纯手工制作迷你逆变器(全图解)

纯手工制作迷你逆变器(全图解)
纯手工制作迷你逆变器(全图解)

纯手工制作迷你逆变器(全图解)

本人是新手,不过接触电子已经很多年了,做家电维修,就是那种任何家电都修的那种家电维修,最近迷上逆变了,希望高手指教。直接上图。虽然不是最小的,但是也算是非常小了,什么保护都没有,如果出问题,那就是直接烧机。

EI33的变压器。功率我也不知道说是多少好,反正最高上到了60安。

前级是最简单的3525了,什么保护都没做,直接驱动场管,两只1404。话说这1404可真是好用,单边30安发热量也不大,如果一只上10安共200w的话连散热片也省了,基本不发热,频率30K,变压器自己做的,EI33的小变压器,初级3(0.8*7)+3。次级也是0.8我也忘记是多少圈了,倍压空载最高750,前级滤波电容两个1000UF,有点小,可没地方装了,就为了一个(小)字,后级滤波400V47UF,也是很小啊,没办法,没空间了,整流两只8120,再加555和4只1225。输出4.7UF,非常简单的电路。效果我就不知道了。没地方试,现在也只能点着灯玩。还有我那200W的灯泡质量也非常不错啊,烧了一次,就是只断了灯丝,使劲摇啊摇给接上了,现在上到600W也不烧,雪亮雪亮的。对了,点灯的相片没照到。

上前级D极波形图,自己感觉很自豪,看很多人都说做的波形不好尖峰高,不知道为什么我做的波形这么漂亮,我不是炫耀,比我做的好的人大把多,可能时变压器的问题吧,看不到一点尖峰,要不1404也不是那么好惹的,耐压太低了,尖峰稍高就挂了。看波形好,我也没加吸收了。图片上看得出来

继续上图。下面是多图欣赏。有很多其它东西。

#p#副标题#e#

这个东西被EG10001给害了,所有东西装完了,驱动板上的2110却坏了一个,那个郁闷啊,被迫无法完工,也没法试机了。少说也有个800W以上(是纯正弦波的)前级非常不错。ETD49的变压器,后面还少个铁铝硅。

ETD49变压器,自己做的,初级0.4*48 3+3共饶了六层,次级我也忘记是多少了。

EC4215的变压器,待绕线,这变压器不错,是电焊机里面拆机的,频率上到100K,阻值80多K,在焊机上基本上是1200W一个。

大大小小的变压器。

我用的万用表,最右边那个小的拿来量频率和占空比非常好。#p#副标题#e#

老示波器一个。

上班那里的旧焊机大把的,对了!我现在是维修焊机。逆变焊机,不是老式的变压器)

EC4215的变压器大把多,不过都是新的,没舍得拆。

小JJ带200W灯泡。

非常亮。

#p#副标题#e#

电流上到50多安了,基本没什么热量。

EI33的变压器,还没拆呢!

EC42和ETD49的磁芯,非常不错的。都是焊机里面拆出来的~~

断了再接上的灯丝。

来个超大号的变压器,可以做到20多个千瓦,估计很少人见过,这可不是工频的,高频磁芯来的。#p#副标题#e#

超大号的风扇,用在JJ上估计效果不错。哈哈。380V的

旁边那个12V的显得那么渺小。

IGBT模块。英飞凌1200V150安的。值不少银子。

整流模块!100A

逆变器制作全过程

逆变器制作全过程 制作600W的正弦波逆变器, 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。

1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了

逆变器的选型

逆变器主要技术指标有:额定容量;输出功率因数;额定输入电压、电流 电压调整率;负载调整率;谐波因数;总谐波畸变率;畸变因数;峰值子数等 通过对逆变器产品的考察,现对250kW、500kW逆变器产品及1000kW逆变器做技术参数比较: 本工程装机容量,10MWp,若选用单台容量大的逆变器,逆变器发生故障时,发电系统损失发电量较大;选用单台容量小的逆变设备,则设备数量较多,会增加投资后期的维护工作量;在投资相同的条件下,应尽量选用容量大的逆变设备,可在一定程度上降低投资,并提高系统可靠性,因此,从工程运行及维护考虑,本工程拟采用高效率、大功率逆变器,选用容量为 500kW,逆变器参数暂按如下参数进行设计

集中型逆变器 主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。目前国内的主流机型以 500kW、630kW 为主,欧洲及北美等地区主流机型单机功率 800kW 甚至更高,功率等级和集成度还在不断提高,德国 SMA 公司今年推出了单机功率 2.5MW 的逆变器。按照逆变器主电路结构,集中型逆变器又可以分为以下 2 种类型 集中型逆变器是目前大部分中大型光伏电站的首选,在全球 5MW 以上的光伏电站中,其选用比例超过 98% 通过对比集中型和组串型主流机型方案在 100MW 电站的运维数据(见表 5),发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。同时,在占地几千亩的百 MW 级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

超级字制作方法及特点总结

超级发光字制作工艺及特点总结 1、室内外通用 超级字室内外通用,面板由液态亚克力浇灌固化成型,户外使用不黄变、不开裂,解决了树脂字户外发黄的问题,超级字使用的是特质铝型材边带,带有特殊凹槽设计,考虑了亚克力的收缩系数及专用内漆,就防止了开裂现象; 2、大小尺寸适宜 超级字英文最小可以做到15cm,中文最小可做到20cm,最大可以做到1.5米,只要弯字机能弯出来就能制作; 3、制作工艺简单 超级字采用单组份液态亚克力胶,胶水再出厂前所有的助剂都已经配备好,所以在制作过程中只要按每个笔画的用胶量灌注就行了,一次灌胶就可完成,边带和字面无需焊接,树脂字用双组份树脂,在灌注时,需要添加荧光剂、扩散剂,并且要搅拌均匀,非常麻烦,技术要求高,树脂字需要尔茨灌胶、焊接、固定透明亚克力板等工艺,过程比较繁琐,制作周期长; 4、液态亚克力固化时间短,交货周期短 超级字的液态亚克力从灌胶到完全固化只需两个小时,树脂字的固化时间长达8小时,有效提高交货效率; 5、维护简易 超级字背面的铝塑底板用的是玻璃胶安装,拆卸方便,当字体内部光源出现问题,拆开底板就可对其进行维护。 6、液态亚克力不同批次颜色一致 液态亚克力调色后可以放置3个月不固化,当有字需要重做时,能够保证新字与旧字色调一致,树脂一般调配好后,8小时就固化;

7、亮度高 液态亚克力原料透光度可达到92%,发光效果堪比树脂字 8、样式丰富 背面封铝塑板,正面发光,效果和树脂字一样;背面封透明亚克力,采用安装支脚支起,达到正反面发光发光效果;背面封5mm以上的水晶板,就是迷你字的发光效果了; 9、表面工艺多样 超级发光字表面是平的,字面可以丝印、贴膜、uv喷绘、贴喷画; 10、亮度均匀 超级字厚度最小为3.5cm,布灯难度小,而且液态亚克力流平度好,各个位置的厚度均匀,发光效果均匀; 11、散热效果良好 超级字的字壳为铝边字壳,散热效果是铁的三倍,为字体内部提供适宜的温度,延长字体的使用寿命; 12、整体无缝 超级字的字壳由弯字机一体化制成,液态亚克力与字壳固化连为一体,无需焊接,且密封性良好,实现无缝一体化,不存在漏光现象; 13、节能环保 液态亚克力固化过程在一个平台上一次完成,用电量只需3kw。固化时吸收了胶水反应热量,固化后不需要再放在烤箱内烘烤,固化过程中产生的气体自动排到大气中; 14、表面牢固、不断裂 无论多大的字,固化时间是一样的,每个部分的应力一样,消除均匀,所以,超级字在受外力火灾运输中不易断裂;

逆变器的选型

。 集中式逆变器和组串式逆变器选型的比较 国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW 以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏 电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。对于MW级别的电站亦可选择380V或10KV方式并网。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结 构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用 DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比: 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: (1)逆变器数量少,便于管理; (2)逆变器元器件数量少,可靠性高; (3)谐波含量少,直流分量少电能质量高; (4)逆变器集成度高,功率密度大,成本低; (5)逆变器各种保护功能齐全,电站安全性高; (6)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有: (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多 的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

逆变器初学者必看制作秘笈(全部资料)

逆变器初学者必看制作秘笈(全部资料) 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信,提这样那样的问题,很多都是象我这样的初学者。为此,我花了近一个月的时间,制作了这台600W的正弦波逆变器,并将此台机器的制作过程和各位好友在此分享,谨此献给曾经和我一样的逆变器初学者,如您能有所收获,并举一反三,将是我此次分享的最大的收获。 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯 硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的 PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你 要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形: 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”; “SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方

1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解 1000W正弦波逆变器制作过程详解 作者:老寿 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图 也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。 因为电流较大,所以用了三对6平方的软线直接焊在功率板上: 吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。 上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。 上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4 个大功率管,那个白色的东西是0.1R电流取样电阻。二个 直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 上图是DC-DC升压电路的驱动板,用的是KA3525。这次 共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。 H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。 这是TO220封装的快恢复二极管,15A 1200V,也是张工

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

逆变器制作全过程(新手必看)

制作600W的正弦波逆变器 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。如果PCB 没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到好友的提示帮助,特在此表示感谢。

小功率户外型光伏并网逆变器的防水及风道设计.

小功率户外型光伏并网逆变器的防水及 风道设计 O 引言户外型光伏并网逆变器的设计既要可靠防水又能将功率器件产生的热量排出箱体外。如果完全密封而没有合理的风道,解决了防水却无法满足热设计的要求;如果仅设计了简单的风道,解决了散热问题,却给箱体密封防水提出了难题;针对看似相矛盾的问题,本文提出了一种采用上下双层独立密封及转90度风道的特殊结构。经过长期的实践应用已完全取得成功。l 上、下双层腔体的独立密封针对不同器件防护等级要求的不同、 O 引言 户外型光伏并网逆变器的设计既要可靠防水又能将功率器件产生的热量排出箱体外。如果完全密封而没有合理的风道,解决了防水却无法满足热设计的要求;如果仅设计了简单的风道,解决了散热问题,却给箱体密封防水提出了难题;针对看似相矛盾的问题,本文提出了一种采用上下双层独立密封及转90度风道的特殊结构。经过长期的实践应用已完全取得成功。 l 上、下双层腔体的独立密封 针对不同器件防护等级要求的不同、弱电控制电路与强电主电路相互隔离与屏蔽的要求以及功率器件散热的要求,将产品的整体结构分成上下双层腔体,实现相互间的隔离、屏蔽及独立密封;两层之间的连线通过防水端子密封。上、下双层密封腔体的构成见图1。

1.1 上层控制电路的封闭腔体的构成 中间隔板上层安装功率主电路板10,配电板11,控制板12;箱体1上底部安装防水端子13;箱体l的上口周边安装自夹紧式密封圈14;上盖板15与箱体1固定;这样箱体1上半部形成一个上层的密封腔体,能完全防水、防尘,能达到IP65的防护等级。 1.2 下层封闭腔体的构成 中间隔板下层安装有散热器2,风道板3、4,电抗器5,变压器6;箱体1下底部装有风机7;箱体l两侧面装有百叶窗8;下盖板16与箱体1固定;这样整个箱体1中间隔板下层就形成一个相对封闭的腔体;中间隔板与箱体周边、散热器与中间隔板贴合面周边涂上防水密封胶,电抗器、变压器都由环氧灌封,有效进行防水。整个腔体能达到IP54的防护等级。 2 转90度风道的构成 转90度风道的构成见图2。

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程 作者:科创论坛尤小翠 注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果 做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积 小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输 出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案. 一、高频前级(原理分析) 在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。一个好的前级是多么的重要,是确保足够功率输出的保证。 这就是前级电路图啦~ 电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).

当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出. 注:本图根据老矿石的作品修改 二、全硬件纯正弦后级(原理分析) 老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。我把它们融合了一下,得到了自己的电路。 这是后级的框图 本电路优点: 1.电路极简单,可能为世界上最简单的分立SPWM电路 2.单电源宽电压供电(10V-30V) 3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电. 4.隔离输出,受外围电路干扰少 本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了. 看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器. 再看驱动板电路图(红圈里的内容是修改过的部分):

怎样去选择好逆变器功率器件

怎样去选择好逆变器功率器件 逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(GTR),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等。在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET 具有较低的通态压降和较高的开关频率;在高压中容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT 在中容量系统中占有较大的优势;而在特大容量(100KVA以上)系统中,一般均采用GTO作为功率元件。 ⑴ 功率器件的分类: ① GTR电力晶体管(Giant Transistor): GTR功率晶体管即双极型晶体管(bipolar transistor),所谓双极型是指其电流由电子和空穴两种载流子形成的。一般采用达林顿复合结构。它的优点是:高电流密度和低饱和电压。它的缺点即MOSFET的优点(见下)。 ② MOSFET (Metal Oxide Semiconductor Field Effect Tyansistor) 功率场效应模块(金属氧化物场效应管):其优点是: η开关速度快:功率MOSFET又称VDMOS,是一种多子导电器件,参加导电的是多数载流子,没有少子存储现象,所以无固有存储时间,其开关速度仅取决于极间寄生电容,故开关时间极短(小于50-100ns),因而具有更高的工作频率(可达100KHz以上)。 η驱动功率小:功率MOSFET是一种电压型控制器件,即通断均由栅极电压控制。完全开通一个功率MOSFET仅需要10-20毫微秒库仑的电荷,例如一个1安培、10毫微秒宽的方波脉冲,完全开通一个功率MOSFET仅需要10毫微秒的时间。另外还需注意的是在特定的下降时间内关断器件无需负栅脉冲。由于栅极与器件主体是电隔离的,因此功率增益高,所需要的驱动功率很小,驱动电路简单。η安全工作区域(SOA)宽:功率MOSFET无二次击穿现象,因此其SOA较同功率的GTR双极性晶体管大,且更稳定耐用,工作可靠性高。 η过载能力强:功率MOSFET开启电压(阀值电压)一般为2-6v,因此具有很高的噪声容限和抗干扰能力。 η并联容易:功率MOSFET的通态电阻具有正稳定系数(即通态电阻随结温升高而增加),因而在多管并联时易于均流,对扩大整机容量有利。 η功率MOSFET具有较好的线性,且对温度不敏感。因此开环增益高,放大器级数相对可减少。 η器件参数一致性较好,批量生产离散率低。 功率MOSFET的缺点:导通电阻大,且随温度升高而增大。υ ⑵ 功率MOSFET的主要参数特性: ① 漏源击穿电压(V) V(BR)DSS :是在UGS =0时漏极和源极所能承受的最大电压,它是结温的正温度系数函数。 ② 漏极额定电流ID :ID 是流过漏极的最大的连续电流,它主要受器件工作温度的限制。一般生产厂家给出的漏极额定电流是器件外壳温度Tc=25℃时的值,所以在选择器件时要考虑充分的裕度,防止在器件温度升高时漏极额定电流降低而损坏器件。

逆变器的工作原理

逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。 通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成. 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4 只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、

单相光伏逆变器

小功率光伏并网逆变器控制的设计 摘要:阐述了一种小功率光伏并网逆变器的控制系统。该光伏并网逆变器由DC/DC变换器与DC/AC变换器两部分组成,其中DC/DC 变换器采用芯片SG3525来控制,DC/AC变换器采用数字信号处理器TMS320F240来控制。由于DSP实时处理能力极强,采用合适的算法能确保逆变电源的输出功率因数非常接近1,输出电流为正弦波形。该控制方案已经在实验室得到验证。 1 引言 21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。 2 系统工作原理及其控制方案 2.1 光伏并网逆变器电路原理

太阳能光伏并网逆变器的主电路原理图如图1所示。在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC 变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。 图1 电路原理框图 2.2 系统控制方案 图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC 变换器和后级的DC/AC逆变器组成。DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

基于TL494小功率逆变器设计

分类号:TM464 单位代码:10452 毕业论文(设计)基于TL494小功率逆变器设计 姓名王日健 学号201309920312 年级 2013 专业电气工程及其自动化 系(院)汽车学院 指导教师谢印忠 2015年4月1日

摘要 随着科学技术的进步,逆变技术得到了快速发展,逆变器是一种应用功率型的半导体器件,能够把直流电能转变成交流电能的一种变流设备,用于交流负载使用。因此,逆变技术在开发和运用的领域中有着十分重要的地位。 本设计思路是针对车载逆变器,系统地阐述了车载逆变器技术的产生背景,发展现状、设计过程及广泛应用。该逆变器的核心控制电路采用了芯片TL494CN,并且在电路中使用了高频变压器,极大地减少了该逆变器的成本及体积,逐步提高了逆变器的性能。整个逆变电路将输入的12V的直流电通过两次变频转变成220V/50Hz的交流电后输出,并且具有输入/输出过压保护,以及过热保护等功能。 关键词:车载逆变器;高频变压器; TL494CN

Abstract With the progress of science and technology, inverter technology has been rapid development. Inverter is a kind of application of power semiconductor devices, which can transform into a DC power converter equipment AC power for AC load use. Therefore, the inverter technology has a very important position in the field of development and application. This design is based on car inverter, systematically expounds the background of vehicle-mounted inverter technology,the current situation of the development, the design process and a wide range of applications. The core of the inverter control circuit adopted TL494CN chip, and the high frequency transformer is used in the circuit, greatly reduces the cost and volume of the inverter and gradually improve the performance of the inverter. The inverter circuit of the input 12 V DC by twice frequency conversion into 220 V / 50 Hz alternating current output, with the input/output overvoltage protection, and overheating protection function. Keywords: Vehicle-mounted inverter; High-frequency transformer; TL494CN

相关文档
最新文档