物金属结构。 4、dvc6200接地环 一种环绕建筑物或结构物的接地环,在地面以下深度2 1/2英尺(762mm)与大地接触,包含20英尺(6.1m)且型号不小于No.2 AWG的裸露铜质导线。若现场没有上述电极可供使用,必须 采用人工电极。 5、金属地下水管与地直接接触部分长度10英尺(3.05m)。 6、dvc6200板状电极dvc6200每个板状电极表面与外土壤的接触面积不得低于2平方 英尺(0.186平方米);铁板或钢板电极厚度为1/4英寸(6.35mm);有色金属电极厚度为0.06英 寸(1.52 mm)。 可靠性: 少连接无接触阀位反馈—高性能、少连接反馈系统消除了阀杆和DVC6200f 之间的物理接触。没有磨损部件,因此zui大限度地延长了循环使用寿命。耐受恶劣环境—经过现场考验的 DVC6200f 仪表采用全封装电子元件,抗振动、耐高温以及耐腐蚀性环境。防风雨接线端子 将现场接线连接和仪表的其他区域隔开。 性能: 准确而灵敏—两级定位器设计能够快速响应大的阶跃变化,并精确控制设定点的微小变化。 行程控制/压力反馈—阀位置反馈对数字阀控制器的运行至关重要。DVC6200f 可以检测阀位 反馈问题,并自动转换到 I/P 转换器模式,以保持阀运行 易于使用: 增强的安全性—DVC6200f 是一款 FOUNDATION 现场总线通信装置,可以访问回路中任何 位置的信息。这种灵活性可以降低暴露在危险环境中的风险,并能够方便地了解安装在难以 触及的位置的阀状况。缩短的调试时间—FOUNDATION 现场总线通信允许您使用各种工具

西门子阀门定位器操作技巧介绍材料

西门子阀门定位器操作手册 压电阀介绍: 1、引言 传统的气动阀中大量使用了电磁铁作为电-机械转换级,其把电控制信号转换为机械的位移,推动阀芯,实现气路的切换或气体压力、流量的比例控制。作为电-机械转换级的电磁铁有价格低廉,操作使用方便等优点;但其也有很多缺点:如功耗大、响应速度不够快、存在发热及有电磁干扰等。把压电材料的电-机械转换特性引入到气动阀中,作为气动阀的电-机械转换级,这是一项不同于传统气动阀的全新技术。采用了压电技术的气动阀在性能上有着传统气动阀无可比拟的优势。 2、压电效应简介 对于晶体构造中不存在对称中心的异极晶体,加在晶体上的张紧力、压应力或切应力,除了产生相应的变形外,还将在晶体中诱发出介电极化或电场。这一现象被称为正压电效应;反之,若在这种晶体上加上电场,从而使该晶体产生电极化,则晶体也将同时出现应变或应力,这就是逆压电效应。两者通称为压电效应。1880 年居里兄弟发现了电气石的压电效应,从此开始了压电学的历史。压电式气动换向阀即是利用压电逆效应而研制的。 3、压电技术在气动阀中的应用 1、微型直动式换向阀 利用压电材料在电场作用下的变形,来实现气动阀阀口的开启和关闭,这样就可以做成微型直动式换向阀。如下图所示的微型二位三通换向阀,1 口为进气口,2 口为输出气口,3、口为排气口,阀中间的弯曲部件为压电材料组成的压电片。当没有外加电场作用时,阀处于:图1 状态:进气口关闭,输出气口2 经排气口3 通大气。当在压电阀片上外加控制电场后,压电阀片产生变形上翘,上翘的压电阀片关闭了排气口3,同时进气口1 和输出气口2 连通。这样就完全实现了传统二位三通电磁换向阀的功能。 图1 图2 2、压电式电气比例调压阀 压电材料的变形量正比于施加在其上的电场强度,利用这一特点,可以开发出比例调压阀。如图3 所示,施加不同的控制电压到压电阀片上,压电阀片产生不同的弯曲变形量,这样就在进气口1 与输出气口2 之间及输出气口2 与排气口3 之间形成不同的气流阻力,从而在输出气口2 的得到不同的气体压力。由于压电阀片在变形过程中不受机械摩擦力,且压电阀片有响应快功耗低的特点,基于压电阀片的电气比例调压阀很多性能优于传统的比例调压阀。例如其没有死区,压力可以从零开始连续调节;其响应快,可满足高速系统的应用要求;其功耗低,对电源功率要求低。 图3

几种常见阀门定位器的调校方法

几种常见阀门定位器的调校方法 阀门定位器概述 (1) 电-气阀门定位器VP200(横河)的调校说明 (2) 智能阀门定位器 AVP系列(山武)调校说明 (3) 智能阀门定位器 SIEMENS(西门子)调校说明 (7) 智能阀门定位器DVC系列(费希尔)调试说明 (27)

一、阀门定位器概述: 阀门定位器:是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。一般可分为以下三种:气动阀门定位:此阀门定位器无电路部分,一般和电-气转换器配合使用,才能实现自动控制功能。比如Pignone(化肥装置尿素单元PV-1026)、PARCOL(化肥装置尿素单元PV-1026),由于其无法单独实现自动控制,气路繁琐,控制精度低等缺点,逐渐被淘汰。电-气阀门定位:由于其价格低廉,调校方便,输出稳定等特点,目前仍被广泛使用。比如VP200(合成氨装置甲醇洗单元和液氮洗单元)等。智能阀门定位:是目前使用最为广泛的阀门定位器,控制过程中利用智能阀门定位器可实现高品质调节,增加过程控制的精确性和稳定性。比如SIEMENS、DVC2000-6000系列、AVP100-300系列等。

二、电-气阀门定位器VP200(横河)的调校步骤: 1、检查气路、电路是否满足定位器工作要求; 2、给定12mA信号,将反馈杆调整至水平位置, 并紧固; 3、给定8mA信号,通过零位调节螺母将零位调节至对应值; 4、给定16mA信号,通过量程调节螺母将量程调节至对应值; 5、给定4mA信号,检查阀门全关位置,必要时进行微调; 6、给定20mA信号,检查阀门全开位置;必要时进行微调; 7、给定4mA(或20mA)、8mA(或16mA)、12mA、4mA(或 20mA)、16mA(或8mA)、20mA(或4mA)进行刻度验证,必要时进行微调。 说明:1、通过量程调节螺母可以改变定位器的作用方式。 2、取用8mA和12mA信号,分别调整零位和量程,是因为8mA和12mA均有上下刻度值,可以明显反应零位和量程的位置,而4mA向下下没有刻度(和20mA向上也没有刻度值),不宜采用4mA和20mA来调节零位和量程。 3、定位器调校时,必须保证阀门能够完全关闭,有时候虽然给定4mA(或20mA)信号,阀门仍然有开度。 4、气动阀门定位器和电-气阀门均属机械式阀门定位器,因此调校方法类似,不再详细介绍。

费希尔阀门定位器讲义

费希尔定位器讲义 一.费希尔定位器的分类介绍。 二.费希尔定位器的工作原理。 三.费希尔定位器的调试及整定。 四.4200反馈快速调整的方法。 费希尔国际有限公司始于1880年,发明人是william Fisher发明了第一台泵调节器。 分类“DVC5000。DVC6000。DVC2000 DVC2000----------直行程,角行程。 行程:最大2英寸,在大的行程可以通过增加气动放大器,改变双作用。没有连接杆和连接件减少了安装零件和安装的复杂程度。里面带非接触式阀位变送器和阀位开关,阀位变送器需要单独供电。

二. 费希尔定位器的工作原理。 Fisher DVC5000/6000系列智能定位器的结构原理图如下图所示 智能定位器结构原理图:

工作原理:控制器来的控制信号经端子盒进到印刷线路板子模块,在这里被微处理器读取后经数字算法处理后转换成模拟量后送给I/P转换器。当信号改变时I/P转换器的线圈和衔铁之间的磁吸引力改变,并因此改变了喷嘴挡板间的距离进而改变了喷嘴背压,该背压经放大器放大后送给执行机构并通过执行机构改变阀杆的位置。阀行程传感器通过反馈杆感受阀杆位置的变化,并将此信号反给印刷线路板组件参与计算。当阀杆位置达到正确位置,阀杆位置信号反到印刷线路板组建,经过处理后使I/P驱动信号稳定下来,则喷嘴背压稳定下来,则到执行机构的输出力也稳定下来阀杆位置不再变化。 单作用执行机构: 将单作用正作用式数字式阀门控制器(a型气动放大器)连接到单作用执行机构上时,必须把输出口B堵死,把输出口A连接到执行机构膜盖上。在输出口B处不需要压力表,在其相应位置上改装一个带过滤网的排空管塞。 将单作用反作用式数字式阀门控制器(B型气动放大器)连接到单作用执行机构上时,必须把输出口A堵死,把输出口B连接到执行机构膜盖上。在输出口A处不需要压力表,应改装一个堵头。 双作用执行机构: 当用在双作用执行机构上时,DVC6000系列数字式阀门控制器通常采用A型气动放大器,当无输入信号时,如果气动放大器已经

FISHER_DVC6010-new气动阀门定位器

DVC快速自动整定 “推荐DCS给定50%即12mA信号” 在对DVC定位器进行整定之前,我们首先得调整一下调整臂和反馈臂的位置。具体方法是:阀门处在相对自由的状态(定位器输出压力为0,如果有手轮的话,手轮的位置应该处在不影响阀门自由开关的位置),打开定位器反馈保护罩,用定位销(定位器里面有)将反馈臂定位在合适的位置(如果是气开门,将定位销插在A 的位置,反之则插在B的位置),松开连接臂和调整臂所连接的螺母,然后将调整臂和反馈臂的交点调整到阀门行程(阀门铭牌上的Travel值)对应的值,再拧紧连接臂和调整臂所连接的螺母,取下定位销! 将手操器和定位器的指令线正确连接上(连接在接线盒的LOOP上,注意正负),打开手操器,双击HART application,进入主画面,点击热键,选择Instrument Mode (仪表模式),点击OK,将光标移到Out Of Service(非工作模式)上,点击ENTER,再点击热键,返回主画面。选择Setup & Diag(设置和诊断),然后选择Calibrate (校验),再选择Auto Calib Travel(自动校验行程),选择manual,点击ENTER,稍等,然后将光标移到Digital(数字),点击ENTER,然后查看反馈臂和执行机构推杆是否成90o角,如果不是,通过选择large(10.0?), medium(1.0?), and small(0.1?) adjustments选择increase或者decrease使反馈臂和执行机构推杆成90o角,然后点击OK,稍等,然后会出现压力校验,Pressure calibration 选择Yes会再自动进行一次校验选择No 则完成校验.再三次点击OK,然后将光标移到In Service(工作模式)上,点击ENTER,再点击OK。此时改变指令信号,如果阀门动作正常,则校验完毕;如果改变指令信号,阀门不动作或只在指令为0%(4mA)和100%(20mA)时动 作,则需要更改Instrument Mode(仪表模式),具体方法是:点击热键,选择 Instrument Mode(仪表模式),点击OK,将光标移到In Service(工作模式)上,点击ENTER。 详情请参考FISHER公司的相关设备手册或煤制甲醇公司阀门定位器操作手册

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构(很详细的介绍) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控

制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

阀门定位器

气动调节阀阀门定位器 一、阀门定位器原理 阀门定位器是调节阀的主要附件,与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电/气阀门定位器和智能阀门定位器。 二、定位器的基本功能: 1、比例动作和定位作用 比例动作:根据输入的信号,使阀门的阀位与输入信号相对应。 定位作用:当输入信号固定时,阀位不受工艺条件的变化而变化。 2、功率放大 针对气动输入信号而言,定位器可将输入的气信号;通过定位器中的气动功率放大器进行放大,使微小的信号就可以控制阀门动作。 3、提高阀门的控制精度

由于定位器是根据输入信号与阀门位置的偏差对输出信号进行调整的,一旦输入信号与阀门位置有偏差,定位器将自动调整输出信号以改变阀位,直到阀位与输入信号相对应为止,这样大大提高了阀门的控制精度。 4、克服摩擦力 由于定位器本身的定位闭环控制,当摩擦力变化时(指阀杆的填料、执行器的密封等部分的摩擦力);定位器可以根据由摩擦力造成的位置偏差,自动增加或减少输出到执行器的压力,以克服摩擦力对阀门开度造成的影响。 5、改变作用方式 通过定位器我们可以改变阀门的作用方式。 根据阀门的作用方式我们可设定定位器的正、反作用。 6、信号转换 我们可以通过定位器实现电/气转换 三、阀门调校: 1、一般调校法 1、零位调整,给定电流信号4mA,通过顺时针或反时针旋动调零 螺钉,使输出压力为0.2×100KPa左右或调节阀行程有微小

位移。 2、量程调节给定信号8、12、16、20mA,使阀杆行程应25%、 50%、75%、100%.若量程偏大或偏小,调整螺母,直至量程符合要求. 3、重复步骤1. 2,使量程零点达到规定值。 2、特殊调校法 通过调整反馈杠杆的有效长度及改变调零弹簧的弹性系数也可以调校阀门定位器。具体如下: 1、调整反馈杠杆法 1、给定信号4mA,通过调零螺钉,调节零点,使零点达到规 定值。 2、给定信号20mA,记录调节阀分别在25%、5o%、75%、100% 时的行程,调量程,直至达到规定值。 3、重复上述步骤1、2,若零点、量程无法校准,调整阀杆上的 销钉来改变反馈杆的有效长度。 4、重复上述步骤1、2、3,直到零点,量程达到规定值。 3、改变调零弹簧的弹性系数法 当弹簧工作在非线性区域时,定位器零点提高了,行程满度值也增加,当满度值大于额定行程时,就需要调量程机构,使调节阀的行程减小,这样阀门定位器的零位值也减小。

气动阀门定位器工作原理..

气动阀门定位器工作原理

气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。 如图上图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与一定的阀门位置相对应。 以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。 所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。 一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。 ZPD-2000系列电气阀门定位器 ZPD-2000系列电气阀门定位器是根据国际先进的同类型产品,集多年成功的专业制造经验和先进的应用技术,经过消化吸收和针对(老产品)ZPD-2000 型系列电气阀门定位器加以综合改进的产品,并积极贯彻ISO9001质量保证体系,具有一定的先进性,符合国际标准要求的一种新型定位器。 一、产品的功能用途和适应范围: 1、产品的功能用途: ZPD-2000系列电气阀门定位器是各种气动执行器的主要配套仪表。它与气动调节阀配套使用,构成闭环控制回路。用以提高调节阀的控制精度。克服填料函与阀杆的磨擦力,克服介质压差对调节阀阀芯不平衡力。提高阀门动作速度,可实现分程控制

费希尔DVC6000系列定位器的调校

费希尔DVC6000系列定位器的调校 用HART手操器进行调校: ①从On line(在线)菜单里选择Setup&Diag(设置和诊断)——Basic setup(基本设置)——Manual setup(手动设置)——Instrument Manual(仪表模式)——Out of service(非工作状态)。 ②Basic setup (基本设置)——Auto setup (自动设置)——Auto Calib Travel(自动校验行程)剩余的自动校验步骤是自动进行的。自动校验完成后,HART会提示您将仪表设置到In Service(投用状态)。 ③如果在完成基本设置和校验之后,阀门还是振荡或过调(不稳定),或响应不灵(响应缓慢),您可以Auto Setup (自动设置)菜单中Performance Tune (性能优化整定)或Stabilize/Optimize(稳定/优化)改善调试结果;其中有两种选择:Standard(标准)、Advanced(高级)。在Standard(标准)中如果阀门工作不稳定,用Decrease Response(削弱响应)来使阀门工作稳定;如果阀门响应缓慢,用Increase Response(增加响应)来使阀门响应灵敏。如果用Decrease Response或Increase Response后阀门超调还是很严重,需要选择Advanced(高级)项,除了Decrease Response(削弱响应) 和Increase Response(增加响应),还有Decrease Damping(降低阻尼) 选择允许阀门有更多过调的阻尼值和Increase Damping(增加阻尼) 选择减少阀门过调的阻尼值。 ④对于FISHER DVC6000系列数字阀门定位器,典型的安装调试方式为:从On line(在线)菜单里选择Setup&Diag(设置和诊断)——Basic setup(基本设置) ——Auto setup (自动设置) ——Setup Wizard(设置诀窍),首先是选择所调试的执行机构制造商或执行机构型号,如果在Setup Wizard(设置诀窍)中没有列出,就选择Other(其它)来作为执行机构制造商或执行机构型号,被提示设定的参数如下:Actuator Type(执行机构类型)选项如下:Spring&Diaphragm(弹簧膜片式)、Piston Double-acting without spring(无弹簧双作用气缸式)、Piston

阀门定位器常见问题的6个原因分析

阀门定位器常见问题的6个原因分析 在调节阀的附属装置中,最主要、最实用的是阀门定位器。阀门定位器是调节阀的关键附件之一。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,智能技术、电子技术的广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 现场使用阀门定位器的种类非常繁多,有气动阀门定位器、电气阀门定位器、有配薄膜执行机构的阀门定位器、有配活塞执行机构的阀门定位器、有力平衡式阀门定位器、有位移平衡式阀门定位器,阀门定位器的广泛使用,在生产过程中,难免会出现各种故障,为保质、保量、安全地生产,就必须及时排除定位器可能产生地一切故障。要排除阀门定位器地的故障,必须正确判断阀门定位器的那一个环节、那一个元件发生的故障。通常有如下两种故障分析法:一是根据阀门定位器的传递函数,对阀门定位器进行逐个环节,逐个元件的分析,这种对现场检修不太适用,但对于疑难问题的分析,却非常有效;二是根据检修者对故障的现象进行综合分析和判断,此种方法最适于现场检修。下面将阀门定位器可能产生的常见故障的起因分析如下: 1.阀门定位器有信号输入,但无输出压力信号 (1)电/气定位器,衔铁与线圈架之间有异物。 (2)恒节流孔堵塞。 (3)喷嘴挡板配合不良或喷嘴挡板损坏。 (4)放大器中膜片(金属膜片或者橡胶膜片)损坏。 (5)气路连接有误(包括放大器)。 (6)电/气定位器输入信号线正负极接反。 (7)定位器的输入接线盒内的二极管开路或接线不良。 (8)气源压力的大小不合要求。

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控制

电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理介绍: 气动阀门定位器(一) 气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。如图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与

一定的阀门位置相对应。以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。 气动阀门定位器(二) 气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。 气动阀门定位器是按力平衡原理工作的,实现由输入的4~20mA电流信号控制气动阀门由0~100%的开启度。其工作原理如下图。

当需要增加阀门开启度,计算机控制系统的输出电流信号就会上升,力矩马达①产生电磁场,挡板②受电磁场力远离喷嘴③。喷嘴③和挡板②间距变大,排出放大器④内部的线轴⑤上方气压。受其影响线轴⑤向右边移动,推动挡住底座⑦的阀芯⑨,气压通过底座⑦输入到执行机构⑩。随着执行机构气室⑩内部压力增加,执行机构推杆⑥下降,通过反馈杆⑩把执行机构推杆@的位移变化传达到滑板⑩。这个位移变化又传达到量程④反馈杆,拉动量程弹簧16。当量程弹簧16和力矩马达①的力保持平衡时,挡板②回到原位,减小与喷嘴③间距。随着通过喷嘴③排出空气量的减小,线轴⑤上方气压增加。线轴⑤回到原位,阀芯⑧重新堵住底座⑦,停止气压输入到执行机构⑩。当执行机构⑩的运动停止时,定位器保持稳定状态。 电气阀门定位器工作原理 1.杠杆 2.活塞膜片 3.反馈弹簧 4.杠杆 5.凸轮 6.反馈轴 7.联结 8.传动轴 9.执行机构 10.先导阀滑阀芯 11.先导阀体 12.零点和范围联动机构 13.内部反馈弹簧 14.转换块

相关文档
最新文档