拉曼光谱的数据初步处理之欧阳歌谷创作

拉曼光谱的数据初步处理之欧阳歌谷创作
拉曼光谱的数据初步处理之欧阳歌谷创作

摘要

欧阳歌谷(2021.02.01)

本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。

文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。

总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。

关键词: 拉曼光谱仪光栅光谱分析

Abstract

Purpose of this paperisfamiliar withRamanSpectrometer, and mastery of experimental measurements ofRaman spectroscopyandRaman spectroscopytechniquespreliminarydataprocessing. The article firstdiscusses theRaman spectrometerdevelopment, design,installation and commissioningin theapplication of the basictheory,

designprinciples andkey technologies,laserRaman spectrometerdevelopments,research direction andoverall profileat home and abroad. The second section describesthe classical theoryof Ramanscatteringandquantumexplanation.And showsthe Ramanspectraofthe variouspossible ways, includingsmoothingand filtering.Againaccording tospectrometerdesign principlesdiscussed in detail thespectroscopicoptical systemdesignand laserRaman spectrometeroveralldesign, andthe choiceforthe role ofthe various componentsand the principle ofa detaileddescription. Finally, themeasuredRaman spectraof severalsamples, and use paper describesmethodsforspectralprocessinginitial treatment, and for a reasonableanalysis and comparison. In summary, this paper mainly fromtwoaspects to analyzeexperimental measurementsof Ramanspectroscopyand spectral dataprocessing research: First, the structure ofRaman spectroscopy, Raman spectroscopydetailed understanding ofthe working principle. Second,Raman spectroscopydata processing and analysis, a reasonableapproach toeffectiveand convenientRaman spectroscopycanbemore idealresults. Throughcarbon tetrachloride, ethanol, n-butanolandspectraldata analysisspectral measurementsobtainedmore satisfactoryexperimentalresultsdiscussed in this articledemonstratethe feasibility andcorrectness.

Keywords: Raman spectrometer grating spectral analys

目录

第1章引言1

1.1 拉曼光谱分析技术1

1.2 现代拉曼光谱技术与特点2

1.3研究拉曼光谱仪的意义2

1.4 本文的主要内容3

第2章基本理论4

2.1拉曼散射经典解释[8]4

2.2拉曼散射的量子解释6

2.2.1散射过程的量子跃迁6

2.2.2量子力学结果7

2.2.3 Placzek近似12

2.3拉曼光谱数据分析方法15

2.3.1数据平滑处理16

2.3.2基线校正18

2.3.3数据求导处理18

2.3.4数据增强算法18

2.3.5傅里叶变换19

2.3.6小波变换19

2.3.7 数字滤波20

第3章常规拉曼检测系统22

3.1 光源22

3.2 滤光片24

3.3 拉曼光谱仪及计算机软件25

3.3.1光栅26

3.3.2光电倍增管28

第4章拉曼光谱测量及数据处理和结论30

4.1 物质的拉曼光谱测量30

4.2拉曼光谱数据处理与分析33

4.2.1平滑处理33

4.2.2 低通滤波处理36

4.3结论38

第5章论文总结与展望39

致谢:40

参考文献:41

第1章引言

1.1 拉曼光谱分析技术

1928年印度实验物理学家拉曼发现了光的一种类似于康普顿效应的光散射效应,称为拉曼效应。简单地说就是光通过介质时由于入射光与分子运动之间相互作用而引起的光频率改变。拉曼因此获得1930年的诺贝尔物理学奖,成为第一个获得这一奖项并且没有接受过西方教育的亚洲人[1]

拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为)两侧对称地伴有频率为 (k=1,2,3,?)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线:频率差与入射光频率无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致[2]。

拉曼光谱即拉曼散射的光谱。靠近瑞利散射线两侧的谱线称为小拉曼光谱:远离瑞利散射线的两侧出现的谱线称为大拉曼光谱。拉曼散射的强度比瑞利散射要弱得多。瑞利散射线的强度只有入射光强度的千分之一,拉曼光谱强度大约只有瑞利线的千分之一。与入射光频率相同的成分称为瑞利散射,频率对称分布在两侧的谱线或谱带称为拉曼散射。拉曼光谱的理论解释是:入射光子与分子发生非弹性散射,分子吸收频率为的光子,发射的光子,同时分子从低能态跃迁到高能态(斯托克斯线):分子吸收频率为的光子,发射的光子,同时分子从高能态跃迁到低能态(反斯托克斯线)与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱[3]。

拉曼光谱为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一个分支。用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。但拉曼光谱本身有一定的局限性,比如拉曼散射的强度较弱,对样品进行拉曼散射研究时有强大的荧光及瑞利散射干扰等等。因此它在相当长一段时间里未真正成为一种有实际应用价值的工具,直到激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。激光使拉曼光谱获得了新生,因为激光的高强度极大地提高了包含双光子过程的拉曼光谱分辨率和实用性。此外强激光引起的非线性效应导致了新的拉曼散射现象。为了进一步提高拉曼散射的强度,人们先后发展了傅立叶变换拉曼光谱、表面增强拉曼光谱、超位拉曼光谱、共振拉曼光谱、时间分辨拉曼光谱等新技术,使光谱仪的效率和灵敏度得到更大的提高。目前拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于定性分析、高度定量分析和测定分子结构都有很大价值。

随着拉曼光谱学研究的深入,拉曼光谱的应用必将愈来愈广泛[4]。

1.2现代拉曼光谱技术与特点

30年代拉曼光谱曾是研究分子结构的主要手段,此时的拉曼光谱仪是以汞弧灯为光源,物质产生的拉曼散射谱线极其微弱,因此应用受到限制,尤其是红外光谱的出现,使得拉曼光谱在分子结构分析中的地位一落千丈。直至60年代激光光源的问世,以及光电信号转换器件的发展才给拉曼光谱带来新的转机。世界上各大仪器厂家相继推出了激光拉曼光谱仪,此时拉曼光谱的应用领域不断拓宽。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以来,随着科学技术的飞速发展,激光拉曼光谱仪在性能方面日臻完善,如:美国Spex公司和英国Reinshow公司相继推出了拉曼探针共焦激光拉曼光谱仪,低功率的激光光源的使用使激光器的使用寿命大大延长,共焦显微拉曼的引入可以进行类似生物切片的激光拉曼扫描,从而得出样品在不同深度时的拉曼光谱。EG&G Dilor公司推出多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。90年代初,由于社会生产活动的需要,人们又探索出多项技术并应用于拉曼光谱仪中,使小型便携式拉曼光谱仪出现并不断发展起来成为可能。这些技术包括:引进光纤对远距离或危险的样品进行测量;用声光调制器代替光栅作为分光元件测量拉曼光谱;利用全息带阻滤光片滤除瑞利散射的干扰;研制开发出便携激光器等[5][6]。

1.3研究拉曼光谱仪的意义

由于拉曼光谱具有制样简单、水的干扰少、拉曼光谱分辨率较高等特点,故其可以广泛应用于有机物、无机物以及生物样品的应用分析中。拉曼光谱技术己广泛应用于医药、文物、宝石鉴定和法庭科学等领域。对文物样品的无损分析研究。使文物的鉴定、年代的测定及文物的恢复和保存的方法更安全可靠;对爆炸物、毒品、墨迹等的痕迹无损检测为法庭提供科学证据的有力手段:对宝石的光谱分析研究对认识各地宝石中的包含物差异性。并使宝石的鉴别与评价有了科学依据。近年来该技术在细胞和组织的癌变方面的检测也取得了很大的进展,随着分析方法完善和研究病例的增多以及对于病变组织差异性的规律性认识深化。拉曼光谱发展成诊断肿瘤方法的可行性将得到确认.总之,随着激光技术的发展和检测装置的改进。拉曼光谱技术在当代工业生产和科学研究中必将得到越来越广泛的应用[7]。

1.4 本文的主要内容

本文主要论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。

阐述了拉曼散射原理及其量子解释。以具体说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等方法的使用。根据光谱仪器设计原理详细论述了分光计光学系统的结构设计、激光拉曼光谱仪的总体设计。并且对各个部件的选择作用及原理分析,做了详细的描述。最后,测量了几种样品的拉曼光谱,并对光谱利用文中阐述的光谱分析方法进行分析对比,并且进行了合理的分析。

拉曼光谱仪的实验测量和光谱数据处理研究主要从两个方面来分析:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法分析拉曼光谱可以有效便捷的得到较为理想的实验结果。

通过对四氯化碳、乙醇、正丁醇的测量光谱以及光谱数据分析,得到较为理想实验效果,证明本文所论述方法的可行性和正确性。

第2章基本理论

当一束频率为的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散射中频率减少的称为斯托克斯散射,频率增加的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常测定的大多是斯托克斯散射,也统称为拉曼散射。

散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。

2.1拉曼散射经典解释[8]

光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激光光波波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。

角频率为的光入射到一个分子上,可以感应产生电偶极矩。一级近似下,所产生的感应电偶极矩P与入射光波电场E的关系可表达为下式:

P=A·E 式中,A是一个二阶张量,通常称A为极化率张量。

如果角频率为的入射光波只感生振荡角频率为叫的感应电偶极矩,该感生电偶极矩会辐射出与入射光角频率相同的散射光,也就是瑞利散射。但若考虑到分子内部本身有振动和转动,各有其特征频率,导致激发光每个周期所遇的分子振动和转动相位不同,相应的极化率也不同,分子的感生偶极发射受自身振动和转动频率调制,会辐射出异于入射光频率的散射光,其中波长比瑞利光长的拉曼光叫斯托克斯线,比瑞利光短的叫反斯托克斯线。

考虑分子中的原子由于热运动而在平衡位置附近振动,那么,P=A·E可以写作:同理:(2-1)

可知,其中是极化率A的E分量。

(2-1)式中的x,y,z是固定在分子上的坐标系的三个坐标轴,由于假设没有转动,这个坐标系也是固定在空间上的。是和P与E的方向无关的常数,也就是分子极化率张量A的分量。可以知道:。

一般情况下,当各个原子核从其平衡位置有一位移时,极化率的六个分量中的每个分量都会发生改变。对于小位移的情形,可以把展开并保留到一级项

(2-2)

式中( )0表示分子处于平衡状态时物理量的值,,是引入的振动简正坐标,求和遍及全部简正坐标。

由于考虑的是分子内部振动小位移的情况,振动可近似为简谐,于是得:

(2-3)

其中表示振动的幅度,,表示振动的频率和初相位。

又,(2-4)

将(2-2)(2-3)(2-4)代入(2-1),得:

(2-5)

同理,对于Py,PZ也能得到类似的式子。

综上所述,感生偶极矩的振动情况如下:(1)以入射辐射的频率振动,结果也就是瑞利(Rayleigh)散射;(2)以频率振动,结果也就是拉曼散射,频率为的散射光是斯托克斯线,频率为的散射光是反斯托克斯线。

从(2-5)式还可以断言,不同分子间瑞利散射光彼此之间是相干的。而因为公式中含

的项只是纯粹的叠加而没有交叉项,所以对于多分子体系,其拉曼散射总强度是各个分子拉曼散射强度的代数和,拉曼散射光不相干。

2.2拉曼散射的量子解释

2.2.1散射过程的量子跃迁

图2-1 瑞利、拉曼散射过程中的量子跃迁

拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等问题。图2-1给出散射过程量子跃迁的三能级图,其中、分别表示激光入射光

拉曼散射

2

1

2

1

2

1

(弹性)瑞利反射斯托克斯散射斯托克斯散射

子的频率和波矢,、分别表示散射光子的频率和波矢,ωq和q分别表示散射过程中伴随产生或湮没的元激发的频率和波矢。在入射光(量)子被吸收后,使电子和晶格振动从初态(,nq)跃迁到一个虚中间态;随即辐射出散射光子(,)由中间虚态回到终态,与此同时,产生(或淹没)了一个频率为ωq而波矢为q元激发。

2.2.2量子力学结果

核与电子组成的系统遵从的薛定谔方程为

(2-6)

式中r代表各粒子的所有坐标,它的通解为

(2-7)

对不含时薛定谔方程的本征值和本征值函数分别是和,对k态,即k=(e,n),e和n分别是电子量子数及核量子数集合。对于,r≠k、=0和=1,其通解为

(2-8)

因系统受到的微扰来自于光波电磁场,而光波波长远大于原子间距。显然,这些理论对可见光、紫外、红外光都是正确的。对X射线的结论则不适用。

为了简单起见,先不考虑共振现象,则光波电磁场可以写成如下的形式:

(2-9)

式中A是复振幅,则光波场与系统的微扰互作用能为

而,即系统中的电子偶极矩。此时微扰系统的薛定谔方程为

(2-10)

若k态中未受微扰的系统由

所描述,则(2-10)方程的微扰解为

(2-11)

将(2-11)式代入(2-10)方程中,略去的二次项,再由(2-6)方程得以下方程:

(2-12)

对(2-12)做求解处理,取

(2-13)

式中

,(2-14)

,(2-15)

受到微扰系统的矩阵元为

(2-16)

由(2-11)到(2-16)式可得

(2-17)

式中的和分别为

(2-18)

(2-19)

又因为=,对k=m的条件可得

(2-20)

式中

是实的,它是k态中偶极子动量的期待值,且与入射辐射有相同的时间关系。因此,偶极子辐射的强度仍有以下的经典表示式:

(2-21)

由(2-20)式可得

(2-22)(2-21)式给出了(偶)极矩为的偶极子的瑞利散射光强。需特别注意的是:与相反,

是复的。要找出与(2-17)式中个别真实偶极子经典辐射相关联的情况,必须用

到克莱因(Klein)的结果:

若,即, 初态能量小于末态能量,k、m别为初、末态,则

分量的辐射发射为零,就等价于真实偶极子的经典辐射,则有

若,即, 初态能量小于末态能量,k, m分别为初、末态。为了能应用(2-17)式,必先考虑构成真实偶极子的情况,即

(2-23)

与(2-11)式相同,散射光光强由下式决定:

(2-24)

在对时间取平均时消去交叉项后有

(2-25)

由辐射发射的原理知:仅对,和的条件下才能产生辐射,下面对(2-25)中各项的意义作以讨论。

表示式(2-25)中的的第一项初态能量(),大于末态能量

()。它描述了与外来激光频率无关的伴随k→m跃迁的自发辐射,见图2-

1(a)。(2-25)式中的第二项是正常拉曼散射,即。末态(m)的能量比始态(k)的能量大,也可以比它小:

(1)>末态能量大于始态能量;散射辐射能量小于激光(单)光子能量,

即这对应于斯托克斯过程。

(2)<态能量小于始态能量;散射辐射能量大于激光(单)光子能量,即

这对应于反斯托克斯过程。需要指出的是:光谱仪所接收到的信号是,见图(2-2)(b)。

(2-25)式中的第三项表示伴有两个量子感应发射,即k→m的跃迁。这类发射只有在受激粒子数剧增时才能被观测到。图(2-2)(c)给出了这一过程的量子跃迁,特别注意激光器的能量与初末能态相应能级的关系。

图2-2斯托克斯跃迁(<),,和是跃迁过程中的中间能级 与正常拉曼效应相关的第二项系数

由(2-18)式确定,其中跃迁矩的求和是从初态k 到所有未受微扰系统的r 态及跃迁矩从r 态回到末态m 的求和。并不是说真实的散射过程中存在如上的跃迁过程,完全是因为考虑到数学上处理微扰问题的需要,即受到微扰系统的波函数完全用未受到微扰波函数来表示,也就是在的表示中包括了矩跃迁和的积,而不是单独的某一个跃迁矩。跃迁矩既可以是正的,也可以是负的;既属于不同的态r ,也可以附加在另一个态上。当它们所处的态被湮没为另一个使

变为零的态时,就不能产生拉曼散射,常称之为拉曼散射的禁戒条件。

在对(2-18)式的求和中,不仅包括了初态k 之上的中间态r ,也包括了低于k 态的任何r 态。因为中间态是在吸收了入射光子后产生的高于初态的激发态,所以(2-18)式求和过程中包含的低于初态k 的概念显然是不合适的。还应强调的是:确定自发初末态间跃迁概率的跃迁矩并没有全部写入的表达式。因此,自发辐射(或吸收)与拉曼散射强度间无直接的联系,它们的选择规律也全然不同。

由上述的讨论可知:整个空间4兀立体角内拉曼散射强度为

(2-26)

对于k=m ,就是瑞利散射强度。

的分量可以写成如下的形式:

(2-27) 式中

代表Portor 表示中入、散射的偏振方向,式(2-27)中

(2-28)

中间态r

中间态r

k 到m 的反斯托克斯跃迁 伴有两个量子感应发射

(2-28)式就是散射张量,通常它是复数,而且是非对称的张量。对于k=m,则有

(2-29)

(2-30)

因此,若是实的,则它是对称的,该结论不仅对=0的静电场微扰是正确的,而且对哈密顿量为实的系统也是适用的。若不再考虑(2-20)式中的永久偶极矩,而利用在(2-9)式中的系数关系,再从(2-20)式可得矩阵元表示式,为

(2-31)式中是实的,就是k态的电极化率,将(2-27)式代入(2—26)式中有

(2-32)

再用,是入射光偏振方向的单位失,而入射光光强为,则有

(2-33)

式中被定义为k m跃迁的拉曼跃迁截面。的

量纲是,和的单位分别是erg*/s和erg。

若入射光沿方向偏振,在沿方向用分析检测器观察散射光,则单位立体角中散射强度为

(2-34)

用直接从(2-31)到(2-33)式计算散射强度只有在简单系统(如谐振子、自由电子、和某些简单原子)中是可行的。对于分子、晶体及复杂能级系统中,(2-28)式中出现的受激中间态r都无法进行直接的计算。Plaezek’s近似为直接计算一般结果提供了新的途径[9][10]。

2.2.3 Placzek近似

首先考虑电子态不发生变化的散射过程,即初、末态是相同的基态。该情况中,仅是振动态发生了变化,而且满足能量守恒条件,即。因为光散射是由于系统中的电子引起的,光能转移到各个核上,反之亦然,通过核和电子运动间的耦合可以产生

拉曼散射效应。

假设电子的基态是非简并的,而且原子核被固定在仅产生瑞利(辐)散射的位置,则散射光的强度由电极化率张量确定,(2-31)式下标中的k=0表示电子的基态。电子的极化率是实的,而且具有对称性:在(2-29)式中,对具有固定核系的本征频率和本征函数影不仅取决于核的位置,而且也取决于电子极化率,该分量是核组态R的函数,即)。在以下的假设中,认为振动着的核系统中散射强度是一样的。

Plaezek假设有以下三点内容:

1.电予的基态必须是非简并的;

2.绝热近似必须是有效的;

3.激发光源的频率必须小于任何一电子的跃迁频率,但远大于振动的频率,即

若具有振动核系统从态跃迁到态,其中O表示电子的基态而、是振动态。根据近似条件,可认为矩阵元是由电子极化率分量矩阵元

所确定,也就是由下式表示:

(2-35)

式中是电子基态O和振动态的振动波函数。将(2-35)式代入(2-34)式,而且略去下指标O,就可以得到伴随振动跃迁光散射强度的表示式为

(2-36)

式中的、分别是两个振动态确定的布局数即和,而由下式确定:

(2-37)

式中的q式简正坐标的脚码,表示可能出现的声子振动频率的个数。

在Placzck近似条件下由n态跃迁到态的拉曼散射的光强还需做进一步的讨论。

若入射光沿着方向偏振,沿方向观测散射光,则按(2-34)式可得到单位立体角内散射光强,为

(2-38)

因为极化率取决于核的配置R,所以可以将极化率按简正坐标展成以下的级数:

(2-39)

这是所有量子数假设不变伴有跃迁的极化率矩阵元。若略去式中的正比项,则有

(2-40)

若、,则有,这是瑞利散射。由(2-38)式知可以得到它的散射光强,为

(2-41)

因为在式(2-40)中略去了(2-39)式中的二次项,所以瑞利散射光强与温度T无关。

以下讨论拉曼散射光强:对第一级拉曼散射有,而斯托克斯散射有。由此可得

(2-42)

对于反斯托克斯散射有,由此可得

(2-43)

由(2-38)、(2-42)和(2-43)式可得拉曼散射强度表示式。由(2-37)式可知:对斯托克斯和反斯托克斯散射分布有和相应于这两个散射的光强分别为

(2-44)

(2-45)

式中的是某一元激发q的平均布居数,若元激发是(热)声子,则它满足玻色一爱因斯坦分布即

(2-46)

图2-3给出了声子平均布居数随温度增加而变化的情况:由于温度升高,处于较高能级的布居数也随之增加,分布状况发生了变化,使可能参与跃迁的声子“种类”有所增加,也就是拉曼谱峰中峰的数目增加,由原来的两种,增加到四种。在小于100K的低温区,仅实现了()的声子,随着温度增加又激发了

(),()和(),三种声子且

图2-3 玻色.爱因斯坦分布得出的平均布居数随温度的变化

图2-3是低、高温能级布居数变化情况的示意。拉曼散射光强与受激后跃迁的元激发数成正比,因此可以得出以下结论:。这就是拉曼谱中振动“热带”产生的原因。由(2-46)式可得出参与热激发的声子数,为

(2-47)

较高温度下,“热”声子数几乎与温度成正比(图2-3)。由(2-44)和(2-45)式有

(2-48)

解决了经典电磁理论在解释斯托克斯与反斯托克斯散射光强比时的困难[11][12]。

2.3拉曼光谱数据分析方法

光谱分析技术的数据处理主要涉及两个方面的内容:一是光谱预处理方法的研究,目的是针对特定的样品体系,通过对光谱的适当处理,减弱和消除各种非目标因素对光谱的影响,净化谱图信息,为校正模型的建立和未知样品组成或性质的预测奠定基础;二光谱定性和定量方法的研究,目的在于建立稳定、可靠的定性或定量分析模型,并最终确定未知样品和对其定量[13][14]。

MATLAB是Mathworks公司开发的一种主要用于数值计算及可视化图形处理的高级计算语言。它将数值分析、矩阵计算、图形、图象处理和仿真等诸多功能集成在一个极易使用的交互式环境之中,为科学研究、工程设计及数据处理和数值计算提供了一种高效率的编程工具”。在这种编程环境下,任何复杂的计算问题及其解的描述均符合人们的科学思维方式和数学表达习惯,而不像Fortran、Basic、C等高级程序设计语言那样难以学习和掌握。MATLAB允许用户根据数值计算的复杂程度,对问题进行分段甚至逐句编程处理,显然,这是与C、Fortran等传统高级语言完全不同的。此外,用MATLAB求解问题一般不需要用户考虑采用何种算法以及怎样具体实现等低层问题,更不必深入了解相应算法的具体细节,因而对用户算法语言方面的要求比较低。

仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,有些情

况下还非常严重,从而影响校正模型的建立和对未知样品组成或性质的预测。因此,光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有光谱数据的平滑、基线校正、求导、归一化处理等。

2.3.1数据平滑处理

数据平滑处理:信号平滑是消除噪声最常用的一种方法,其基本假设是光谱含有的噪声为零均随机白噪声,若多次测量取平均值可降低噪声提高信噪比。平滑处理常用方法有邻近点比较法、移动平均法、指数平均法等

[13][14][15]。

(1)邻近点比较法

对于许多干扰性的脉冲信号,将每一个数据点和它旁边邻近的数据点的值进行比较可以测得其存在。如果与邻近点的数值相差太大,超过给定的阈值,便可认为该数据是一个脉冲干扰,并通过邻近数据点的平均值来取代这一数据点值,就可以把这一干扰脉冲去掉,这样不影响信号的其它部分。在这一数据点处理过程中,需注意选择调节参数,也就是考虑邻近数据点值,以及判断一个数据点和邻近数据点之间不同的阈值。这个阈值一般定义为噪音测量偏差的倍数,以免把必要的有用信号去掉。这一方法有时也称为邻近点平滑法,也叫做单点平滑法。

(2)移动平均法

由于平滑是通过对信号进行平均而减小噪音,因而多点平滑效果更好。移动平均法是多点平滑中最简单的一种。先选择在数据序列中相邻的奇数个数据点,这奇数个数据点即构成一个窗口。计算在窗口内奇数个数据点的平均值,然后用求得的平均值代替奇数个数据点中的中心数据点的数据值,这样我们就得到了数据平滑后的一个新的数据点。接着去掉窗口内的第一个数据点,并添加上紧接着窗口的下一个数据点,形成移动后的一个新窗口,其中的总数据个数不变。同样地,用窗口内的奇数个数据点求平均值,并用它来代替窗口中心的一个数据点.如此移动并平均直到最后。

在matlab中可以调用的平滑函数一般为:

yy = smooth(y,span,method)yy = smooth(y,'sgolay',degree)

其中平滑的方法有:'moving'、'lowess'、'loess'、'sgolay'、'rlowess'、'rloess'。可以设置不同的span步长来改变平滑的效果。本次实验处理数据使用的平滑法就是移动平均法。或y = medfilt1(x,n)中值平滑方法可以通过改变n来得到不同的平滑效果。

(3)指数平均法

指数平均法是计算在一个具有m个数据点的移动窗口中的各数据点的加权平均.在窗口的最后一个点p1即为要平滑的点,它的权重最大,而前面的每个点分配到的权重依次递减。权重系数由平滑时间常数为T的指数函数e-ji(j标志i前面第j个点,即j=-(m-1),-(m-2)...-1,0(要平滑的点i的j=0)的形状来决定。p1后点的权重为0,这一过滤函数是用点i前面的点对第i个数据点进行平滑。这一过程和用电子RC滤波器(阻容滤波器)的实时平滑类似。由于该平滑函数是不对称的,故在平滑后的数据中引入了单向失真,这一点也和实时RC滤波器一样。除了获得期望的信噪比降低外,指数平均的结果是峰的最大值下降,同时发生移动。由于用平滑常数T对峰值进行指数平滑和具有时间常数Tx=T的仪器测量该峰的效果相同,因此T和峰宽比值函数的强度下降值从实验测量和理论计算都可得到[15]。

2.3.2基线校正

由于仪器背景、样品粒度和其它因素的影响,近红外分析中常常出现基线漂移和倾斜现象。采用基线校正可有效地消除这些影响。操作时可选用峰谷点扯平、偏移扣减、微分处理和基线倾斜等方法,其中最常用的是一阶微分和二阶微分,但在微分处理时,要注意微分级数和微分数据点的选择。

2.3.3数据求导处理

近红外分析中,对于样品不同组分之间的相互干扰导致吸收光谱谱线重叠的现象,可采用求导的方法进行处理。其中常用的是一阶导数和二阶导数。

一阶导数表示为:yi′=yi+g-yi-g

二阶导数表示为:yi″=yi+2g-2yi+yi-2g

式中:g为光谱间隔,大小可视具体情况设定。对光谱求导一般有两种方法:直接差分法和SavitzkyGolay求导法。对于分辨率高、波长采样点多的光谱,直接差分法求取的导数光谱与实际相差不大,但对于稀疏波长采样点的光

谱,该方法所求的导数则存有较大误差,这时可采用SavitzkyGolay卷积求导法计算。

导数光谱可有效地消除基线和其它背景的干扰,分辨重叠峰,提高分辨率和灵敏度。但它同时会引入噪声,降低信噪比。在使用时,差分宽度的选择是十分重要的:如果差分宽度太小,噪声会很大,影响所建分析模型的质量;如果差分宽度太大,平滑过度,会失去大量的细节信息。可通过差分宽度与校正标准偏差(SEP)或预测标准偏差(SEC)作图来选取最佳值,一般认为差分宽度不应超过光谱吸收峰半峰宽的1.5倍。

2.3.4数据增强算法

在使用多元校正方法建立近红外光谱分析模型时,将光谱的变动(而非光谱的绝对量)与待测性质或组成的变动进行关联。基于以上特点,在建立NIR定量或定性模型前,往往采用一些数据增强算法来消除多余信息,增加样品间的差异,从而提高模型的稳健性和预测能力。常用的算法有均值中心化、标准化和归一化等,其中均值中心化和标准化是最常用的两种方法,在用这两种方法对光谱数据进行处理的同时,往往对性质或组成数据也进行同样的变换。

用于消除光程变化或样品稀释等变化对光谱产生的影响。有三种光谱归一化方法:最小/最大归一化、矢量归一化、回零校正。其中常用的是矢量归一化,它是先计算出光谱的y平均值,再用光谱减去该平均值,这样光谱的中值为零,计算所有的y值的平方和,然后用光谱除以该平方和的平方根,结果光谱的矢量归一化是1。回零校正是将光谱减去最小的y值,使得最小y值变为0。

2.3.5傅里叶变换

傅里叶变换FT是一种十分重要的信号处理技术,它能够实现频域函数与时域函数之间的转换,其实质是把原光谱分解成许多不同频率的正弦波的叠加和。根据需要可通过FT对原始光谱数据进行平滑、插值、滤波、拟合及提高分辨率等运算,或用FT频率谱即权系数(傅里叶系数)直接参与模型的建立。在光谱分析中,傅立叶变换可用来对光谱进行平滑去噪、数据压缩以及信息的提取。

在matlab中,傅里叶变化的调用函数为:

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

激光显微共焦拉曼光谱系统 附件一

激光显微共焦拉曼光谱系统附件一 一.货物需求: 显微共焦拉曼光谱仪系统一套。 二.详细技术参数: 系统的主要技术指标: 1) 250mm焦长,系统总通光效率大于30%。 2)波长范围:200nm—1050nm。 3)光谱扫描范围: 325nm 激发Raman(200-4000cm-1),532nm 激发15–8000 cm-1,632.8nm 激发100-6000 cm-1,785nm 激发15-3200cm-1,1064nm激发100-3200 cm-1。 4)光谱分辨率:可见全谱段等于或小于1cm-1, 紫外(325nm)段<3cm-1,红外(1064nm)段<3cm-1。 5)光谱重复性(测量多少次50次):≤±0.15cm-1。 6)空间分辨率:横向< 0.5微米,光轴方向< 2微米。 7)灵敏度:硅三阶峰信噪比好于 15: 1,并可见四阶峰;(指光谱仪无低波数附件时的灵敏度)。 8)低波数:小于或等于15cm-1(785nm激发),15cm-1(532nm激发); 9) CCD探测器:应使用紫外和近红外同时增强深耗散层型CCD探测器,优质芯片,半导体制冷到-70oC,为确保图像质量,避免边缘畸变,芯片尺寸应 < 13×8.5mm,像元尺寸22 m。 10)第二探测器组件(InGaAs探测器):0.9 um~1.65 um,包含软件包,液氮或半导体制冷。 11)光源及控制系统:632.8nm,≥17毫瓦;785nm, ≥275毫瓦;514.5nm,≥40毫瓦,325nm激光器30毫瓦。 12)可导入脉冲激光光源(405nm)进行瞬态测量,信号光可引入TCSPC,提供TCSPC探测器接口,(需考虑放滤光片位置)。 包含附件: 1.直接二维拉曼成像功能(532/785 nm激发)。 2.大面积快速扫描拉曼成像功能。 3.三维拉曼成像功能。 3.冷热台及控制器(-195 o C to +600 o C) 4.冷热台及控制器(室温 to +1500 o C) 5.催化反应拉曼原位池(室温 to +1000 o C) 6.TCSPC系统 7.自动xyz三维平台。 8.拉曼偏振测量附件。 系统的详细技术规格: 一、显微镜:研究级正置徕卡显微镜。 1、原配物镜:5×、20×、50×和100×物镜,15×和40×紫外物镜. 2、配置50x长焦物镜(WD8.1 mm)和100x长焦物镜(WD3.4mm) 3、彩色摄像头, 4、XY 手动样品台

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

三光谱头皮检测系统使用说明

人工智能头皮AI系统 使用说明 注:在操作之前请仔细阅读本手册

一.简介 三光谱头皮AI 系统由多光谱冷光照明系统、光学放大系统、影像传感器、DSP 处理器、控制系统、电源系统、信号处理传输系统等组成,再搭配计算机和头皮AI 软件处理系统,实现图像采集、图像处理、自动分析检测、产品推荐、客户管理等各项功能。 根据检测需求,控制系统通过控制照明系统选择发出不同光谱,经光学系统放大滤波处理后,由影像采集芯片接收光信号,经影像采集芯片转换成数字光电信号,该光电信号传递给 DSP 处理器进一步进行处理和编码,形成上位机需求的标准USB 信号。该USB 信号通过USB 接口传输到计算机,由软件系统接收,通过运算、解码、数据处理形成实时的视频图像,最后由软件处理系统进行数据检测和数据分析,进而根据检测结果进行产品推荐。同时该软件处理系统还具有客户管理,云端数据处理等其他功能。 二 .仪器介绍 一体机正面 一体机背面 18.5寸宽屏显示器 头皮AI 系统 折叠底座 三光谱手柄 手柄托架 USB 数据连接线

三光谱头皮检测手柄 70X 光学镜头 手柄logo 三光谱手柄 光源指示灯 自动/拍照键 光源切换键

四.三光谱检测仪原理说明 三光谱检测仪它是通过标准白光、交叉偏振光、UV光这三个光谱对皮肤或头皮的表层、真皮层、毛囊、毛孔进行扫描检测。特别是UV光用于毛囊检测时可准确判断毛囊底层程度。 ●标准白光:通过放大局部头皮,观察头皮的纹理,皮沟和皮脊的分布特点,角质的代谢, 头皮的油性,以及对照鉴别各种头皮病态的特征。还可通过放大局部毛发,观察毛发的生长和分布特征,毛发的密集度和直径等情况。 标准白光检测原理:控制系统通过控制光学系统选择发出标准白光光谱,经光学系统放大滤波处理后,由影像采集芯片接收光信号过DSP 处理输出标准USB 信号,形成实时的表皮层视频图像。最后由软件处理系统进行数据检测和数据分析。 ●交叉偏振光:用于观察头皮真皮层的局部炎症表现,毛细血管扩张情况,血液渗出情况, 以及分布形态和消长情况,使用护肤品后皮肤是否呈现正常、敏感或发红的状态。 偏振光检测原理:控制系统通过控制照明系统选择发出交叉偏振光谱,经偏振光学系统进行放大滤波处理后,滤除掉了表皮层其它方向的杂波,只允许真皮层的影像经过镜头传输给影像采集芯片,由影像采集芯片接收光信号,再经过DSP 处理输出标准USB 信号,形成实时的真皮层视频图像。最后,由软件处理系统进行数据检测和数据分析。 ●UV光:也称为紫外光,用于观察毛孔堵塞情况和头皮的毛囊堵塞情况,痤疮的分布、数 量和密集度。其原理是痤疮丙酸杆菌生活在我们毛孔里的脂肪酸上,当毛孔被堵塞时,它们就会迅速生长,分解饱和脂肪酸,产生大量的游离脂肪酸,这些脂肪酸通过毛孔渗入皮肤,引起皮肤应激反应,产生粉刺、红肿等。痤疮丙酸杆菌能产生原卟啉,其在特定波长的紫外线照射下产生砖红色荧光反应。 UV光检测原理:控制系统通过控制照明系统选择发出模拟伍氏灯的紫外光谱,经光学系统进行滤波处理滤除掉杂波,抑制白光图像,突出特定波长影像后,由光学镜头放大传输给影像采集芯片,影像采集芯片接收光信号,再经过DSP 处理输出标准USB 信号,形成实时的视频图像。最后,由软件处理系统进行数据检测和数据分析。

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为0.013、0.853、0.869、0.940,和标准值0和0.75比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼(C.V.Raman )和克利希南(K.S.Krisman )实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格(https://www.360docs.net/doc/dd8974335.html,ndsberg )和曼杰尔斯达姆(L.Mandelstamm )也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

Raman_拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

拉曼光谱现状研究

拉曼光谱现状研究 拉曼光谱(Raman spectra),是一种散射光谱。它是1928年印度物理学家C.V. Raman发现的。对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。拉曼光谱作为一种物质结构的分析测试手段而被广泛应用,尤其是60年代以后,激光光源的引入、微弱信号检测技术的提高和计算机的应用, 拉曼光谱得到了迅速的发展,出现了很多新的拉曼光谱技术,使拉曼光谱分析在许多应用领域取得很大的发展。目前,拉曼光谱已广泛应用于材料、化工、石油、高分子、生物、环保、地质等领域。 一拉曼光谱的发展 拉曼光谱又称拉曼效应,是起用发现者印度人C.V.Raman命名的。德文文献中常称之为迈克尔-拉曼(Smekal-Raman)效应,而苏联前若干年的文献中则称之为联合散射,是拉曼于1919年从水分子散射现象中发现的。拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯由于它强度不太高和单色性差,限制了拉曼光谱的发展。60年代激光技术的兴起,以及光电讯号转换器件的发展才给拉曼光谱带来新的转机。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以来,一些公司相继推出了拉曼探针共焦激光拉曼光谱仪,入射光的功率可以很低,灵敏度得到很大的提高。这些性质使拉曼光谱的应用无论在广度和特异性等方面都得到了空前发展。 二拉曼光谱特点 拉曼光谱产生的原理和机制都与红外光谱不同,但它提供的结构信息却是类似的,都是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团。分子偶极矩变化是红外光谱产生的原因,而拉曼光谱是分子极化率变化诱导产生的,它的谱线强度取决于相应的简正振动过程中极化率的变化的大小。在分子结构分析中,拉曼光谱与红外光谱是相互补充的。因此,一些在红外光谱仪无法检测的信息在拉曼光谱能很好地表现出来。拉曼效应普遍存在于一切分子中,无论是气态,液态和固态,拉曼散射光谱对于样品制备没有特殊要求;对于样品数量要求比较少,可以是毫克甚至微克的数量级。拉曼散射最突出的优点是采用光子探针,对于样品是无损伤探测,尤其适合对那些稀有或珍贵的样品进行分析,甚至可以用拉曼光谱检测活体中的生物物质。 拉曼光谱的缺点之一是会产生荧光干扰,样品一旦产生荧光,拉曼光谱会被荧光所湮灭检测不到样品的拉曼信号。二是检测灵敏度低。 三几种常见的拉曼光谱技术 3?1共焦显微拉曼光谱技术 显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种

拉曼光谱的数据初步处理

摘要 欧阳学文 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析 Abstract

Purpose of this paperisfamiliar withRamanSpectrometer, and mastery of experimental measurements ofRaman spectroscopyandRaman spectroscopytechniquespreliminarydataprocessing. The article firstdiscusses theRaman spectrometerdevelopment, design,installation and commissioningin theapplication of the basictheory, designprinciples andkey technologies,laserRaman spectrometerdevelopments,research direction andoverall profileat home and abroad. The second section describesthe classical theoryof Ramanscatteringandquantumexplanation.And showsthe Ramanspectraofthe variouspossible ways, includingsmoothingand filtering.Againaccording tospectrometerdesign principlesdiscussed in detail thespectroscopicoptical systemdesignand laserRaman spectrometeroveralldesign, andthe choiceforthe role ofthe various componentsand the principle ofa detaileddescription. Finally, themeasuredRaman spectraof severalsamples, and use paper describesmethodsforspectralprocessinginitial treatment, and for a reasonableanalysis and comparison. In summary, this paper mainly fromtwoaspects to analyzeexperimental measurementsof Ramanspectroscopyand spectral dataprocessing research: First, the structure ofRaman spectroscopy, Raman spectroscopydetailed understanding ofthe working principle. Second,Raman spectroscopydata processing and analysis, a reasonableapproach toeffectiveand convenientRaman spectroscopycanbemore idealresults. Throughcarbon tetrachloride, ethanol, nbutanolandspectraldata analysisspectral

拉曼光谱及其在现代技术中的应用

拉曼光谱及其在现代技术中的应用 1 拉曼光谱发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω 的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是 属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射称之谓并合散射。 到40年代中期,红外技术的进步和商品化使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率,成为拉曼光谱的理想光源。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以后,拉曼探针共焦激光拉曼光谱仪由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,就只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率可以很低,灵敏度得到很大的提高,这使拉曼光谱的应用范围更加广阔。 2 拉曼光谱的原理 当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅发生散射改变方向,其频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。 2.1 拉曼散射 拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。 样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes线。

认识拉曼光谱

拉曼光谱及其在材料和化学中的应用 摘要本文论述了拉曼光谱及拉曼光谱在材料和化学中的应用 关键词拉曼光谱,材料,化学 1. 认识拉曼光谱 1928年印度实验物理学家拉曼发现了光的一种类似于康普顿效应的光散射效应,称为拉曼效应。简单地说就是光通过介质时由于入射光与分子运动之间相互作用而引起的光频率改变。拉曼因此获得1930年的诺贝尔物理学奖,成为第一个获得这一奖项并且没有接受过西方教育的亚洲人。 拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0+ v i (i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差v i与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。 拉曼光谱即拉曼散射的光谱。在透明介质的散射光谱中,频率与入射光频率v0相同的成分称为瑞利散射;频率对称分布在v0两侧的谱线或谱带v0+ v i即为拉曼光谱,其中频率较小的成分v0- v i又称为斯托克斯线,频率较大的成分v0+ v i又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利散射线的两侧出现的谱线称为大拉曼光谱。拉曼散射的强度比瑞利散射要弱得多。瑞利散射线的强度只有入射光强度的千分之一,拉曼光谱强度大约只有瑞利线的千分之一。小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动转动能级有关。拉曼光谱的理论解释是:入射光子与分子发生非弹性散射,分子吸收频率为v0的光子,发射v0- v i的光子,同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为v0的光子,发射v0+ v i的光子,同时分子从高能态跃迁到低能态(反斯托克斯线)。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。 拉曼光谱与红外光谱的比较。红外光谱是四大波谱(红外、紫外、核磁和质谱)之一,拉曼光谱与红外光谱一样,同属分子振动光谱范畴。只是研究分子间作用力的种类不同,红外光谱的产生是由于吸收光的能量,引起分子中偶极矩改变的振动;拉曼光谱的产生是由于单色光照射后产生光的综合散射效应,引起分子中极化率改变的振动。所以,红外光谱是吸收光谱,拉曼光谱是散射光谱,它们虽然同属于研究分子振动的谱学方法,但各自的侧重点有差异,具有互为补充的性质。 拉曼光谱技术在应用中具有红外光谱等不具备的优越性,这是因为:(1)它适于分子骨架的测定,且无需制样。(2)不受水的干扰。拉曼光谱工作在可见光区,用拉曼光谱进行光谱分析时,水是有用的溶剂,而对红外光谱水是差的溶剂。此外,拉曼光谱测量所用器件和

拉曼光谱的数据初步处理

摘要 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析

Abstract Purpose of this paperisfamiliar with Raman Spectrometer, and mastery of experimental measurements of Raman spectroscopy and Raman spectroscopy technique spreliminary data processing. The article firstdiscusses theRaman spectrometerdevelopment, design,installation and commissioningin theapplication of the basictheory, designprinciples and key technologies,laserRaman spectrometer developments,research direction and overall profileat home and abroad. The second section describesthe classical theory of Raman scattering and quantumexplanation.And shows the Raman spectra of the variouspossible ways, including smoothing and filtering.Again according tospectrometer design principles discussed in detail the spectroscopic optical system design and laser Raman spectrometer overall design, andthe choice for the role of the various component sand the principle of a detailed description. Finally, the measured Raman spectra of severalsamples, and use paper describesmethods forspectral processinginitial treatment, and for a reasonable analysis and comparison. In summary, this paper mainly from two aspects to analyze experimental measurements of Raman spectroscopy and spectral dataprocessing research: First, the structure of Raman spectroscopy, Raman spectroscopy detailed understanding of the working principle. Second,Raman spectroscopydata processing and analysis, a reasonable approach toeffectiveand convenient Raman spectroscopy can be more ideal results. Through carbon tetrachloride, ethanol, n-butanol and spectraldata analysis spectral measurements obtained more satisfactory experimental resultsdiscussed in this articledemonstratethe feasibility and correctness. Keywords: Raman spectrometer grating spectral analys

拉曼光谱

第三章拉曼光谱 【教学内容】 1.拉曼光谱的基本概念和用途 2.拉曼光谱的物理学原理 3.拉曼光谱仪的构造和原理简介 4.拉曼光谱与红外光谱的比较 5.拉曼光谱分析材料结构的特点 6.拉曼光谱的分析方法(略) 【重点掌握内容】 1.拉曼光谱的基本概念 2.拉曼光谱的物理学原理 3.拉曼光谱与红外光谱的比较 4.拉曼光谱分析材料结构的特点 【熟悉内容】 1.拉曼光谱仪的构造和原理简介 2.拉曼光谱的应用 【了解内容】 1.付立叶拉曼光谱仪的特点 【教学重点和难点】 教学重点:拉曼光谱的原理和特点,拉曼光谱与红外光谱特点的比较 教学难点:拉曼光谱与红外光谱物理学原理上的差别与关系 【教学目标】 1.熟悉拉曼光谱的基本概念及其应用。 2.掌握拉曼光谱的原理和特点 3.掌握拉曼光谱分析材料结构的基本方法 【教学手段】多媒体PPT讲解 【教学学时】2 课时 【教学过程】 一、拉曼光谱的基本概念和和用途 当光照射到物质上时会发生散射,散射光中除了与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光的波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。由于拉曼散射非常弱,所以直到1928年才被印度物理学家拉曼等人发现。 当时他们用汞灯单色光来照射某些液体时,在液体的散射光中观测到了频率低于入射光频率的新谱线。在拉曼等人宣布了他们发现的几个月后,苏联物理学家兰德斯-别尔格等也独立地报道了晶体中的这种效应存在。由于拉曼散射非常弱,强度大约为瑞利散射的千分之一。在激光器出现之前,为了得到一幅完善的光谱,往往很费时间。激光器的出现使拉曼光谱学技术发生了很大的变革。因为激光器输出的激光具有很好的单色性、方向性,且强度很大,因而它们成为获得拉曼光谱近乎理想的光源。

激光拉曼光谱分析.doc

第 11 章激光拉曼光谱分析 第十一章激光拉曼光谱分析 (L aser Raman Spectroscopy, LRS) 教学要求 1.理解拉曼散射的基本原理 2.理解拉曼光谱和红外光谱与分子结构关系的主要差别 3.了解拉曼光谱仪器结构 4.了解激光拉曼光谱的应用 重点:拉曼光谱原理;拉曼光谱与红外光谱的关系 难点:拉曼光谱与红外光谱的关系 课时安排: 1.5 学时 §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分 子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。 1、瑞利散射 虚拟态 当光子与物质的分子发生弹性碰撞时, hυ0hυ0 没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中 2、3 两种情况。 2、斯托克斯 (Stokes)散射 hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1 υ=0 图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子

拉曼光谱技术及其广泛应用

拉曼光谱技术及其在广泛应用 摘要:本文简单介绍了拉曼光谱的原理,常用的拉曼光谱技术,拉曼光谱技术的特征、优越性以及近年来拉曼光谱分析技术在考古、医学、文物、宝石鉴定、林业和法庭科学等领域的最新进展。并对其未来的应用前景进行了展望。 引言:1928 年,印度科学家Raman 发现了拉曼散射效应,拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯,由于它强度不太高和单色性差,限制了拉曼光谱的发展,直到使用激光作为激发光源的激光拉曼光谱仪问世以及傅立叶变换技术的出现,拉曼光谱检测灵敏度才大大增加,其应用范围也在不断地扩大。目前,拉曼光谱已广泛应用于考古、医学、文物、宝石鉴定、石油化工、林业和法庭科学等领域。 1 、拉曼光谱原理 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征

2 、常用的拉曼光谱技术常用的拉曼光谱技术主要有:显微共焦拉曼光谱技术、傅里叶变换拉曼光谱技术、共振增强拉曼光谱技术和表面增强拉曼光谱技术。 3、拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 4、拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1、由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合

相关文档
最新文档