电磁学考试试题5答案

电磁学考试试题5答案
电磁学考试试题5答案

长沙理工大学考试试卷

试卷编号: 05 拟题教研室(或教师)签名: 教研室主任签名: 密 封 线 课程名称(含档次): 电 磁 学 课程代号: 专 业: 物理学 层次(本、专): 本科

考试方式(开、闭卷): 闭卷 一、选择题:(每题3分,共30分)

1. 关于电场强度定义式0q F E

=,下列说法中哪个是正确的? (A)场强E 的大小与试探电荷0q 的大小成反比。

(B)对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。

(C)试探电荷受力F 的方向就是场强E 的方向。

(D)若场中某点不放试探电荷0q ,则0=F ,从而0=E 。 [ ]

2. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <),所带电量分别为a Q 和b Q 。设某点与球心相距r ,当b a R r R <<时,该点的电场强度的大小为: (A)2041

r Q Q b a +πε。 (B)2041r Q Q b a -πε。 (C)???? ?

?+22041b b a R Q r Q πε。 (D)2041r Q a πε。 [ ] 3. 某电场的电力线分别情况如图所示,一负电荷从M 点移到N 点,有人根据这

个图作出下列几点结论,其中哪点是正确的?

(A)电场强度N M E E <。 (B)电势N M U U <。

(C)电势能N M W W <。 (D)电场力的功0>A [ ]

4. 一球形导体,带电量q ,置于一任意形状的空腔导体中。当用导线将两者连接后,则与未连接前相比系统的静电能将

(A)增大。 (B)减小。 (C)不变。 (D)如何变化无法确定。 [ ]

5. 在如图所示的电路中,电源的电动势分别为1ε、2ε和3ε,内阻分别为1r 、2r 和3r ,外电阻分别为1R 、2R 和3R ,电流分别为1I 、2I 和3I ,方向如图。在下列各式中哪个是正确的?

(A)()()033311113=+-++-r R I r R I εε

(B)0321=++I I I

(C)()()022221112=+-++-r R I r R I εε

(D)()()033322232=-+-+-r R I r R I εε [ ]

6. 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:

(A)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行。

(B)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行。

(C)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直。

(D)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直。 [ ]

7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分

别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P

的磁场能量与Q 的磁场能量的比值是:

(A)4; (B)2; (C)1; (D)1/2 [ ]

8. 用线圈的自感系数L 来表示载流线圈磁场能量的公式22

1LI W m = (A)只适用于无限长密绕螺线管。 (B)只适用于单匝圆线圈。

(C)只适用于一个匝数很多,且密绕的螺线环。

(D)适用于自感系数L 一定的任意线圈。 [ ]

9. 如图,M 、N 为水平内两根平行金属导轨,ab 与cd 为垂直于导轨

并可在其上自由滑动的两根直裸导线,外磁场垂直水平面向上。当

外力使ab 向右平移时,cd

(A)不动。 (B)转动。

(C)向左移动。 (D)向右移动。 [ ]

10. 磁介质有三种,用相对磁导率r μ表征它们各自的特性时,

(A)顺磁质0>r μ,抗磁质0>r μ。

(B)顺磁质1>r μ,抗磁质1=r μ,铁磁质1>>r μ。

(C)顺磁质1>r μ,抗磁质1>r μ。

(D)顺磁质0>r μ,抗磁质0r μ。 [ ]

二、填空题(共30分)

1. (5分)三个平行的“无限大”均匀带电平面,其电荷面密度都是σ+,则A 、B 、

C 、

D 四个区域的电场强度分别为:=A

E ,=B E ,=C E ,

=D E (设方向向右为正)

。 2.(3分)半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,则通过该半球面的电通量为 。

3.(3分)电介质在电容器中的作用是:(1) ,(2) 。

4.(3分)当电源 时,端电压大于电动势;当电源 时,端电压小于电动势;当电源既不充电,也不放电时,端电压等于电动势。

5.(5分)一面积为S ,载有电流I 的平面闭合线圈置于磁感应强度为B 的均匀磁场中,此线圈受到的最大磁力矩的大小为 ,此时通过线圈的磁通量为 ,当此线圈受到最小的磁力矩时通过线圈的磁通量为 。

6.(3分)若把氢原子的基态电子轨道看作是圆轨道,已知轨道半径m r 1010

53.0-?=,绕核运动速度大小s m v /1018.26?=,则氢原子基态电子在原子核处产生的磁感应强度的大小为 。

(C e 19106.1-?=,270/104A N -?=πμ)

7.(5分)金属杆AB 以匀速s m v /2=平行于长直载流导线运动,导线与AB 共面

且相互垂直,如图所示。已知导线载有电流A I 40=,则此金属杆中的感应电

动势=i ε ,电势较高端为 。

8.(3分)平行板电容器的电容C 为F μ20,两板上的电压变化率为

151050.1-??=s V dt dU ,则该平行板电容器中的位移电流为 。

三、计算题(共40分)

1. (10分)一平行板电容器极板面积为S ,间距为d ,接在电源上以保持电压为U 。将极板的距离拉开一倍,计算:

⑴ 静电能的改变; ⑵ 电场对电源作的功; ⑶ 外力对极板作的功。

2.(10分)球形电容器由半径为1R 的导体球和与它同心的导体球壳构成。壳的内

半径为2R ,其间有一层同心的均匀介质球壳,内外半径分别为a 和b ,介电常

数为r ε(见附图)。

⑴ 求电容C ;

⑵ 当内球的电荷量为Q 时,介质两表面的极化电荷密度e

σ'是多少? 3.(10分)如附图所示,两条无穷长的平行直导线相距为a 2,分别载有方向相同的

电流1I 和2I 。空间任一点P 到1I 的垂直距离为1x ,到2I 的垂直距离为2x ,求P

点的磁感应强度B 。

4.(10分)一电路如附图所示,1R 、2R 、L 和ε都已知,电源ε和线圈L 的内阻都

可略去不计。

⑴ 求K 接通后,a 、b 间的电压与时间的关系;

⑵ 在电流达到最后稳定值的情况下,求K 断开后a 、b 间的电压与时间

关系。

计算电磁学作业_二)

计算电磁学课程作业(二) 1. 电磁场的线性系统(满足标量亥姆霍兹方程的系统)与一般电 子线性系统有何异同点? 2. 试阐述格林函数对工程电磁场计算和求解的意义。 3. 任何源函数都可很方便地表示为基本函数(一般为函数)的线 性组合。任何波函数都可很方便地表示为基本函数(各种谐函 数)的线性组合。利用电磁场线性系统的函数和格林函数, 对于矢量磁位的亥姆霍兹方程: ,其在自由空间的解为 试写出两个有关矢量磁位的结论。 4. 对于无源区,电场、磁场、矢量磁位、标量电位、矢量电 位、标量磁位以及德拜位、赫兹矢量位等波函数,在时 域均可以写成矢量达朗伯方程的形式: 或标量达朗伯方程的形式。 对于矢量达朗伯方程,也常常只对标量达朗伯方程进行讨论和求解。这是因为:一方面矢量方程可以通过分离变量法后看做各个坐标分量标量方程的叠加;另一方面不同的波函数(平面波、柱面波、球面波)之间可以相互转换表达或相互展开表示(通过广义傅里叶变换)。 试写出无源区标量达朗伯方程的一个通解形式及其推导过程,并阐述通解的物理含义。 5. 类似地,在无源区,频域中波函数的波动方程可以表达为标量 亥姆霍兹方程(谐方程): () 其解在为谐函数(正弦函数、余弦函数、指数函数或柱谐函数、 球谐函数)。 电磁波在无限空间传播与存在的是连续谱;而电磁波在有限空 间传播与存在的是分立谱。试分别写出无源区的标量亥姆霍兹方程在直

角坐标、柱坐标和球坐标下的的一般解(通解)形式。 以下题目需提交作业: 6. 当矢量位为 (1),; (2),; 时,分别推导由矢量位计算电磁场各直角坐标和圆柱坐标分量的关系式,并且讨论其电磁场特点。 7. 对于TEM 波(横电磁波),标量电位函数满足拉普拉斯方 程:,即在横街面上具有静电场的行为特征,这种特征给电磁场 的数值计算带来很大的方便,试证明之。 电场E和磁场H满足此关系吗? TE波(横电波)和TM 波(横磁波)的情况如何呢? 8. 电磁场中的标量格林函数满足亥姆霍兹方程: 对于无界空间,标量格林函数是关于源点球对称的,标量格林函数对应的亥姆霍兹方程可以变化为: 其中。其通解为:,试将通解代入上式求出。注意到一般边值问题的特解是将通解代入到边界条件(时域还需知道初始条件)中得到的,此问题的另外一个边界在无限远。能不能利用索莫菲辐射条件求出?为什么? 下题选做: 9. 试说明准静态场的概念,并分别推导磁准静态场和电准静态场的场波动方程及其通过矢量磁位求解的过程。

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

电磁学第六次作业解答教学文案

电磁学第六次作业解 答

电磁学第六次作业解答 第八章 真空中的稳恒磁场 8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(0 =4×10-7 H ·m -1) 解:P 处的B 可以看作是两载流直导线所产生的,1B 与2 B 的方向相同. 21B B B += r I π=40μ+?--?)]90sin(60[sin r I π40μ)]60sin(90[sin ?--? r I π=420μ=?+?)60sin 90(sin 3.73×10-3 T 方向垂直纸面向上. 8-4 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B 的大小. 解:其中3/4圆环在D 处的场 )8/(301a I B μ= AB 段在D 处的磁感强度 )221 ()]4/([02?π=b I B μ BC 段在D 处的磁感强度 )221 ()]4/([03?π=b I B μ 1B 、2B 、3B 方向相同,可知D 处总的B 为 )223( 40b a I B + π π= μ 8-12 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度. 解:以O 为圆心,在线圈所在处作一半径为r 的圆.则在r 到r + d r 的圈数为 r R R N d 1 2- 由圆电流公式得 ) (2d d 120R R r r NI B -=μ ?= -= 2 1 ) (2d 12 0R R R R r r NI B μ1 2 120ln ) (2R R R R NI -μ D b A B C a I b O R 1 R 2 I r r P θ

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。 a 题4.1图

上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=00 22121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞ -=+∑ 题 4.2图

电磁学期末考试试题 2

电磁学期末考试 一、选择题。 1. 设源电荷与试探电荷分别为Q 、q ,则定义式q F E =对Q 、q 的要求为:[ C ] (A)二者必须是点电荷。 (B)Q 为任意电荷,q 必须为正电荷。 (C)Q 为任意电荷,q 是点电荷,且可正可负。 (D)Q 为任意电荷,q 必须是单位正点电荷。 2. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度:[ C ] (A)处处为零。 (B)不一定都为零。 (C)处处不为零。 (D)无法判定 3. 当一个带电体达到静电平衡时:[ D ] (A)表面上电荷密度较大处电势较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ A ] (A) R qQ 06πε,R qQ 06πε-。 (B) R qQ 04πε,R qQ 04πε-。 (C)R qQ 04πε- , R qQ 04πε。 (D)R qQ 06πε-,R qQ 06πε。 5. 相距为1r 的两个电子,在重力可忽略的情况下由静止开始运动到相距为2r ,从相距1r 到相距2r 期间,两电子系统的下列哪一个量是不变的:[ C ]

(A)动能总和; (B)电势能总和; (C)动量总和; (D)电相互作用力 6. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面。今以该圆周为边线,作一半球面s , 则通过s 面的磁通量的大小为: [ B ] (A)B r 2 2π。 (B)B r 2 π。 (C)0。 (D)无法确定的量。 7. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ A ] (A)位移电流是由变化电场产生的。 (B)位移电流是由线性变化磁场产生的。 (C)位移电流的热效应服从焦耳—楞次定律。 (D)位移电流的磁效应不服从安培环路定理。 8.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。问那个区域中有些点的磁感应强度可能为零:[ D ] A .仅在象限1 B .仅在象限2 C .仅在象限1、3 D .仅在象限2、4 9.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为:[ D ] A .P B >Q B >O B B .Q B >P B >O B C . Q B >O B >P B D .O B >Q B >P B

电磁学第八次作业解答

电磁学第八次作业解答 8-24 质子和电子以相同的速度垂直飞入磁感强度为B 的匀强磁场中,试求 质子轨道半径R 1与电子轨道半径R 2的比值. 解:洛伦兹力的大小 B q f v = 对质子: 1211/R m B q v v = 对电子: 2222/R m B q v v = ∵ 21q q = ∴ 2121//m m R R = 8-30 在xOy 平面内有一圆心在O 点的圆线圈,通以顺时针绕向的电流I 1另有一无限长直导线与y 轴重合,通以电流I 2,方向向上,如图所示.求此时圆线圈所受的磁力. 解:设圆半径为R ,选一微分元d l ,它所受磁力大小为 B l I F ?=d d 1 由于对称性,y 轴方向的合力为零。 ∴ θcos d d F F x = θθμθ c o s c o s 2 d 2 01R I R I π= θμd 22 10π= I I ∴ ?π==π 20 210d 2θμI I F F x 210I I μ= 8-32 一平面线圈由半径为0.2 m 的1/4圆弧和相互垂直的二直线组成,通以电流2 A ,把它放在磁感强度为0.5 T 的均匀磁 场中,求: (1) 线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2) 线圈平面与磁场成60°角时,线圈所受的磁力矩. 解:(1) 圆弧AC 所受的磁力:在均匀磁场中AC 电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有 F AC =283.02==RB I F AC N 方向:与AC 直线垂直,与OC 夹角45°,如图. (2) 磁力矩:线圈的磁矩为 n n IS p m 2102-?π== I 1 I 1 B ? F

电磁学作业及解答

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大 小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对? 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线, 其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平

外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时 的振动周期T . 6 电子在B =70×10-4 T 的匀强磁场中作圆周运动,圆周半径r =3.0cm .已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚1.0×10-3cm 的导体,沿长度 方向载有3.0A 的电流,当磁感应强度大小为B =1.5T 的磁场垂直地通过该导体时,产生1.0×10-5V 的横向电压.试求: (1) 载流子的漂移速度; (2) 每立方米的载流子数目. 8 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 图 9 如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 内没有电荷 B 、面S 内没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说法正确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ - P 3 I

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12 C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷 相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有 一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通 量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分 布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之 间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41επ=9.00×109 Nm 2 /C 2 ) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2 ,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2 .试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB R ,试求圆心O 点的场强. E ? q L d q O x z y a a a a A B R ? Ⅰ Ⅱ Ⅲ d b a 45?c E ? σA σB A B O a θ0 q A R ∞ ∞ O

电磁学第四章答案全

第四章 习题 2、平行板电容器(面积为S,间距为d)中间两层的厚度各为d 1与d 2(d 1+d 2=d),介电常数各为1ε与2ε的电介质。试求: (1)电容C;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D; 解:(1)这个电容器可瞧成就是厚度为d 1与d 2的两个电容器的串联: 1 2210212121d d S C C C C C εεεεε+=+= (2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电) 1 111011111εσεεεσ)(E )(P '-= -=-=?= 分界处第二层介质的极化电荷面密度: 21 222022211εσεεεσ)(E )(P n P '-- =--=-=?= 所以, 2 10 21211 εεσεεσσσ+-=+=)(' '' 若与d 1接触的金属板带负电,则2 10 21211 εεσεεσσσ+--=+=)(''' (3)2 10 122 1202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+= += (4)01101σεε==E D ,02202σεε==E D 4、平行板电容器两极板相距3、Ocm,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-?=σ,略去边缘效应,求: (1)极板间各处的P 、E 与D 的值; (2)极板间各处的电势(设正极板处00=U ); (3)画出E-x,D-x,U-x 曲线; 解:(1)由高斯定理利用对称性,可给出二极板内: 2111098m /c .D e -?==σ(各区域均相同), 在0与1之间01==P ,r ε,m /V D E 20 101?== ε

电磁学复习计算题(附答案)

《电磁学》计算题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d +q 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 =Ar (r ≤R ) , =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0 =8.85× 10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量 =8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L d q O x z y a a a a

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

电磁学第二版答案(DOC)

第一章静电场 §1.1 静电的基本现象和基本规律 思考题: 1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。 2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。 3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 7、两个点电荷带电2q 和q,相距l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为Q。若Q与q同号,则三者互相排斥,不可能达到平衡;故Q 只能与q异号。当Q在2q和q联线之外的任何地方,也不可能达到平衡。由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q到q的距离为x. 8、三个相同的点电荷放置在等边三角形的各顶点上。在此三角形的中心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零? 解:设所放电荷为Q,Q应与顶点上电荷q异号。中心Q所受合力总是为零,只需考虑q 受力平衡。 平衡与三角形边长无关,是不稳定平衡。 9、电量都是Q的两个点电荷相距为l,联线中点为O;有另一点电荷q,在联线的中垂面上距O为r处。(1)求q所受的力;(2)若q开始时是静止的,然后让它自己运动,它将如何运动?分别就q与Q同号和异号两种情况加以讨论。 解: (1) (2)q与Q同号时,F背离O点,q将沿两Q的中垂线加速地趋向无穷远处。 q与Q异号时,F指向O点,q将以O为中心作周期性振动,振幅为r . <讨论>:设q 是质量为m的粒子,粒子的加速度为 因此,在r<

电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、选择题(每小题2分,共20分) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 ( D ) (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C )任意矢量场可以由其旋度和边界条件唯一地确定; (D )任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) (A )ε ρ=??=??E H ,0 (B )H j E E j J H ωμωε-=??+=??, (C )0,=??=??E J H (D )ε ρ=??=??E H ,0 3.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( B ) (A )15° (B )30° (C )45° (D )60° 4. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ,并令A B ??=,其依据是 ( C ) ( A )0=?? B ; (B )J B μ=??; (C )0=??B ; (D )J B μ=??。 5 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )

(A) 如果高斯面内无电荷,则高斯面上E 处处为零; (B) 如果高斯面上E 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上E 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量x y D xe ye =+,则该区域的电荷体密度为 ( B ) ( A) 2ρε=- (B )2ρ= (C )2ρε= (D )2ρ=- 7.两个载流线圈之间存在互感,对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 .以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C )电场和磁场无关 (D )磁场是有源场 9. 两个相互平行的导体平板构成一个电容器,与电容无关的是 ( A ) (A )导体板上的电荷 (B )平板间的介质 (C )导体板的几何形状 (D )两个导体板的相对位置 10.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是 ( C ) (A )镜像电荷的位置是否与原电荷对称 (B )镜像电荷是否与原电荷等值异号 (C )待求区域内的电位函数所满足的方程与边界条件是否保持不变 (D )同时满足A 和B

电磁学练习题积累(含部分答案)

一.选择题(本大题15小题,每题2分) 第一章、第二章 1.在静电场中,下列说法中哪一个是正确的 [ ] (A)带正电荷的导体,其电位一定是正值 (B)等位面上各点的场强一定相等 (C)场强为零处,电位也一定为零 (D)场强相等处,电位梯度矢量一定相等 2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[] (A)通过封闭曲面的电通量仅是面内电荷提供的 (B) 封闭曲面上各点的场强是面内电荷激发的 (C) 应用高斯定理求得的场强仅是由面内电荷所激发的 (D) 应用高斯定理求得的场强仅是由面外电荷所激发的 3.关于静电场下列说法中正确的是 [ ] (A)电场和试探电荷同时存在和消失 (B)由E=F/q知道,电场强度与试探电荷成反比 (C)电场强度的存在与试探电荷无关 (D)电场是试探电荷和场源电荷共同产生的 4.下列几个说法中正确的是: [ ] (A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负, F为试验电荷所受的电场力 (D)以上说法全不对。 5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。已知介 质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电 场强度的大小为 [ ]

(A) 0εσ' (B) 02εσ' (C) 0εεσ' (D) ε σ' 6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、 E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同 (D) E 与P 方向一致,与D 方向相反 7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分 布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变 8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过 图中一半径为R 的半球面的电场强度通量为 [ ] (A) 2R E π;(B) 21 2 R E π; (C) 22R E π;(D ) 0。 9. 在静电场中,电力线为均匀分布的平行 直线的区域内,在电力线方向上任意两点的电场强度E 和电势U 相比较 [ ] (A) E 相同,U 不同 (B) E 不同,U 相同 (C) E 不同,U 不同 (D) E 相同,U 相同

电磁学试题大集合(含答案)

长沙理工大学考试试卷 一、选择题:(每题3分,共30分) 1. 关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则该面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。 [ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A)1P 和2P 两点的位置。 (B)1P 和2P 两点处的电场强度的大小和方向。 (C)试验电荷所带电荷的正负。 (D)试验电荷的电荷量。 [ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出: (A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U << (D)C B A E E E <<,C B A U U U >> [ ] 4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质, 则两种介质内: (A)场强不等,电位移相等。 (B)场强相等,电位移相等。 (C)场强相等,电位移不等。 (D)场强、电位移均不等。 [ ] 5. 图中,Ua-Ub 为: (A)IR -ε (B)ε+IR (C)IR +-ε (D)ε--IR [ ] 6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A) BI a 221 (B)BI a 234 1 (C)BI a 2 (D)0 [ ]

电磁学作业及解答

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿 磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的) (2)若存在电流,上述结论是否还对 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点

的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时的振动周期T . 6 电子在B =70×10-4 T 的匀强磁场中作圆周运动,圆周半径r =.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽,长,厚×10-3 cm 的导体,沿长度方向载有的电流,当磁 感应强度大小为B =的磁场垂直地通过该导体时,产生×10-5 V 的横向电压.试求: (1) 载流子的漂移速度; (2) 每立方米的载流子数目. 8 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 图 9 如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.

电磁场第四章习题测验解答

第四章习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 两边同乘以,并从0到对积分,得到 故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到 。上板和薄片保持电位 ,下板保持零电位,求板间电位的解。设在薄片平面上,从到,电位线性变化,。 解 应用叠 加原理,设板间的电位为 0U (,)x y ?(0,)(,)0y a y ??==(,0)0x ?=0(,)x b U ?=(,)x y ?1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑sin( )n x a πa x 002sin()d sinh()a n U n x A x a n b a a ππ==?0 2(1cos )sinh() U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =???=? ,0 1,3,5, 41(,)sinh()sin()sinh()n U n y n x x y n n b a a a ππ?π π== ∑ b d y =b y =)(∞<<-∞x 0U 0=y d y =0(0,)y U y d ?=(,)x y ?= 12(,)(,)x y x y ??+ 题4.1图 y o y bo y d y 题 4.2图

相关文档
最新文档