塑性加工工艺学

塑性加工工艺学
塑性加工工艺学

均匀变形;变形区体积所有点的变形状态都相同

基本应力;完全根据弹性状态所测出的应力

附加应力;在物体中,由于其各部分的不均匀变形受到物体整体性的局限,而引起的相互平衡的应力。

工作应力;基本应力与附加应力的代数和

残余应力;塑性变形完毕后保留在变形物体内的附加应力塑性变形抗力;在所设定的条件下,所研究的变形物体或其单元体的能够实现塑性变形的应力强度。

塑性;金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力

红脆;高于再结晶温度时所出现的塑性下降现象。

超塑性;材料的衍生率超过百分百

控制轧制;从轧前的加热到最后轧制道次结束为止的整个轧制过程实现最佳控制。以便钢材获得预期良好性能的轧制方法

电磁性能;某些金属材料所具有的一种重要的物理性能

冲压性;在冲压变形过程中不产生裂纹等缺陷的变形缺陷热强性能;材料在高温和外加荷载的同时作用下,抵抗塑性变形和破坏的能力

红脆的机理;夹杂的偏析属于扩散过程,因此有助于扩散的因素皆会促使红脆的产生,易熔化合物的偏析会引起晶界熔化和使晶界的强度下降,因此在断裂时形成光泽的熔化表面。脆性化合物时引起难熔金属和合金红脆的原因,硬的脆性化合物阻碍晶界滑移,使沿晶界的连续变形遭到破坏,导致断裂。

红脆的原因;

红脆是各种化合物在晶界上的偏析所造成的。

由三向压缩主应力图和俩向压缩一向延生的变形图相结合的变形力学图是最利于发挥金属塑性

锰所以能够提高钢的塑性是因为硫与锰所形成的化合物是以个别杂质的形式分布在晶内。锰的硫化物及化合物具有很高的熔点。锰以硫有更高亲和力的缘故,当以锰的硫化物代替铁的硫化物时,钢的塑性将有所提高。

温度对塑性的影响,为什么?

在一定条件下,随着轧制温度的升高,金属的塑性增加。因为随着温度的升高,原子热运动的能量增加,可能出现新的滑移系统,并为扩散性质明显的塑性变形机构的同时作用创造了条件。同时,随着变形温度的升高,有利于软化过程的发展,是变形金属得到软化,从而也使在变形过程中所产生的破坏和缺陷得到恢复的可能性增加。对于上述现象,因为在变形过程中,随着温度的变化而产生的相态和晶粒边界的变化会对金属的塑性产生影响。

锻造时的断裂;

1、锻造时的表面开裂;自由墩粗塑性较低的金属饼材时,由于锤头端面对墩粗件表面摩擦力的影响,形成单鼓形,使其侧面周向承受拉应力

2、锻造时的内部开裂;平锤头锻压方坯时,由于锤头接触表面上外摩擦的作用,使坯料上端处于三向压应力状态,成为难变形区。

金属塑性变形的宏观规律是什么,为什么?

变形不均匀性。因为只有满足1、变形物体各向同性2、变形物体向各点处的物理状态相同,特别是物体由任一点处的温度相同,变形抗力相等3、接触面上任一点的绝对压下量和相对压下量相同4、变形是在无外端的情况下进行的5、完全没有接触摩擦或没有接触摩擦引起的阻力,而在实际工作中是很难实现的

接触摩擦;

1、呈现单鼓形和三个变形区

2、呈现双鼓形

3、侧面翻平现象

4、粘着现象

5、接触表面上应力状态分布不均

在墩粗时防止裂纹的产生;减少鼓型的措施;

1、减小工件与工具间的接触摩擦

2、采用凹形模

3、采用

软垫4、采用活动套环和包套

韧性断裂的特征;

1杯锥断口2、断口的底部一般与主应力方向垂直3、金属的晶粒被拉长

韧性断裂有如下几个特点;

1、韧性断裂时一种高能量的吸收过程

2、韧性断裂通常表

现为多段裂痕3、韧性断裂是个缓慢的撕裂过程

随着变形的不断进行,裂纹不断生成、扩展和集聚,变形一旦停止,则裂纹的扩展也将随着停止。

影响塑性-脆性转变的主要因素有变形速度、变形温度、应力状态、组织结构等

脆性转变温度;韧性断裂到脆性断裂的转变温度

断裂究竟以何种方式进行,决定于裂纹扩展的路径,裂纹的扩展遵循能量消耗最小原来。

裂纹扩展总是沿着原子键合力最薄弱的面进行。

材料经明显的塑性变形后向发生的断裂称为韧性断裂

金属的强度决定于温度和时间俩个因素

应力状态对塑性的影响;

三向压应力状态图最好,俩向压一向拉次之。俩向拉一向压更次,三向拉应力状态图最次

一区;难变形区,强烈的三向压应力,位于圆柱体端部的接触面附近,受接触摩擦的影响大,且远离与垂直的作用力轴呈大致45度交角的易产生滑移的区域

二区;易变形区,三向压应力,处于与垂直作用力大致45度角的最为有利的变形区域

三区;自由变形区,二压一拉靠近圆柱体表面,大致处于二区中心部位的四周

附加应力分三种,一;几个部分中由于不均匀变形引起的相互平衡的附加应力二;局部地各部分之间三;一个晶体内的各部分间;残余应力也分三种

又三向压缩主应力图和俩向压缩一向延伸的变形图相结合的变形力学图是最利于发挥金属塑性

金属的强化机制;

1、晶界强化;由于晶界上原子排列的正常结构遭到破坏,而产生晶界能,使其性质不同于晶粒内部

2、形变强化;金属及合金经强烈的冷加工变形后,在其显微组织中,较大的体积范围内基本没有位错,位错集中在周围区域,从而形成了胞状组织

3、固溶强化;固溶度越有限,单位浓度的溶质原子所引起的晶格畸变也越大,从而对屈服强度的提高也越大

4、分散强化;当在合金组织中含有一定数量的分散的异向粒子时,可使其强度有很大的提高。

强韧性;是指金属材料的强度和韧性衡量金属材料强度的指标是屈服极限,抗拉强度等衡量韧性的指标可有冲击韧性和脆性转变温度等

金属塑性的大小是与其化学成分、组织结构有关、变形条件变化时,如变形速度,变形温度,应力状态等变化时,金属的塑性也将发生变化。

当晶粒尺寸减小时以及变形量增大时,变形的不均匀性将会减小。当一个晶粒的形状发生变化时必须要有邻近晶粒的协同动作

晶粒越细小变形抗力越大,夹杂物会使物体的变形抗力升高。压力状态越强,变形抗力越大

《金属塑性加工技术》思考题解答版

宽展由滑动宽展、翻平宽展、鼓形宽展组成. 轧制时主电机轴上输出的传动力矩,主要克服的阻力矩有:轧制力矩M、空转力矩M0、附加摩擦力矩M f、动力矩M d. 自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割等 冲孔的方法通常包括实心冲子冲孔、空心冲子冲孔和在垫环上冲孔. 锻造过程中常出现的缺陷有表面裂纹、非金属夹杂、过热等. 孔型轧制时宽展类型分为自由宽展、限制宽展、强迫宽展3种. 实现带滑动拉拔的基本条件为绞盘的圆周速度大于绕在绞盘上线的运动速度. 带滑动多模连续拉拔配模的必要条件第n道次以后的总延伸系数必须大于收线盘与第n个绞盘圆周线速度之比. 带滑动多模连续拉拔配模的充分条件任一道次的延伸系数应大于相邻两个绞盘的速比. 金属挤压时,按金属流动特征分类有正挤和反挤. 正向或反向挤压时,其变形能计算式中的系数Ce分别为0.7和0.9. 正向挤压时,锭坯的尺寸为φ60mm,挤压杆的移动速度为100mm/s,φ20mm的圆棒单根流出模孔的速度则为900mm/s. “Y”孔型的特征参数:形状参数K=b/R、面积参数M=f/d2、内接圆参数G=d/b. 孔型轧制的品种包括:线杆、棒材、管材、型材 热轧:金属在再结晶温度以上的轧制过程,金属在该过程中无加工硬化,热轧时金属具有较高的塑性和较低的变形抗力,可用较少能量获得较大变形. 冷轧:金属在再结晶温度以下的轧制过程,不发生再结晶过程,只发生加工硬化,金属的强度和变形抗力提高,同时塑性降低. 轧制过程中性角:后滑区与前滑区的分界面为中性面,与中性面对应,前滑区接触弧所对应的圆心角为中性角. 轧制压力:轧件给轧辊的合力的垂直分量,亦即指是用测压仪在压下螺丝下面测得的总压力. 最小可轧厚度:在一定轧制条件下(轧辊直径、轧制张力、轧制速度、摩擦条件等不变的情况下),无论如何调整辊缝或反复轧制多次,轧件都不能再轧薄了的极限厚度. 轧制变形区:轧制时金属在轧辊间产生塑性变形的区域称为轧制变形区,包括几何变形区和非接触变形区. 轧制接触角:轧件与轧辊的接触弧所对应的圆心角称为轧制接触角. 前滑:轧件的出口速度大于该处轧辊圆周速度的现象称为前滑. 后滑:轧件的入口速度小于入口断面上轧辊水平速度的现象称为后滑. 轧制负荷图:轧制负荷图是指一个轧制周期内,主电机轴上的力矩随时变化的负荷图,分为静负荷图与静负荷和动负荷的合成负荷图两种情况. 轧制工作图表:时间与各轧机工作状态图. 集束拉拔:将两根以上断面为圆形或异型的坯料同时通过圆的或异型孔的模子进行拉拔,以获得特殊形状的异型材的一种加工方法. 闭式模锻:闭式模锻亦称无飞边模锻,即在成形过程中模膛是封闭的,分模面间隙是常数. 液态模锻:将一定量的液态金属直接注入金属模腔,然后在压力作用下,使处于熔融/半熔融状态的金属液发生流动,并凝固成形,同时伴有少量的塑性变形,从而获得毛坯或零件的加工方法. 精密模锻:它是一种效率高而又精密的压力加工方法,模锻件尺寸与成品零件的尺寸很接近,因而可以实现少切削或无切削加工. 拉深系数:拉深系数m=d/D0,d-拉深制件直径,D0-坯料直径,m越小,变形程度越大,变形区金属硬化越厉害,抗失稳能力变小,板坯越易起皱. 冲压:通过模具对板料施加外力,使之塑性变形或分离,从而获得一定形状、尺寸和性能的零件或毛坯的加工方法. 挤压比:挤压前的制品的总横断面积/挤压后的制品的总横断面积. 填充系数:挤压筒内孔横断面积与锭坯横断面积之比. 连续挤压:连续挤压是通过有效利用坯料与旋转挤压轮之间的强摩擦所产生足够的挤压力和温度,将杆料、颗粒料或熔融金属以真正连续大剪切变形方式直接一次挤压成制品的塑性加工方法. 脱皮挤压:在挤压过程中锭坯表层金属被挤压垫切离而滞留在挤压筒内的挤压方法称为脱皮挤压 挤压效应:挤压效应是指某些铝合金挤压制品与其他加工制品(如轧制、拉拔和锻造等)经相同的热处理后,前者的强度比后者高,而塑性比后者低.这一效应是挤压制品所独有的特征. 挤压缩尾:出现在制品尾部的一种特有缺陷,制品后端金属内部夹杂了外来杂质或较冷的金属空洞、疏松等,主要产生在终了挤压阶段. 孔型系:轧件由粗变细必须在截面的各个方向上进行压缩(至少两个方向),因而要经过一系列不同形状和尺寸的孔型进行轧制,这一系列孔型称之为孔型系. 综述金属塑性加工技术的发展趋势. 金属塑性成形技术正向高科技、自动化和精密成形的方向发展.

材料成型加工与工艺学-习题解答

第六章压制成型 2. 简述热固性塑料模压成型的工艺步骤。 将热固性模塑料在以加热到指定温度的模具中加压,使物料熔融流动并均匀地充满模腔,在加热和加压的条件下经过一定的时间,使其发生化学反应而变成具有三维体形结构的热固性塑料制品。 (1)计量 (2)预压 (3)预热 (4)嵌件安放 (5)加料 (6)闭模 (7)排气 (8)保压固化 (9)脱模冷却 (10)制品后处理 4. 在热固性塑料模压成型中,提高模温应相应地降低还是提高模压压力才对模压成型工艺有利?为什么? 在一理论的操作温度下,模温提高时,物料的黏度下降、流动性增加,可以相对应的降低模压;但若继续升高模温会使塑料交联反应速度增快、固化速率升高此时便需要提高模压。一般而言提高温度应提高模压压力。 8. 试述天然橡胶硫化后的物理性能的变化,并解释之。 橡胶在硫化的过程中,交联密度发生了显着的变化。随着交联密度的增加,橡胶的密度增加,气体、液体等小分子就难以在橡胶内运动,宏观表现为透气性、透水性减少,而且交联后的相对分子质量增大,溶剂分子难以在橡胶分子之间存在,宏观表现为能使生胶溶解的溶剂只能使硫化胶溶胀,而且交联度越大,溶胀越少。硫化也提高了橡胶的热稳定性和使用温度范围。 天然橡胶在硫化过程中,随着线型大分子逐渐变为网状结构,可塑性减小,拉伸强度、定伸强度、硬度、弹性增加,而伸长率、永久变形、疲劳生热等相应减小,但若硫化时间再延长,则出现拉伸强度、弹性逐渐下降,伸长率、永久变形反而会上升的现象。 10. 橡胶的硫化历程分为几个阶段?各阶段的实质和意义是什么? (1) 焦烧阶段又称硫化诱导期,是指橡胶开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内有良好的流动性。对于模型硫化制品,胶

金属塑性加工工艺

1.材料加工: 金属坯料在外力作用下产生塑性变形,从而获得具有一定几何形状,尺寸和精度,以及服役性能的材料、毛坯或零件的加工方法。 2.适用范围: 钢、铝、铜、钛等及其合金。 3.主要加工方法: (1) 轧制:金属通过旋转的轧辊受到压缩,横断面积减小,长度增加的过程。(可实现连续轧制)纵轧、横轧、斜轧。 举例:汽车车身板、烟箔等; 其它:多辊轧制(24辊)、孔型轧制等。 (2) 挤压:金属在挤压筒中受推力作用从模孔中流出而制取各种断面金属材料的加工方法。

定义:金属材料在挤压模内受压被挤出模孔而变形的加工方法。挤压法非常适合于生产品种、规格、批数繁多的有色金属管、棒、型材及线坯。 正挤压——坯料流动方向与凸模运动方向一致。 反挤压——坯料流动方向与凸模运动方向相反。 正挤反挤 举例:管、棒、型; 其它:异型截面。 卧式挤压机 特点: ①具有比轧制更为强烈的三向压应力状态图,金属可以发挥其最大的塑性,获得大变形量。 可加工用轧制或锻造加工有困难甚至无法加工的金属材料。 ②可生产断面极其复杂的,变断面的管材和型材。

③ 灵活性很大,只需更换模具,即可生产出很多产品。 ④ 产品尺寸精确,表面质量好。 (3) 锻造:锻锤锤击工件产生压缩变形 ? 定义 :借助锻锤、压力机等设备对坯料施加压力,使其产生塑性变形,获得所需形状、尺寸和一定组织性能的锻件。垂直方向(Z 向)受力,水平方向(X 、Y 向)自由变形。 A.自由锻:金属在上下铁锤及铁砧间受到冲击力或压力而产生塑性变形的加工 B.模锻:金属在具有一定形状的锻模膛内受冲 击力或压力而产生塑性变形的加工。 举例:飞机大梁,火箭捆挷环等。 我国自行研制的万吨级水压机 万吨级水压机模锻的飞机大梁、火箭捆挷环

高分子材料加工工艺考试题库

《高分子材料加工工艺学》复习提要 一、填空题 1. 现代材料科学的范围定义为研究材料性质、结构和组成、合成和加工、材料的性能这四个要素以及它们之间的相互关系。 2. 高分子材料按照来源分类,主要分为天然高分子材料和合成高分子材料。 3. 按照材料学观点:高分子材料分为结构高分子材料和功能高分子材料。 4. 长度一般为35~38mm,称为棉型短纤维;长度一般为75~150mm,称为毛型短纤维。 5. 聚酯纤维(涤纶或称的确良),聚酰胺纤维(锦纶)、聚丙烯纤维(丙纶)、聚丙烯腈纤维(腈纶)。 6. 高分子材料加工过程一般包括四个阶段:1)原材料准备;(2)使原材料产生变形或流动,并成为所需的形状;(3)材料或制品的固化;(4)后加工和处理。 7. 溶液纺丝根据纺丝时所使用的凝固介质不同,可分为湿法和干法两种。 8. 切片中的水分为两部分:一是粘附在切片表面的非结合水,另一是与高分子链上以氢键结合的结合水。 9. 切片的含水率均随干燥时间延长而逐步降低。在干燥前期为恒速干燥阶段,这时除去的主要是切片中的非结合水;干燥后期为降速干燥阶段,主要去除结合水。 10. 转鼓干燥机主要由有转鼓部分、抽真空系统和加热系统三部分组成。 11. 组合式干燥设备主要包括预结晶器、充填干燥器及热风循环系统三部分组成。 12. 喷丝孔的几何形状是直接影响熔体的流动特性,其通常由导孔和毛细孔构成。 13. 丝条冷却吹风形式有两种:侧吹风和环形吹风,而针对短纤维主要采用环形吹风。 14. 聚酯短纤维的后加工工艺,主要包括集束、拉伸、卷曲、热定形及切断打包。 15. 纤维的拉伸倍数应根据卷绕丝的应力-应变曲线确定,选择在自然拉伸倍数和最大拉伸倍数之间。 16.长纤的后加工工艺主要为拉伸加捻工艺、假捻变形工艺及空气变形工艺。 17. 长纤的拉伸加捻后加工工艺,其在喂入辊和第一导丝盘间进行一段拉伸,在

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

第三篇--金属塑性加工习体

第三篇金属塑性加工 一、填空题 1.金属的可锻性就金属的本身来说主要取决于金属的塑性和变形抗力。 2.冲模可分为简单冲模、__连续冲模___和复合冲模三种。 3.落料时, 4.冲孔时,凹 凸 模刃口尺寸等于工件尺寸。 模刃口尺寸等于工件尺寸。 5.金属塑性变形的基本方式是热变形和冷变形。 6.模锻不能锻出通孔,中间一般会有冲孔连皮。 7.金属的塑性越好,变形抗力越小,则金属的可锻性越好。 8.对于形状较复杂的毛坯一般采用 9.冷变形后金属的强度增加,塑性铸造 降低 加工方法。。 10.锻压是__锻造___和____冲压____的总称。 11.按锻造的加工方式不同,锻造可分为自由锻、_模锻___等类型 12.自由锻造的基本工序主要有镦粗、拔长、冲孔、弯曲、切 断等,自由锻造按使用设备不同,又可分为手工锻造和机器锻造。 13.冲压的基本工序可分为两大类,一是分离工序,二是成型工序。 14.根据胎模的结构特点,胎模可分为扣模、筒模和合模等。 15.分离工序是指使冲压件与板料沿一定的轮廓线相互分离的冲压工序,主要 有切断、冲孔、落料、切口等。 16.改善金属可锻性的有效措施是提高金属变形时的温度。 17.纤维组织的明显程度与金属的变形程度有关。变形程度越大,纤维组织 越__明显 18.模锻件上垂直于锤击方向的表面必需具有斜度,以便于从模膛中取出锻件。 19.分模面最好是一个平面,以便于锻模的安装与调试,并防止锻造过程 中上下锻模错动。 20.再结晶温度以上的塑性变形叫____热变形___。 21.再结晶温度以下的塑性变形叫____冷变形___。 22.锻造完成的螺钉比切削出来的螺钉质量__要好___。 23.冷挤压与热挤压相比,坯料氧化脱碳少,表面粗糙度值较低,产品 尺寸精度24.拉深系数 较高 越小 。 ,表明拉深件直径越小,变形程度越大,坯料被拉

高分子材料加工技术

实训1 海带中海藻酸钠的提取 1.实训目的 1.1巩固常用基本仪器的操作 1.2巩固几种常用溶液的配制 1.3巩固EDTA标准溶液的配制与标定方法 1.4掌握EDTA测定溶液中钙离子的测定 1.5掌握茚三酮溶液与蛋白质颜色反应的原理和方法 1.6掌握从虾壳中提取甲壳素的原理和方法 2.实训原理 甲壳素的提取方法主要有酸碱法、EDTA脱钙法和酸碱交替法等,其中酸碱交替法具有可提高反应温度、反应时间短,无需脱色处理等优点而为本文采用。 原理:盐酸处理溶去其中的碳酸钙;碱煮处理去除与甲壳素共价交联的蛋白质;虾壳中含有的虾红素在碱煮过后,仍有大部分存在,故甲壳素显现红色,须用氧化还原的方法来处理虾红素。 3.实训原料、仪器、药品 3.1实训材料 虾壳、蟹壳 3.2实训仪器 序号名称规格数量备注 1 烧杯100、250 、500 mL 10、5、5个按顺序 2 锥形瓶250mL 6个 3 移液管5、10、25、50mL 各一支

4 容量瓶100、250mL 各3个 5 酸性滴定管25mL 一支 6 数显恒温水浴箱一台 7 电子天平 8 电热恒温烘干箱 9 玻璃棒数支 10 滤纸若干 11 量筒10、50、100mL 各一支 3.3实训药品 序号名称规格数量备注 1 浓盐酸(体积百分数 为35~38%) 2 NaOH 3 30%过氧化氢 4 高锰酸钾 5 亚硫酸氢钠 6 酸性络蓝K K—B指示剂的 7 萘酚绿B 配制 8 EDTA EDTA的配制与 9 ZnO 滴定 10 氨水(1:1) 11 1%的铬黑T(EBT) 12 茚三酮配制1%茚三酮 13 氯化亚锡 溶液

金属塑性加工

单日志页面显示设置网易首页 网易博客 金属塑性加工 默认分类 2008-07-07 18:27 阅读620 评论0 字号:大中小 绪论 一、金属塑性加工及其分类 金属塑性加工是使金属在外力(通常是压力)作用下,产生塑性变形,获得所需形状、尺寸和组织、性能的制品的一种基本的金属加 工技术,以往常称压力加工。 金属塑性加工的种类很多,根据加工时工件的受力和变形方式,基本的塑性加工方法有锻造、轧制、挤压、拉拔、拉深、弯曲、剪切等几类(见表0-1)。其中锻造、轧制和挤压是依靠压力作用使金属发生塑性变形;拉拔和拉深是依靠拉力作用发生塑性变形;弯曲是依靠弯矩作用使金属发生弯曲变形;剪切是依靠剪切力作用产生剪切变

形或剪断。锻造、挤压和一部分轧制多半在热态下进行加工;拉拔、拉深和一部分轧制,以及弯曲和剪切是在室温下进行的。 1.锻造靠锻压机的锻锤锤击工件产生压缩变形的一种加工方法,有自由锻和模锻两种方式。自由锻不需专用模具,靠平锤和平砧间工件的压缩变形,使工件镦粗或拔长,其加工精度低,生产率也不高,主要用于轴类、曲柄和连杆等单件的小批生产。模锻通过上、下锻模模腔拉制工作的变形,可加工形状复杂和尺寸精度较高的零件,适于大批量的生产,生产率也较高,是机械零件制造上实现少切削或 无切削加工的重要途径。 2.轧制使通过两个或两个以上旋转轧辊间的轧件产生压缩变形,使其横断面面积减小与形状改变,而纵向长度增加的一种加工方法。根据轧辊与轧件的运动关系,轧制有纵轧、横轧和斜轧三种方式。 (1)纵孔两轧辊旋转方向相反,轧件的纵轴线与轧辊轴线垂直,金属不论在热态或冷态都可以进行纵轧,是生产矩形断面的板、带、箔材,以及断面复杂的型材常用的金属材料加工方法,具有很高的生产率,能加工长度很大和质量较高的产品,是钢铁和有色金属板、带、箔材以及型钢的主要加工方法。 (2)横轧两轧辊旋转方向相同,轧件的纵轴线与轧辊轴线平衡,轧件获得绕纵轴的旋转运动。可加工加转体工件,如变断面轴、丝杆、周期断面型材以及钢球等。

金属塑性加工

金属塑性加工:指使金属在外力作用下,产生塑性变形,获得所需形状,尺寸和组织性能制品的一种基本的金属加工技术。 轧制:轧件通过两个以上旋或两个旋转辊时产生压缩变形,其横断面面积减小与形状改变,而纵向长度增加的一种加工方法。 全量应变:指反映单元体在某一变形过程终了时的变形大小,其度量基准是变形以前的原始尺寸。 增量应变:指变形过程中某一瞬间阶段的无限小应变,其度量基准是变形过程中某一瞬间尺寸。 简单加载:指单元体的应力张量各分量之间的比值保持不变,按同一比例参量之单调增长,应变主方向与应力主方向重合。Bauschinger效应:在简单压缩下,忽略摩擦影响,得到的压缩实验屈服极限与拉伸试验屈服极限数值基本相等,但是若将拉伸屈服后的试样经卸载并反向加载至屈服,发现反向屈服极限值一般低于初始屈服极限值。同理,先压后拉也有类似现象,这种正向变形软化的现象称做Bauschinger效应。变形力:金属塑性加工时,加工工具使金属产生塑性变形所需加的外力称为变形力。 滑移线:塑性变形区内,最大剪切应力等于材料屈服切应力k 的轨迹线。 汉盖第一定理:同族的两条滑移线与另一族的任意一条滑移线相交于两点的倾角差△φ和静水压力变化量△P均保持不变。 汉盖第二定理:一动点沿某族任意一条滑移线移动时,过该动点起始位置的另一族两条滑移线的曲率变化量等于该点所移动的路程。 有心扇形:滑移线场由一族汇集于一点的辐射线和与之正交的另一族为同心圆弧所构成。 无心扇形:滑移线场由一族为不汇集于一点的直线和一族为不同心的圆弧线所构成的滑移线场。 最小阻力定律:在变形过程中,物体各质点将向着阻力最小的方向移动,即做最小的功,走最捷径的路。 残余应力:塑性变形完毕后保留在变形物体内的附加应力。附加应力:物体不均匀变形受到其整体性限制,而引起物体内相互平衡的应力。 塑性图:表示金属塑性指标的变形温度及加载方式的关系曲线图形,称为塑性状态图或简称塑性图。 非晶机构:指在一定的变形温度和速度条件下,多晶体中的原子非同步地连续地在应力场和热激活的作用下,发生定向迁移的过程。 塑性:指固体金属在外力作用下能稳定地产生永久变形而不破坏其完整性的性能。拉伸,压缩,扭转,轧制模拟试验法。温度效应:塑性变形过程中因金属发热而促进金属的变形温度升高的效果,称为温度效应。 热效应:指变形过程中金属的发热现象。 金属塑性加工有何特点:依靠塑性变形使物质发生转移来实现工件形状和尺寸的变化,不会产生切屑。因而材料的利用率高得多。结构致密,粗晶破碎细化和均匀,性能提升。适用于大批量生产,生产效率高。塑性加工产品的尺寸精度和表面质量较高。设备较庞大,能耗较高。 塑性力学上应力的正负号是如何规定的:对于正应力,正应力的符号以拉伸为正,压缩为负。对于切应力,外法线方向与坐标轴正方向为正面,反之为负面。正面上指向坐标轴正向的切应力为正值,反之为负,负面上指坐标轴负方向的切应力也为正值,反之为负。 金属塑性变形有哪些特点:在塑性变形时,弹性变形依然存在。在塑性变形时,加载卸载过程不同的σ—ξ关系。塑性变形的σ—ξ关系与变形历史或路径有关。σ> σs以后的对应点都可以看成是重新加载时的屈服点,且对σs以后的点加载之后再卸载,再加载,一般存在有为此使的应力小于σs,材料的及一强化现象称为材料的加工硬化。 常见的测量应力-应变曲线的试验有哪些:单向压缩试验曲线,平面应变压缩试验,扭转实验,双向等拉实验,单向拉伸试验 影响金属塑性流动与变形的主要因素有哪些:接触面上的外摩擦,变形区的几何因素,变形物体与工具的形状,变形温度及金属本身性质等。 变形不均匀产生的原因和后果:产生的原因是金属质点的不均匀流动引起的。后果是使物体外形歪扭和内部组织不均匀,而且还使变形体内应力分布不均匀,产生附加应力,由不均匀变形引起附加应力造成许多不良后果。引起变形体的应力状态发生变化,是应力分布更不均匀。造成物体的破坏,使材料变形抗力提高和塑性降低。使产品质量降低。使生产操作复杂。形成残余应力。 减少不均匀变形的主要措施有哪些:正确选定变形的温度-速度制度。尽量减小接触面上外摩擦的有害影响。合理设计加工工具形状。尽可能保证变形金属的成分及组织均匀。 金属的可加工性:不同加工方法进行塑性加工时,工件出现第一条可见裂纹前达到的最大变形量。 Levy-Mises增量理论的基本假设有:材料是刚塑性件,材料符合Mises塑料条件σe=σT。塑性变形时体积不变。塑性应变增量主轴的偏应力主轴相重合。 外摩擦:发生在金属和工具相接触表面之间的,阻碍金属自由流动的摩擦。 干摩擦:指不存在任何外来介质时金属与工具的接触表面之间的摩擦。 工程法的基本要点和基本假设有哪些:把实际变形过程视具体情况的不同看作是平面应变问题和轴对称问题,如平板压缩,宽板轧制等。假设变形体内的应力分布是均匀,仅是一个坐标的函数,这样就可获得近似的平衡微分方程。或直接在变形区内截取单元体假定切面的正应力为主应力且均匀分布,由此建立改单元体的平面微分方程为常微分方程。采用近似的塑性条件,工程法把接触面上的正应力假定为主应力,于是对于平面应变问题,塑性条件 简化接触面上的摩擦,采用两种近似法,库伦摩擦定律,常摩擦定律。不考虑工模受弹性变形的影响,材料变形均质和各向同性等。要点是工程法师一种近似解析法,通过对物体应力状态作一些简化假设,建立以主应力表示的简化平衡微分方程和塑性条件。 多余应变:指物体中某一部位所受的剪切变形对工件的外形变化并没有直接贡献,故通常把这种变形叫做多余应变。多余攻指消耗于多余应变上的能量。 滑移线的主要几何性质有哪些:滑移线为最大切应力等于材料屈服切应力为k的迹线,与主应力迹线相交成π/4角。滑移线场由两族彼此正交的滑移线构成,布满整个塑性变形区。滑移线上任意一点的倾角值与坐标的选择有关,而静水压力p 的大小与坐标的选择无关。沿一滑移线上的相邻两点间静水压力差与相应的倾角差城正比。同族的两条滑移线与另族任意一条滑移线相交两点的倾角差和静水压力变化量均保持不变。一点沿某族任意一条滑移线移动时,过该动点起始位置的另一族两条滑移线的曲率变化量等于该点所移动的路程。同族滑移线必然有个相同的曲率方向。 滑移线的边值问题有哪几种:有特征线问题,特征值问题,混合问题。 滑移线场的应力边界条件有哪些:有四种,自由表面,无摩擦接触表面,粘着摩擦接触表面,滑动摩擦接触表面。 简述塑性加工工艺润滑剂选择的基本原则:润滑剂应有良好的耐压性能。应具有良好的耐高温性能。有冷却模具的作用。不应对金属和模具有腐蚀作用。对人体是无害,不污染环境。要求使用清理方便,来源方便丰富,价格便宜。 冷变形金属显微组织的变化:纤维组织,原来等轴的晶粒沿着主变形方向被拉长,金属中的夹杂物和第二相粒子也沿延伸方向拉长或链状排列。亚结构, 简述塑性加工工件残余应力的来源及减小或消除的措施:来源,塑性变形完后保留在变形物体内的附加应力所形成的。措施:减小材料在加工处理过程中产生不均匀变形。对加工件进行热处理。进行机械处理:使零件彼此碰撞。用木追打击表面。表面辗压或压平。表面拉制。在模子中作表面校形或精压。 简述塑脆性转变温度及其影响因素:规定塑性下降百分之五十的点的温度为塑性-脆性转变温度。影响对于因素:对于一定材料来说,脆性转变温度高,表征该材料脆性趋势愈大。变形速度的影响,在一定条件下,高于临界变形程度,便产生脆性断裂,应变速度的提高相当于变形温度降低的效果。应力状态的影响,拉应力状态越强,材料的脆性转变温度越高,脆性趋势越大。金属材料的化学成分和组织状态的影响。

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

金属塑性加工试卷及答案

中南大学考试试卷 2001 —— 2002 学年第二学期时间110 分钟金属塑性加工原理课程64 学时 4 学分考试形式:闭卷 专业年级材料1999 级总分100 分,占总评成绩70% 一、名词解释(本题10分,每小题2分) 1.热效应 2.塑脆转变现象 3.动态再结晶 4.冷变形 5.附加应力 二.填空题(本题10分,每小题2分) 1.主变形图取决于______,与_______无关。 2.第二类再结晶图是_____,_______与__________的关系图。 3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。 4.保证液体润滑剂良好润滑性能的条件是_______,__________。 5.出现细晶超塑性的条件是_______,__________,__________。 三、判断题(本题10分,每小题2分) 1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。 2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。 3.金属的塑性是指金属变形的难易程度()。 4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。 5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。 四、问答题(本题40 分,每小题10 分) 1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么?

2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。试问简单拉伸时材料出现细颈时的应变量为多少? 3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施? 4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧 制方向) 五、证明题(本题10 分) 证明Mises 塑性条件可表达成:

金属塑性加工原理习题

绪论 0-1 请选择你生活学习中所接触的五种物品,写一篇约五千字的调研笔记,调查其从原料到该物品制造的全过程,运用你所学的知识分析制造这些物品所涉及的学科知识。 第一章应力分析与应变分析 1-1 塑性加工的外力有哪些类型? 1-2 内力的物理本质是什么?诱发内力的因素有哪些? 1-3 何谓应力、全应力、正应力与切应力?塑性力学上应力的正、负号是如何规定的? 1-4 何谓应力特征方程、应力不变量? 1-5何谓主切应力、八面体应力和等效应力?它们在塑性加工上有何意义? 1-6 何谓应力张量和张量分解方程?它有何意义? 1-7 应力不变量(含应力偏张量不变量)有何物理意义? 1-8 塑性变形的力学方程有哪几种?其力学意义和作用如何? 1-9 锻造、轧制、挤压和拉拔的主力学图属何种类型? 1-10变形与位移有何关系?何谓全量应变、增量应变?它们有何联系和区别? 1-11简述塑性变形体积不变条件的力学意义。 1-12何谓变形速度?它们与工具速度、金属质点运动速度有何区别和联系? 1-13何谓变形力学图?如何根据主应力图确定塑性变形的类型? 1-14锻造、轧制、挤压和拉拔的变形力学图属何种类型? 1-15塑性加工时的变形程度有哪几种表示方法?各有何特点? 1-16已知一点的应力状态MPa,试求该应力空间中 的斜截面上的正应力和切应力为多少? 1-17现用电阻应变仪测得平面应力状态下与x轴成0°,45°,90°角方向上的应力值分别为,试问该平面上的主应力各为多少? 1-18 试证明: (1) (2)

1-19 一圆形薄壁管,平均半径为R,壁厚为t,二端受拉力P及扭矩M的作用,试求三个主应力 的大小与方向。 1-20 两端封闭的薄壁圆管。受轴向拉力P,扭矩M,内压力ρ作用,试求圆管柱面上一点的主应力 的大小与方向。其中管平均半径为R,壁厚为t,管长为l。 1-21已知平面应变状态下,变形体某点的位移函数为, ,试求该点的应奕分量,并求出主应变的大小与方向。1-22 为测量平面应变下应变分量将三片应变片贴在与x轴成0°,60°,120°夹角的方向上,测得它们的应变值分别为。试求以及主应变的大小与方向。 1-23 已知圆盘平锤均匀压缩时,质点的位移速度场为,,,其中 为全锤头压下速度,h为圆盘厚度。试求应变速度张量。 1-24 一长为l的圆形薄壁管,平均半径为R,在两端受拉力P,扭矩M作用后,管子的长度变成l1,两端的相对扭转角为,假设材料为不可压缩的。在小变形条件下给出等效应变与洛德参数的表达式。 1-25某轧钢厂在三机架连轧机列上生产h×b×l=1.92×500×100,000mm的A3带钢产品(见图1-14),第1、3机架上的压下率为20%,第2机架上为25%,若整个轧制过程中带材的宽度b保持不变,试求带钢在该连轧机列上的总压下量及每机架前后带钢的尺寸为多少? 图1-25 三机架连轧机列示意图 第二章金属塑性变形的物性方程

高分子合成工艺学

第一章 1.高分子合成工艺学的主要任务。 将基本有机合成生产的单体,经聚合反应合成高分子化合物,为高分子合成材料成型提供基本原料。基本有机合成、高分子合成和高分子合成材料成型时密切相联系的三个部门。2.高分子材料的主要类型、品种及发展方向。 塑料。品种:通用塑料,工程塑料。发展方向:具有优异性能的高性能、耐高温塑料。 合成橡胶。品种:通用合成橡胶,特种合成橡胶。发展方向:通用橡胶主要替代部分天然橡胶产品,特种橡胶主要制造耐热、耐老化。耐油或耐腐蚀等特殊用途的橡胶产品。 合成纤维。品种:聚酯(涤纶纤维)、聚丙烯腈(腈纶纤维)、聚酰胺(棉纶纤维或尼龙纤维)等。发展方向:具有耐高温、耐腐蚀、或耐辐射的特种用途合成纤维。 3.工业生产中合成聚氯乙烯采用哪几种聚合方法,简单说明原因。 4.说明高分子合成材料的生产过程,各过程的特点及意义。 1、原料准备与精制过程。包括单体、溶剂。去离子水等原料的贮存。洗涤、精制、干燥、 调整浓度等过程与设备。 2、催化剂(引发剂)配制过程。包括聚合用催化剂、引发剂和辅助剂的制造、溶解、贮存、 调整浓度等过程与设备。 3、聚合反应过程包括聚合和以聚合釜为中心的热交换设备及反应物料输送过程与设备。 4、分离过程。包括未反应单体的回收、脱落溶剂、催化剂。脱除低聚物等过程与设备。 5、聚合物后处理过程包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。 6、回收过程。主要是未反应单体和溶剂的回收与精制过程及设备。 第二章 1.石油裂解制烯烃的工艺过程。 液态烃在水蒸气存在下,于750~820?C高温热裂解为低级烯烃、二烯烃。为减少副反应,提高烯烃收率,液态烃在高温裂解区的停留时间仅0.2~0.5 s。 2、高分子合成材料的基本原料(乙烯、丙烯、丁二烯、苯乙烯)的来源及生产方法。 基本原料来源:石油、煤炭、植物及农副产品等。单体原料来源路线为:石油化工路线、煤炭路线和其他原料路线。

工业设计材料与加工工艺考试题及答案

1、金属材料的性能包括使用性能和工艺性能。 2、金属材料的使用性能是指材料在使用过程中表现出来的性能,它包括机械性 能、物理性能和化学性能等。 3、金属材料的工艺性能是指材料对各种加工工艺适应的能力,它包括铸造性 能、压力加工性能、焊接性能和切削加工性能等。 4、根据载荷作用性质不同,载荷可分为静载荷、冲击载荷、疲劳载荷等 三种。 5、材料按照其化学组成可以分为金属材料、非金属材料、复合材料和有机材料四类。 6、材料基本性能包括固有特性和派生特性。 7、材料的工艺性能包括切削加工工艺性能、铸造工艺性能、锻造工艺性能、焊接工艺性能、热处理工艺性能等。 8、工业产品造型材料应具备的特殊性能包括感觉物性、加工成型性、表面工艺性和环境耐候性。 9、钢铁材料按化学组成分为钢材、纯铁和铸铁;其中钢材按化学组成分为碳素钢和合金钢。 10.铸铁材料按照石墨的形态可分为可锻铸铁、灰口铸铁和球墨铸铁三种。 11、变形铝合金主要包括锻铝合金、硬铝合金、超硬铝合金和防锈铝合金。 12、金属制品的常用铸造工艺包括砂型铸造、熔模铸造和金属型铸造等。 13、金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 14、塑料按照其重复加工利用性能可以分为热塑性塑料和热固性塑料。 15、塑料制品的成型工艺主要包括吹塑成型、挤塑成型、吸塑成型、注塑成型等。 16、陶瓷材料根据其原料、工艺和用途,可以分为传统陶瓷和近代陶瓷两 大类。 17、陶瓷制品的工艺过程一般包括原配料、坯料成型和窑炉烧结三个主 要工序。 18、陶瓷制品的坯体成型方法主要有压制成型、可塑成型和注浆成型三种。

19、陶瓷制品的旋压成型可以分为覆旋旋压法和仰旋旋压法两种。 20、日用陶瓷制品可以分为陶器、瓷器和炻器。其中陶器的气孔率和吸水率介于炻器和瓷器之间。 21、玻璃按用途可分为日用器皿玻璃、技术用玻璃、建筑用玻璃、和玻璃纤维四大类。 22、玻璃的加工工艺包括原料装配、加热熔融、成型加工、热处理和表面装饰。 23、玻璃成型工艺包括压制、拉制、吹制、压延、浇注和结烧等。 24、锻造是利用手锤锻锤或压力设备上的模具对加热的金属抷料施力,使金属材料在不分离条件下产生变形,以获得形状尺寸和性能符合要求的零件。 25、金属焊接按其过程特点可分为3大类:熔焊、压焊、钎焊 26、金属切削加工可分为钳工和机械加工两部分。 27、木材与其他材料相比,具有多孔性、各向异性、湿涨干缩性、燃烧性和生物降解性等独特性质。 28、木材在横切面上硬度大,耐磨损,但易折断,难刨削,加工后不易获得光洁表面。 29、塑料的基本性能:质轻比强度高,优异的电绝缘性能,减摩耐磨性能好,优良的化学性能,透光及防护性能,减震消音性能好,独特的造型工艺性能,良好的质感和光泽度。 30、塑料的挤出成型也称挤压模塑和挤塑,它是在挤出机中通过加热,加压而使物料以流动状态连续通过挤出模成型的方法。 31、按照陶瓷材料的性能功用可分为普通陶瓷和特种陶瓷两种。 32、玻璃的熔制过程分为:硅酸盐的形成,玻璃的形成,澄清和均化,冷却。 33、金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 34、金属件的连接工艺可以分为机械性连接、金属性连接和化学性连接三种类型。 35、涂料由主要成膜物质、次要成膜物质和辅助材料三部分组成。

有色金属塑性加工复习材料

1、有色金属及合金如何分类?其塑性加工方法有哪些? 1、金属材料 1.1、黑色金属:铁、铬、锰等 1.2、有色金属:除铁、铬锰等之外的金属材料 2、无机非金属材料 3、高分子材料 4、复合材料 塑性加工基本方法:轧制、挤压、拉拔、锻造、冲压、旋压等 2、金属塑性加工的特点是什么? (1)坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高 (2)塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理提高了制品的强度 (3)可以达到较高的精度 (4)具有较高的生产率 3、轧制的概念,轧制方法如何分类的?轧制过程分为哪四个阶段? 轧制是靠旋转的轧辊与轧件之间形成的摩擦力将轧件拖进轧辊间的缝隙并使之受到压缩产生塑性变形的过程。 分类:A按轧辊的配置、运动特点和产品形状分纵轧、横轧和斜轧 B根据轧制时轧件的温度分为热轧和冷轧 C根据轧辊的形状轧制分为平辊轧制和型辊轧制 四个阶段:开始咬入阶段,曳入阶段,稳定轧制阶段,轧制终了阶段

4、简述超塑性成型概念及用途 超塑性成形是指金属或合金在特定的条件下,即低的变形速率、一定的变形温度和均匀的细晶粒度,其相对延伸率超过100%以上的特性。 1.1板料冲压1.2 板料气压成形1.3 挤压和模锻 2、旋压成形 3、摆动碾压成形 4、粉末冶金锻造 5、液态模锻 6、高能率成形 7、充液拉深 8、聚氨酯成形 *5、铝及铝合金是如何分类的?熟悉铝及铝合金牌号及特点 按成分和工艺特点分为:形变铝合金:不可热处理强化铝合金、可热处理强化铝合金 铸造铝合金 (1)热处理不可强化铝合金:即没有固溶和析出作用而强化 工业纯铝、Al-Mn系、Al-Mg系、Al-Mn系、Al-Mn-Mg系、Al-Fe-Si系 (2)热处理可强化铝合金:通过高温加热,使合金元素溶解在基体中(固溶热处理),然后低温加热或室温下使合金元素及其所形成的金属间化合物以弥散微粒或共格形成从固溶体中析出来提高铝合金强度 Al-Mg-Si系(锻铝)、Al-Zn-Mg-Cu系(超硬铝)、Al-Cu-Mg-Zn系(硬铝) 铝的特点:熔点660 ℃; 密度2.7×103kg/m3; 晶格为面心立方结构;导电率为铜的60% 6、铜、镁及合金是如何分类的?熟悉它们牌号及特点 铜的分类:(1)工业纯铜 铜含量99.90%-99.96% 按脱氧方法和氧含量分为:纯铜T1 、T2…. 无氧铜TU1、TU2……. 脱氧铜TP1 TP2

四大高分子材料加工方法

一.挤出成型 挤出成型工艺适用于所有的高分子材料,制造各种连续制品如管材、型材、板材(或片材)、薄膜、电线电缆包覆、橡胶轮胎胎面条、内胎胎筒、密封条等。其中的塑料挤出成型几乎能成型所有的热塑性材料,也可用于少数几种热固性材料,如酚醛。 原因:因为挤出成型工艺具有以下特点: 1.连续成型,产量大,生产效率高; 2.制品连续,断面形状不变,制品外形简单; 3.制品质量均匀密实,尺寸准确较好。 二.注射成型 注射成型的应用十分广泛,几乎所有的热塑性塑料及多种热固性塑料都可用此法成型,也可以成型橡胶制品。但主要是热塑性塑料的注射。 原因:因为注射成型工艺具有以下特点: 1.成型周期短,生产效率高,易实现自动化; 2.能成型形状复杂,尺寸精确; 3.带有金属或非金属嵌件的塑料制件; 4.产品质量稳定。 三.模压成型 模压成型工艺广泛用于热固性塑料和橡胶制品的成型加工,几

乎所用的高分子材料都可用此方法来成型制品。目前主要用于:热固性塑料的成型;橡胶制品的成型;复合材料的成型。 原因:因为模压成型工艺具有以下特点: 1.与挤出和注射等成型工艺相比,模压成型工艺所需设备结构简单、制造精度不髙、制造费用低,所以投资少、见效快,为发展多品种、小批量的生产提供了有利条件; 2.在模压成型过程中,由于塑料的流动距离很短,受填料的定向影响小,所以塑件的尺寸变动小,不易变形,尺寸稳定性好,机械性能稳定; 3.相同吨位的压机可以成型较大平面的制品; 4.模压成型工艺成熟,生产过程易于控制; 5.模压成型中没有浇注系统,原材料浪费相对较少。对于不能重复利用的热固性材料来讲,节约原料尤为重要; 6.模压成型基本上适合于加工各种塑料,尤其像氨基树脂、环氧树脂和聚酰亚胺等材料,用注射成型既困难又会影响制品外观质量;对于用石棉或玻璃纤维等增强的塑料,在注射和挤出成型中,纤维易在浇口部分断裂,使制品的机械强度特别是冲击强度降低,失去增强的意义;聚酯团状和片状模塑料若采用注射成型,则需特殊的强迫加料装置,导致设备费用昂贵。模压成型是制造高强度塑件最有效的方法。

材料成型加工与工艺学-习题解答(6)

1.物料的混合有哪三种基本的运动形式? 聚合物成型时熔融物料的混合以哪一 种运动形式为主? 为什么? i.分子扩散 ii.涡流扩散 iii.体积扩散 体积扩散为主, 因为他主要是指流体质点、液滴或固体粒子由系统的一个空间位置向另一空间位置的运动, 或两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均布.对流混合通过两种机理发生, 一种体积对流,另一种层流对流混合, 前者通过塞流对物料进行体积重新排列, 而不需要物料连续变形, 这种重复的重新排列可以是无规的, 也可以是有序的. 在固体掺混机中混合式无规的, 而在静态混合机的混合则是有序的. 而层流对流混合是通过层流而使物料变形, 它发生在熔体之间的混合, 在固体粒子之间的混合不会发生层流混合. 层流混合中, 物料要受到剪切、伸长(拉伸)和挤压(捏合). 分子扩散主要在与低分子的混合.在浓度梯度驱使下,各组分自发地由浓度较大的区域迁移到浓度较小的区域从而达到各处组分均化的一种扩散形式。 分子扩散在气体和低粘度液体中占支配地位。在固体与固体间,分子扩散作用是很小的。在聚合物加工中,熔体与熔体间分子扩散极慢,无实际意义。 但若参与混合的组分之一是低分子物质,则分子扩散可能是一个重要因素。 涡流扩散主要会造成聚合物的黏度提高导致混合时施予聚合物的剪切力要上升, 容易导致聚合物降解.由系统内产生的紊流而实现的一种扩散形式。在聚合物加工中粘度高,而且要实现紊流,熔体的速度必须很高,势必使熔体发生破裂,也会造成聚合物的降解,故很少发生涡旋扩散。 2.什么是”非分散混合”, 什么是”分散混合”, 两者各主要通过何种物料运动和 混合操作来实现? Page 154 非分散均匀的定义在混合中仅增加粒子在混合物中空间分布均匀性而不减小尺寸的过程称为非分散均匀或简单混合。主要通过对流方式来实现的,可以通过塞流和不需要物料连续变形便发生简单的体积重排和置换来达到混合。 分散混合的定义: 将呈现出屈服点的物料混合在一起时,要将它们分散开来,使结块和液滴破裂。这种混合为分散混合。分散混合的目的是把少组分的固体颗粒和液相滴分散开来,成为最终粒子或允许的更小颗粒或滴,并均匀地分布到多组分中。涉及少组分在变形粘性流体中的破裂问题。这是靠强迫混

相关文档
最新文档