254nm紫外带通滤光片

254nm紫外带通滤光片
254nm紫外带通滤光片

254nm紫外带通滤光片

254nm窄带滤光片的优点

1)高透过率,光信号衰减率小,有效提升工作距离和光强度

2)高截止深度,有效避免杂光干扰;

3)波长精度高;

4)10多年的光学滤光片生产经验,进口镀膜机制作,IAD离子辅助镀膜技术,确保低温飘,膜层牢固度更强。

254 nm窄带滤光片规格指标

BP254 FWHM=10nm

CWL:254nm±5nm

FWHM:10nm ±3nm

Tpeak:T≥40% @254±5nm(CWL)

Blocking:Tmax<1%@200-225nm &; 295-1000nm

Surface:60/40

Substrate:Quartz glass

Circle:φ6.5-φ50mm Square:3×3-55×55mm Thickness:0.55-5mm 254 nm窄带滤光片曲线

生物识别滤光片解读

生物识别滤光片解读 生物识别滤光片属于精密光电薄膜元器件之一,其主要原理是通过特殊的光学设计实现特定波段光源的高透射或高反射效果,帮助终端产品完成生物信息的提取、筛选和转化以及3D景深信息的获取。 一、生物识别滤光片定义 电子设备为获取物体的位置和景深信息,需要以特定波长的红外光作为传感的媒介,因此需要去除太阳光中含有的干扰频段的红外线,保留地表太阳光中较为薄弱的特定频段红外光(例如940nm)。生物识别滤光片的使用可允许上述特定频段的红外光通过,因此也称为窄带滤光片。 生物识别滤光片属于精密光电薄膜元器件之一,其主要原理是通过特殊的光学设计实现特定波段光源的高透射或高反射效果,帮助终端产品完成生物信息的提取、筛选和转化以及3D景深信息的获取。

二、生物识别滤光片作用 与生物识别滤光片不同点在于,红外截止滤光片是利用精密光学镀膜技术在白玻璃、蓝玻璃或树脂片等光学基片上交替镀上高低折射率的光学膜,红外截止滤光片可实现可见光区(400-630nm)高透,近红外光区(700-1,100nm)截止的光学滤光片,并通过实现近红外光区截止以消除红外光对成像的影响。 而生物识别滤光片与红外截止滤光片的透过频段相反,仅允许通过特定频段红外光(例如940nm),并通过特殊的光学设计实现特定波段光源的高透射或高反射效果,生物识别滤片可允许智能手机、AR/VR设备等能够获取特定频段红外光所携带的3D景深信息,并帮助电子产品完成生物信息的提取、筛选和转化以及3D景深信息的获取,以实现3D人脸识别、虹膜识别、手势识别等生物识别功能。 三、生物识别滤光片分类及参数 生物识别滤光片是从窄带滤光片中细分出来的,其定义与窄带滤光片相同。因此,生物识别滤光片在特定的波段允许光信号通过,而偏离这个波段以外的两侧光信号被阻止,生物识别滤光片的通带相对来说比较窄,一般为中心波长值的5%以下。滤光片产品主要按光谱波段、光谱特性、膜层材料、应用特点等方式分类。 光谱波段:紫外滤光片、可见滤光片、红外滤光片、生物识别滤光片; 光谱特性:带通滤光片、截止滤光片、分光滤光片、中性密度滤光片; 膜层材料:软膜滤光片、硬膜滤光片; 带通型:选定波段的光通过,波段外的光截止。其光学指标主要是中心波长(CWL),半带宽(FWHM)。 短波通型:短于选定波长的光通过,长于该波长的光截止。比如红外截止滤光片,IBG-650。 长波通型:长于选定波长的光通过,短于该波长的光截止,比如红外透过滤光片,IPG-800。 生物识别滤光片主要相关参数有:中心波长、半高宽(带宽)、峰值透过率、截止范围、截止深度(OD值)等。 中心波长:生物识别滤光片的中心波长类似于仪器或设备的工作波长,中心波长是指通带中心位置的波长; 半高宽(带宽):带宽是指通带中透过率为峰值透过率的一半的两个位置之间的距离,有时也叫半高宽; 峰值透过率:生物识别滤光片在通带中最高的透过率大小; 截止范围:截止范围是指除了通带以外,要求截止的波长范围。对于生物识别滤光片而言,有一段是短截止,另一段截止波长高于中心波长的一段;

CCD上的滤光片

监控摄像机中的CCD上的滤光片,正确名称叫”光学低通滤波器” 滤光片有两大功用: 1.滤除红外线. 2.修整进来的光线 滤除红外线: 彩色监控摄像机CCD也可感应红外线,就是因为会感应红外线,会导致D.S.P无法算出正确颜色,,因此须加一片滤光片,把光线中红外线部份隔开,所以只有彩色CCD需要装滤光片,黑白就不用了. 修整进光: 因为CCD上是一颗颗的感光体(CELL)构成,最好光线是直射进来,但为了怕干扰到邻近感光体,就需要对光线加以修整,因此那片滤光片不是玻璃,而是石英片,利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,避免去影响旁边的感光点. 那么滤光片是怎么做到这些的呢?我们不防来看看 1滤除红外线: 可用镀膜方式及蓝玻璃,镀膜分真空镀膜及化学镀膜方式,化学镀膜是将石英片浸入溶剂中加以电镀,成本低但镀膜厚度不平均且容易脱落,真空镀膜是用真空蒸镀法,镀膜均匀且不易脱落,但成本高.以上我们称IR Coating , 目地在滤除红外线, 另外还要加上所谓的AR-Coating 的镀膜,目地是增加透光率,因为光线在透过不同介质时(比如从空气进入石英片),会产生部分的折射及反射,加上AR-Coating 后,滤光片可达到98-99%的穿透率,否则只有90-95的穿透率,这对CCD的感光度当然有影响. 另外是用蓝玻璃,蓝玻璃是用”吸收”的方式过滤红外线,而IR-Coating是用反射的方式滤掉红外线,但反射光容易造成干扰,如果只考虑滤除红外线,蓝玻璃是比较好的选择. 但上文说玻璃无法修整光线,因此就有一片蓝玻璃加一片石英片的所谓”两片式”滤光片.其中蓝玻璃用来滤红外线,而石英片修整光线用,因此石英片上只需做AR-Coatin就行了. 2.修整光线: 上文说到, 利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,但只能对一个方向修整,通常摄像机只考虑到水平分辨率,因此只对光线做水平修整,因此在贴滤光片时方向要对,不可弄反了.那如果垂直光线也要修整的话怎办?很简单,就黏两片,把其中一片转90度就行了,因此就有这种也叫”两片式”的滤光片,一片用在水平修整,一片用在垂直修整,其中一片再做IR-Coating 来滤红外线. 那更高级的呢?就是两片石英中间夹片蓝玻璃,那就各项优点就有了,这种”三片式常见于日本进口机. l 石英片整光效果是物理方式的,要配合CCD上感光点而变,因此理论上不同CCD厂牌及不同画素还有N制P制,石英片厚度都不同, 黏贴方式: 1.直接就夹在遮光片上,再锁在CCD上,好处是方便,须注意防尘 2.用UV胶黏,再照紫外线灯,优点是稳固,但须在无尘室或无尘箱中弄,如果不管那么多就硬干了。 3.用双面胶带,一黏就好了,这个最方便又省钱,但常常一段时间后就掉下来了,尤其是被太阳晒久了。 如何选用和订购滤光片 在选用滤光片之前必须对滤光片的分类有基本的了解。滤光片产品主要按光谱波段、光谱特性、应用特点等方式分类。 光谱波段:紫外滤光片、可见滤光片、红外滤光片;(如对光谱不清楚,可以参考光谱图如下:) 光谱特性:带通滤光片、截止滤光片、分光滤光片、中性密度滤光片、反射滤光片; 其中带通型即选定波段的光通过,通带以外的光截止。比如我们的红外带通滤光片。 短波通型即短于选定波长的光通过,长于该波长的光截止。比如我们的红外截止滤光片。 长波通型即长于选定波长的光通过,短于该波长的光截止。比如我们的红外滤光片,IPL滤光片

窄带滤光片设计报告

窄带滤光片设计报告 综述: 窄带滤光片是一种带通滤波器,它利用电解质和金属多层膜的干涉作用,可以从入射光中选取特定的波长,窄带滤光片的带通一般比较短,通常为中心波长的5%以下。干涉滤光片是由两块内表面镀有高反射膜(介质或金属膜)的相互平行的高平面度玻璃板或石英板组成,在内表面之间形成多次反射以产生多光束之间的干涉。其作用是让光源中某一窄带光谱的光波以尽可能高的透射率通过,而使其他光谱范围的光波衰减,以获得单色性良好的准单色光。窄带滤光片可代替如光栅那样的昂贵的分光器件,广泛应用于光学实践和工业领域。 设计内容: 窄带滤光片的设计与制作 窄带滤光片工作原理:多光束干涉 由多光束干涉中光程差公式 当相干光束数目很大时,只有确定的n 、d 、i 值,光源中只有严格满足上述公式的波长才能够基本无衰减的通过,微小的偏差使上述条件的波长成分将由于近似相消而衰减,从而实现窄带滤波。 设计要求: 入射介质0n =1;出射介质g n =1.52;入射角0θ=?0;中心波长λπ?i n d M sin 42 20=-=?

=450(亦即参考波长),中心波长透过率大于95%,透射光谱的半0 宽度小于45nm。使用n H=2.26(TiO2), n L=1.45(Al3O2)。 膜系设计: H L H H H H L H 软件模拟效果: 模拟数据: 中心波长:450nm 半波宽度:43nm 中心透过率:95.23%

窄带滤光片的制备过程: 1.清洗镀膜机,安装监控片,将待蒸发的薄膜材料放入蒸发容器 中; 2.清洗玻璃基片,由于设计要求不高,镜片只用酒精进行擦拭。 3.根据膜系设计的结果将设计参数置入镀膜机的控制系统;然后在控制系统的监控下镀膜机镀膜机全自动镀制干涉滤光片。 但是由于在实验过程中机器出现故障,所以临时决定使用溅射的方法来进行镀膜, 在镀膜之前算好每层膜所需要的时间,然后人为的对仪器镀膜时间进行控制,由于我们初次接触,这样的工作由一位博士生学长进行,并在镀膜的同时为我们讲解相关知识。 窄带滤光片实测数据: 中心波长:422nm 半波宽度:57nm 中心透过率:67.14% 误差分析: 1.中心波长向左漂移28nm : 根据公式 2λ =nd ,由于间隔层的光学厚度较小,导致中心波长减小即向左漂移。其造成误差因素包括两个:①使用的镀膜金属中含有杂质,导致其折射率降低,影响了光学薄膜的光学厚度。②镀膜时间计算不准确或在镀膜时,没有掌握好镀膜时间,导致膜厚度较窄,降低了光学厚度。

一种窄带导模共振负滤光片的设计

书山有路勤为径,学海无涯苦作舟 一种窄带导模共振负滤光片的设计 由于弱调制光栅可以等效为平面波导,本文从平面波导的本征方程出发,导出垂直入射时弱调制光栅共振位置的表达式。分别以单层、双层膜系导 模共振光栅结构为例,研究了光栅层厚度、周期、占空比对共振波长的影响。 结合光学薄膜理论设计出一种窄带导模共振负滤光片。由于导模共振对入射波 参数和光栅参数都极为敏感,具有窄带效应,用来制作窄带负滤波片非常可 行。 导模共振效应是介质光栅在一定的浮雕结构参量和入射条件下出现的一 种特殊衍射现象。它的产生,是由于衍射光栅可以看作周期调制的平面波导, 当光栅内高级次传播波在参数上与光栅波导所支持的导模接近时,光波能量重 新分布,由于光栅的周期调制性使得光栅波导出现泄漏,泄漏波能量也将重新 分布,形成导模共振。导模共振滤光片(guided-mode resonance filter) 的周期性结构能够提供位相匹配的可能性。对于高空间频率的波导光栅,即亚波长的波 导光栅,所有的高级次衍射波均为倏逝波,这样就使得所有的能量均在0 级反射波与0 级透射波之间转换成为可能。在共振波长处,出现尖锐的反射峰,这 就是共振型滤光片的基本原理。 在偏离或者远离共振区时,波导光栅可以看作均匀的薄膜,因此可以将 光栅的共振和薄膜的干涉结合起来,采用薄膜光学中广泛采用的减反射设计, 在不影响共振峰峰值反射率的情况下,有效地降低旁带的反射率,从而设计出 窄带、低旁带、线型对称的共振滤波器。 在光学薄膜范畴,能从一段光谱中除去某一波带的滤光片,被称为负滤 光片。导模共振效应非常适合于制作性能优良的窄带负滤光片。

红外截止滤光片

2012谈水晶(3)---红外截止滤光片 本篇将重点介绍水晶的另一个支柱产品---红外截止滤光片(IRCF),这是水晶成立后的第二个产品,也是目前对公司利润贡献最大的品种。2010年公司IRCF 销售收入为1.37亿,占当年总收入的42%。 一,产品介绍 IRCF是红外截止滤光片的简称,同OLPF一样,如果能记住对应的四个英文单词也就很容易搞其含义了: Infra-Red (红外) Cut(截止) Filte r(滤光片),简称IRCF。 红外截止滤光片是利用精密光学镀膜技术在光学基片上交替镀上高低折射率的光学膜,实现可见光区(400-630nm)高透,近红外(700-1100nm)截止的光学滤光片,主要应用于可拍照手机摄像头、电脑内置摄像头、汽车摄像头等数码成像领域,用于消除红外光线对CCD/CMOS成像的影响。 通过在成像系统中加入红外截止滤光片,阻挡该部分干扰成像质量的红外光,可以使所成影像更加符合人眼的最佳感觉。 与光学低通滤波器有所不同的是,光学低通滤波器主要应用于数码相机、数码摄像机和视频监控摄像头中,目的是为消除红外光的伪色现象,通过空间滤波去掉莫尔条纹;而红外截止滤光片则主要应用于可拍照手机、电脑内置摄像头、汽车摄像头的镜头系统,这些下游产品目前对于图像的成像质量要求不高,不需要考虑空间滤波,而关注的是光波滤波,即红外光抑制。 红外光抑制是图像传感器必需的功能之一,这是因为CCD、CMOS对光的感应和人眼不同,人眼只能看到380-780的可见光,而CCD、CMOS则可以感应红外光和紫外光,尤其对红外光十分敏感,所以必须要将红外光加以抑制,并保持可见光的高透过,使CCD/COMS对光的感应接近于人的眼睛,从而使拍摄的图像也符合眼睛的感应。由此可见,红外截止滤光片对于上述这些下游产品是不可或缺的,它的市场前景和市场容量也同这些下游产品密切相关。 公司生产的普通IRCF平均单价约0.5元,主要通过台湾的手机模组厂商供应给苹果、HTC等知名手机客户。 ◆在传统的红外截止滤光片基础之上,水晶又开发出以下衍生产品: 1,晶圆级红外截止滤光片 晶圆级红外截止滤光片为公司首家全球产业化产品,结合光刻等半导体工艺技术,提高了IRCF 生产的自动化程度,显著地减少了人力成本,实现生产由人力密集 型向技术密集型转变。其根源来自于手机镜头模组厂商的工艺更新。手机镜头是一个微型光学模组,一个手机光学模组包含10-20个配件(包括公司的IRCF),传统的工艺是单个加工,这样在生产和组装的过程中就需要大量的人工;而使用晶圆级的加工技术来加工镜头,则可以使生产和组装过程实现完全的自动化,生产完成后再将晶圆切割成单个的镜头,从而可以大大降低镜头模组的生产成本。这种加工工艺同半导体加工工艺类似,故称为晶圆级镜头(Wafer-Level Camer a)的加工工艺。

850 nm窄带低通滤光片性能指标管控

客户成品指标850 nm窄带低通滤光片性能指标管控 参考波形

激埃特光电ZK850窄带内部管控指标 1)原材料:HWB830黑玻璃, 直径8.0mm公差要求-0.1mm,厚度:3.5mm公差要求+/-0.1mm 表面质量:双面抛光,抛光面光洁度达到60-40以上最好是40-20标准,无肉眼可视砂眼,划伤,印渍,侧面无抛光印渍,崩边小于0.1mm,倒边小于0.2mm 光谱质量:300nm~800nm T<0.1%, 850nm T>70%, 880nm~1100nm T>85%,重点是中心波长管控T=50%处要求在827nm~836nm之间。 2)浮法玻璃:0.55mm玻璃公差在+/-0.05mm之间 3)S1面850窄带镀膜管控标准:镀膜后冷却1小时测量,中心波长在839nm~846nm之间,峰值透过大于80~90%之间,在80%以上的透过必须有5nm以上的空间(即5nm内的波长所对应的透过率应大于80%以上,以确保波长稳定后的合格率),半带宽FWHM控制:若中心波长在839nm半带宽可以放宽到22~25nm之间,若中心波长在846nm半带宽只能在19nm~21nm. 截止区700nm~820nm T<0.5%,880nm~1100nm T<0.5% 4)S2面分光膜面镀膜管控:只测试S1+S2双面情况下数值。 若S1面镀得峰值透过率大于90%镀完分光膜后,透过率要比只镀一面分光膜的高。即单面镀膜分光54%,S1+S2后由于不受背面4。2%的玻璃反射,将会达到56%左右。遇这种情况,要求高透过的窄带镀分光膜时透过要控制低点。比如53%(这个情况要求品保再做实验以确认实际情况) 相反的若窄带透过率只有70%左右,同样镀54%的分光膜后,将会下降个1%~3%. 5)品保管控:胶合前在投大片材料时,要把S1+S2双面已镀的窄带产品控制在50%~54%之间,需要考虑到分光膜面跟黑玻璃胶合后会有将5%个点的上浮。同时中心波长也会有1~3nm左右的向长波方向移动现象。 若把850多层膜面跟黑玻璃胶合透过率会下降5~15%个百分点,且不稳定。务必不能把S1面和S2面相反胶合,否则后果很难确认。 品保对双面镀膜后的中心波长管控: 中心波长:845nm~847nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在20nm~25nm之间。 中心波长:848nm~852nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在19nm~21nm之间。 中心波长:853nm~855nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在20nm。 测试点一个大片至少要测试5个点,距边缘10mm处的且距离档边角20mm处测一个点,再转90度相同情况下测一次,转三次后再测度最中心区域点。若遇到第四圈特别注意,第四圈靠最外边的边缘15mm内与其它的波长和透过率将变化非常大,要特别测试。并划分出来再投料。 其余圈,圈与圈之间一般会渐变偏长或波长偏短,透过率上也只是渐变化。也有可能遇到因为镀膜操作人员放置玻璃时有斜面现象,造成某圈中的某片镜片变化非常大,要特别跟踪。 6)成品光谱曲线管控: 最高峰值透过率不得高于60%。 850nm处透过率在50~59.5%之间。(这时可以不考滤中心波长位置) 半带宽在18nm~23nm之间,若透过率低半带宽可以宽,透过率高半带宽要窄点。 截止区350nm~820nm T<0.5%, 880~1100nm T<0.5%(在1000-1100nm处可放宽,因为我们检测仪器有误差)

滤光片总概

滤光片总概 从光谱的长短(所处区域)有:紫外,可见光,近红外,红外,远红外带通滤光片.(常用的叫法紫外180~400nm,可见光 400~700nm,近红外700~3000nm,红外3000nm~10um以上,光谱再长就超出我司的加工能力了,就不写了) 滤光片产品主要按光谱波段、光谱特性、膜层材料、应用特点等方式分类。 光谱波段:紫外滤光片180~400nm、可见滤光片 400~700nm、红外滤光片(近红外700~3000nm,红外 3000nm~10um); 光谱特性:带通滤光片、截止滤光片、分光滤光片、中性密度滤光片、反射滤光片; 膜层材料:软膜滤光片、硬膜滤光片; 硬膜滤光片不仅指薄膜硬度方面,更重要的是它的激光损伤阈值,所以它广泛应用于激光系统当中,面软膜滤光片则主要用于生化分析仪当中 带通型:选定波段的光通过,通带以外的光截止。其光学指标主要是中心波长(CWL),半带宽(FWHM)。分为窄带和宽带。比如窄带808滤光片NBF-808.

短波通型(又叫低波通):短于选定波长的光通过,长于该波长的光截止。比如红外截止滤光片,IBG-650。 长波通型(又叫高波通):长于选定波长的光通过,短于该波长的光截止比如红外透过滤光片,IPG-800. 名词解释: 1) 中心波长(CWL):使用的波长,如光源主峰值是850nm led 灯,那需求的中心波长就是850nm 2) 透过率(T):假设光初始值为100%,通过滤光片后有所损耗了,通过评估得出只有85%了,那就可以把这个滤光片的光学透过率只有85%,简单讲就是损失了多少,大家都希望做所有事性损失越小越好. 3) 峰值透过率(Tp)>85% 4) 半带宽(FWHM):简单说就是最高透过率的1/2处所对应的波长,左右波长值相减,例如,峰值最好是90%,1/2就是45%,45%所对应的左右波长是800nm和850nm,那半带宽就是50nm 5) 截止率(Blocked): 截止区所对应的透过率.由于要想透过率达到0%,那是非常难的事情,要知道太阳可以让地下的树变成炭,只靠这薄薄的薄膜去掩盖一切是很难的,只能选

窄带滤光片在人脸识别中的应用

窄带滤光片在人脸识别中的应用 上海兆九光电技术有限公司汤兆胜博士 人脸识别技术是对人的脸部特征信息进行识别,它是一种生物识别技术。用图像采集装置采集含有人脸的图像或视频流,并根据图像自动检测和跟踪人脸,并对人脸进行特征定位、提取,通过比对辨识达到识别不同人身份的目的。人脸识别的运算是非常巨大的,而初始图像质量的好坏以及算法优劣对识别效率有决定性的影响。这里,我们主要针对人脸识别系统中的图像采集装置所用到的窄带滤光片进行分析,目的是帮助使用者更好地了解窄带滤光片的作用和使用方法,以便正确选择窄带滤光片的技术指标。 由于人脸识别的计算量很大,目前都是基于黑白灰度图像进行识别的。其图像采集的结构示意图如图1所示。 图1人脸识别图像采集示意图 1.光源特点 人脸识别的图像采集装置中,光源一般采用高功率的红外二极管,波长以850nm和940nm居多。为提高识别效率以及提高光的利用率,从光源选择开始就要考虑到整体设计。虽然市面上购买的LED标称值都是850nm或940nm,但在测量具体的LED产品中心波长时发现还是有不少偏差的。 以850nm的LED为例,其实际中心波长有835nm的,也有865nm的。由于人脸识别系统中采用的光源为多颗大功率LED阵列,如果各个LED的中心波长不一致,所有LED的光谱在叠加之后,

综合的光谱带宽会展宽。单个850nm的LED带宽在50nm左右,如果由于中心波长不一致,多个LED叠加后的光谱带宽将会变成很宽。这对后续的窄带滤光片带宽的选择、能量利用率以及信噪比的提高都是十分不利的。所以要求在选择LED光源时,中心波长要一致。另外,LED光源随着工作温度的升高,其中心波长是向长波漂移的,每升高10℃,LED的中心波长向长波漂移1nm左右。而且随着工作温度的升高,LED的发光效率快速下降,当升高到85℃左右时,LED的输出效率降到50%左右。因此要求LED光源的散热效果良好。还有,在选择LED发光管的发散角时,以较小的发散角为好,这样可以提高光源的能量利用率。 2.接收器特点 在人脸识别系统中,接收器基本上采用CCD图像传感器。CCD具有体积小、重量轻、失真度小、功耗低、可低压驱动、抗冲击、抗振动、抗电磁干扰强的优点,因此被广泛应用于各种图像采集系统。 在人脸识别系统中的CCD基本上是硅衬底的,其光谱响应范围为400nm~1100nm,该范围也就是窄带滤光片要考虑的光谱范围。 3.窄带滤光片选择与注意事项 窄带滤光片主要是用来隔离干扰光,透过信号光,充分突显有用信息,减小干扰信息,为后续的图像处理和识别奠定基础。在目前,人脸识别主要应用在各种场合的考勤和门禁系统。有的是安装在室内光线较暗的地方,有的是安装在较为明亮的地方。不同场合下,干扰光的强度是不同的,因此对窄带滤光片的要求也不同。 我们发现,人们经常用隔离可见光透过红外光的红外玻璃作为干扰光隔离滤光片,当然也能收到一定效果。但是,普通的红外玻璃只是隔离了可见和紫外部分的光,并没有隔离红外光。而在实际的干扰光中,从可见到红外都是存在的,因为太阳光的光谱很宽,并且漫反射或散射的太阳光是主要的干扰源。因此,想得到良好的抗干扰效果,必须采用窄带滤光片。吸收型的红外玻璃与窄带滤光片在透过率性能上的比较如图2所示。从图中可以看出,不管是哪种牌号的红外玻璃都只隔离了可见光,对红外光没有任何阻挡效果,而窄带滤光片对信号光谱范围之外的所有干扰光的隔离都是很有效的。 图23mm厚的红外玻璃与0.55mm厚的干涉窄带滤光片曲线比较 4.窄带滤光片带宽的确定

405nm带通滤光片

405nm带通滤光片 405nm窄带滤光片优点 1)高透过率,光信号衰减率小,有效提升工作距离和光强度 2)高截止深度,有效避免杂光干扰; 3)波长精度高; 4)10多年的光学滤光片生产经验,进口镀膜机制作,IAD离子辅助镀膜技术,确保低温飘,膜层牢固度更强。 405nm FWHM8nm 窄带滤光片指标 BP405 FWHM=8nm CWL:405nm±2nm FWHM:8nm ±2nm Tpeak:T≥45%@405>;±2nm(CWL) Blocking:OD5@200-1200nm Surface:80/50 Substrate:Quartz glass,H-K9L

Circle:φ10mm,φ12.5mm Thickness:4mm 405nm FWHM10nm窄带滤光片指标 BP405 FWHM=10nm CWL:405nm±5nm FWHM:10nm ±5nm Tpeak:>75% Blocking:Tmax<1%@300-380&435-1100nm Surface:80/50 Substrate:Float glass,B270 Size Circle:φ8-φ44mm Square:10×10-40×40mm Thickness:2.0-5mm 405nm窄带滤光片光学谱线图

405nm窄带滤光片应用 酶标仪、SIM酶标仪、荧光分光光度计、生化仪、全自动生化分析仪、半自动生化分析仪、激光扫描共焦显微镜技术、紫外检测器、紫外荧光分析仪、激光显微共焦拉曼光谱系统、全自动酶免分析系统、流式多色检测技术、流式细胞仪、共聚焦荧光显微镜、免疫分析系统、

470nm带通滤光片

470nm带通滤光片 470nm 窄带滤光片优点 1)高透过率,光信号衰减率小,有效提升工作距离和光强度 2)高截止深度,有效避免杂光干扰; 3)波长精度高; 4)10多年的光学滤光片生产经验,进口镀膜机制作,IAD离子辅助镀膜技术,确保低温飘,膜层牢固度更强。 470nm 窄带滤光片种类指标 BP470 FWHM=10nm CWL:470nm±5nm FWHM:10nm ±3nm Tpeak:T≥70% Surface:80/50 Substrate:Flat glass and Color glass Circle:φ8-φ30mm

Square:10×10-30×30mm Thickness:2.0~5mm 470nm 窄带滤光片曲线 470nm 窄带滤光片应用 荧光免疫技术、荧光显微镜Fluorescence microscope、荧光色素、显微摄影、数字CCD 成像、免疫荧光在医学研究、绿色荧光蛋白(GFP)技术分别在基因组学、蛋白质组学研究、荧光显微镜、荧光倒置显微镜、正置荧光显微镜Upright Fluorescence Microscope、荧光探针技术、偏振荧光检测技术、多光学荧光检测技术、基因扩增荧光定量检测、生物医学Biomedical Science instrument、生命科学仪器Life science Instrument、激光扫描共聚焦显微镜、荧光定性、荧光定量测量、活细胞动态荧光监测、组织细胞断层扫描、三维图象重建、共聚焦图象分析、荧光光漂白恢复、激光显微切割手术、双光子激光扫描荧光显微镜、双光子荧光显微镜、荧光显微CCD、全内反射荧光显微术Total internal reflection fluorescence microscopy TIRFM

滤光片

滤光片 一、定义 通过所需波长的光波,过滤掉不需要波长光波的一种光学器件。用来选取所需辐射波段的光学器件。滤光片的一个共性,就是没有任何滤光片能让天体的成像变得更明亮,因为所有的滤光片都会吸收某些波长,从而使物体变得更暗。 二、原理 滤光片是在塑料或玻璃基材中加入特种染料或在其表面蒸镀光学膜制成,用以衰减(吸收)光波中的某些光波段或以精确选择小范围波段光波通过,而反射(或吸收)掉其他不希望通过的波段。通过改变滤光片的结构和膜层的光学参数,可以获得各种光谱特性,使滤光片可以控制、调整和改变光波的透射、反射、偏振或相位状态。 三、透射率 透射是入射光经过折射穿过物体后的出射现象。被透射的物体为透明体或半透明体,如玻璃,滤色片等。若透明体是无色的,除少数光被反射外,大多数光均透过物体。为了表示透明体透过光的程度,通常用入射光通量与透过后的光通量之比z来表征物体的透光性质,z被称为光的透射率。 四、光学薄膜 1、光学薄膜干涉原理 光是一种电磁波。可以设想光源中的分子或原子被某种原因激励而振动, 这种振动导致分子或原子中的电磁场发生电磁振动。可以证明, 电场强度与磁场强度两者有 单一的对应关系,同时在大多光学现象中电场强度起主导作用, 所以我们通常将电场振动称为光振动,这种振动沿空间方向传播 出去就形成了电磁波。 电磁波的波长λ、频率f、传播速度v三者之间的关系为: v=λ f 各种频率的电磁波在真空中的速度都是一样的,即3 ×1 08m /s ,常用C 表示。但是在不同介质中,传播速率是不一样的。 假设某种频率的电磁波在某一介质中的传播速度为v,则C 与v 的比值称为这种介质对这种频率电磁波的折射率。 频率不同的电磁波,它们的波长也不同。波长在400到760 nm 这样一段电磁波能引起人们的视觉,称为可见光。普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。每个原子每一次振动所发出的光波只有短短的一列,持续时间约为10- 8秒。我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征——干涉、衍射和偏振等现象。这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波, 这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵 消(产生暗影)或者干涉加强( 产生比两束光能简单相加更强的 光斑) 图像,才是我们观察到的光的干涉现象。光学薄膜可以 满足光干涉的这些条件。如图1所示,它表示一层镀在基底( n2) 上的折射率为n1厚度为d1的薄膜,假定n1 < n2,n0为入射 介质的折射率。入射光束I 中某一频率的波列W 在薄膜的界 面1 上反射形成反射光波W 1,透过界面的光波穿过薄膜在界 面2 上反射后再次穿过薄膜,透过界面1 在反射空间形成反

650nm带通滤光片

650nm 带通滤光片 650nm 带通滤光片优点 1)透过率最高达90%以上,光信号衰减率小,有效提升工作距离和光强度; 2)可直接在红光透过RG610有色玻璃镀膜或胶合,迅速提高截止率高。并且确保在大角度下工作,波长短移现象减弱。 3)10多年的光学滤光片生产经验,进口镀膜机制作,IAD离子辅助镀膜技术,确保低温飘,膜层牢固度更强。 650nm 带通滤光片指标 BP-650-B BP-650-A CWL 650nm±20nm 650nm±20nm FWHM 70nm ±10nm 70nm ±10nm Tpeak >85% >85% Blocking Tmax<3%@400-580&720-1100nm Tmax<1%@400-580 &720-1100nm Surface 80/50 80/50 Substrate Float glass,B270Float glass,B270 Circle φ6.5-φ105mm Square 3×3-55×55mm Thickness 0.55-5mm 650nm 带通滤光片光谱曲线

650nm 带通滤光片应用 紫外透射仪、紫外分析仪、手提式紫外灯、紫外检测器、荧光光度计、液相色谱固定波长紫外吸收检测器、薄层色谱法(TLC)观察灯、紫外固化、紫外防护、紫外分析仪、生物电泳图像分析系统、紫外红外数码观察照相系统、核酸蛋白检测仪、紫外可见光检测器、254nm led、UV-B 紫外辐照计、石英玻璃紫外灯管、液相色谱仪、紫外观察照相系统、紫外检测仪、核酸蛋白检测仪、紫外透射仪、紫外照相系统、荧光分光光度计、公安刑侦设备、凝胶成像、 自动凝胶色谱净化仪、凝胶成像分析系统、紫外探测器、化学发光成像仪

滤光片的原理、种类和选型

滤光片的原理、种类和选型 本文所谈的滤光片指的是各种荧光滤光片,滤光片一般用于各种显微镜中,使人们能够更方便的观测各种荧光现象。滤光片通常用到的显微镜有荧光显微镜、激光扫描共聚焦荧光显微镜(LSCM)、共聚焦显微镜、和全内反射荧光显微镜(TIRFM)。 滤光片的分类方法: 根据使用目的的不同,滤光片可分为TIRF滤光片、干涉滤光片、全内反射滤光片、Raman 滤光片、拉曼滤光片、FISH荧光滤光片和应原位杂交滤光片。 根据滤光片本身功能的不同,其可分为激发滤光片、发射滤光片、二向色镜/二向色滤光片/二色镜、陷波滤光片、燃料滤光片、荧光素滤光片、ND滤光片、中性滤光片、中性灰度镜、截止滤光片、高通滤光片、低通滤光片、带通滤光片、紫外滤光片和UV滤光片。 根据主要应用领域,滤光片又可分为生物滤光片、医学滤光片和天文学滤光片。维尔克斯光电可提供Chroma,Omega,Semrock,Anvover等公司的滤光片,详情请联系维尔克斯光电的技术人员。 荧光滤光片Fluorescence Filters 用于生命科学和生物医学领域,主要作用是在生物医学荧光检验分析系统中分离和选择物质的激发光与发射荧光的特征波段光谱。 中性灰度镜ND滤光片 中性灰度镜(neutral density filter)又叫中灰密度镜,其作用是均匀地过滤光线。这种滤光作用是非选择性的,也就是说,ND镜对各种不同波长的光线的减少能力是同等的、均匀的,而对原物体的颜色不会产生任何影响,可以真实再现景物的反差。 荧光原位杂交滤光片,FISH滤光片

荧光原位杂交技术(Fluorescence in situ hybridization,FISH)是根据已知微生物不同分类级别上种群特异的DNA序列,以利用荧光标记的特异寡聚核苷酸片段作为探针,与环境基因组中DNA分子杂交,检测该特异微生物种群的存在与丰度。 陷波滤光片,Notch滤光片 陷波滤光片通常用于拉曼光谱测试。通常也被称作带阻或者带抑制滤光片。它可以透过绝大多数波长,但是将特定波长范围内(阻带)的光衰减到非常低的水平。 全内反射滤光片,TIRF滤光片,全内反射荧光法滤光片 用于全内反射荧光法显微镜,利用全内反射产生的隐失波照明样品,使照明区域限定在样品表面的一薄层范围内,从而观测到非常不易察觉的现象。 优秀滤光片的特征: 1.和燃料的激发峰、发射峰匹配,且交叠小 2.截止深度深 3.自发荧光小 4.透镜面形好,利于荧光成像的提取。如果透镜表面的平整度不好,则会产生波前扭矩或楔角,波前扭矩会改变聚焦或成像位置,一般透射波前扭矩(TWD)比反射波前扭矩(RWD)对成像的影响更加直接,也会有更严格的要求。 滤光片的原理: 荧光滤光片一般采用单片无色透明的玻璃作为基底,在玻璃的两个表面镀膜。增反膜的厚度会选择为半波长的整数倍,此时反射叠加增强;增透膜的厚度为1/4波长的倍数,此时投射叠加增强。 滤光片的激发和成像方式 荧光滤光片的激发和成像方式大体可分为如下三种: 聚焦型:入射激发光聚焦在待测样品上; 宽场型:入射激发光束以较大的面积打到样品上 全内反射型(TIRF):激发光透过样品,观测倏逝波成像

相关文档
最新文档