废弃油脂生产脂肪酸甲酯

废弃油脂生产脂肪酸甲酯

废弃油脂生产脂肪酸甲酯(生物柴油)

随着油脂化工产品市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。工艺与装备技术,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要技术经济指标。通过了解研究国内外油脂化工生产核心技术,提升产品技术升级换代,进一步提高产品市场核心竞争力。地沟油的价格越来越高,生物柴油企业的利润空间越来越小,许多企业甚至到了亏损的边缘,在死亡线上争扎,而有的企业还有较好的收益,过着高收益的好日子。这是为什么呢?很多人想不明白其中的奥秘。

地沟油等废弃油脂生产脂肪酸甲酯的生物柴油企业效益普遍不尽人意,主要存在以下问题。

一,处理不好实验技术与验证的问题。

二,处理不好工艺技术与方法的问题。

三,处理不好装备技术与手段的问题。

四,处理不好操作技术与控制的问题。

五,处理不好分析技术与保证的问题。

(整理)废弃油脂生物柴油产业的发展

废弃油脂生物柴油产业的发展 主要内容: 一、生物柴油 二、废弃油脂 三、、 四、废弃油脂生产生物柴油的技术 五、展望 一、生物柴油 什么是生物柴油 生物柴油:油脂与低碳醇反应生产的一种性质类似于柴油的燃料 油脂:包括植物油、动物油、藻类油等 甲醇:也可以用乙醇等醇替代,但甲醇谦价 》 生物柴油:由C14~C20脂肪酸甲脂分子组成,主要成分是C16、C18脂肪酸甲酯 生物柴油的用途 1、直接用作车用优质柴油生物柴油,即B100生物柴油 2、与石油柴油调配使用,品种有关2%、5%、10%和20%,即B2、B5、B10、B20柴油 3、车用燃料润滑调合组分,能改善低硫柴油的润滑性 4、非车用柴油的替代品,如般用、炉用、农用、工程机械; 5、机械加工润滑剂,脱模剂 6、优质的溶剂油, @

7、 用于代替脂肪酸生产精细油脂化学品 生物柴油的发展 生物柴油的发展 1000200030004000500060002005200620072008200920102011201220132014201520162017 Source:FAPRI 2008U.S.AND World Agricultural Outllook. Millions of gallons 中国:30万吨/年;2020年发展到200万 吨/年,2020年后大发展。 二、废弃油脂 ~ 废弃油脂废弃油脂是食用油和肉类在生产加工和使用消费过程中产生的, 包括酸化油、餐饮废油、地沟油、存放过期的食用油。 废弃油脂资源 餐饮废油:包括地沟油。主要指城市居民和餐饮使用油脂和加工食品时产生的垃圾油脂,包括餐余油、煎炸余油、潲水油、地沟油等。我国食用油消费的有效利用率估计最高不超过85%,(发达国家一般是75%)。至少有15%的信用油脂变成废弃废油。我国目前种类食用油消费量约3000万吨,假定其中1500万吨是在城市中消费的,产生餐饮废油达225万吨。

甲酯化方法

一、主题内容与适用范围 本标准适用于所有的动植物油脂和脂肪酸。 二、目的 油脂及脂肪酸(特别是12碳以上的长碳链脂肪酸)一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。 三、BF3甲酯化法 1、仪器 (1)50ml及100ml磨口圆底烧瓶 (2)回流冷凝器(长度20~30cm,有磨口连接,与烧瓶配套) (3)250ml分液漏斗 (4)滴管 (5)带磨口玻璃塞的试管 (6)10ml移液管 (7)沸石 2、试剂 (1)正庚烷,色谱纯 (2)轻汽油(沸程40~60℃) (3)无水硫酸钠,分析纯 (4)0.5M的氢氧化钠甲醇溶液(不用标定),配制如下: 称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。 (5)12~25%(m/m)BF3的甲酯溶液

(6)饱和的NaCl水溶液 (7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液 (8)氮气:含氧量低于5mg/kg 3、操作方法,(1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。 (2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5~10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。 (3)然后从冷凝管上端加入2~5ml正庚烷后,再回流1分钟。 (4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCl溶液,轻轻上下颠倒数次后,静置分层。 (5)从烧杯内的上层溶液中取出约1ml转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。 4、注解 (1)BF3有毒,因此该试验应在通风厨中进行,同时,用后的所有玻璃仪器应立即清洗;(2)如果待测脂肪酸或构成油脂的脂肪酸含有2个以上的双键,建议反应的烧杯中先充氮处理; (3)若样品为纯脂肪酸,则试验可省去皂化,直接取一定量的脂肪酸,加入适量的BF3甲醇溶液,煮沸2分钟,然后同上方法的3、4、5、6步骤操作; (4)BF3甲醇溶液货架期短,一般现配现用,或者置于冰箱中储藏,否则会使GLC中分析中出现怪峰,甚至造成多不饱和酸的损失; (5)BF3甲酯化法适用于AV>2的油脂或脂肪酸; (6)若待测脂肪酸中不含有二十碳及二十碳以上的成分,则可用正己烷代替正庚烷;

我国废弃油脂现状

我国废弃食用油脂现状 废弃食用油脂概况 一、废弃食用油脂的概念 根据《财政部国家税务总局关于对利用废弃的动植物油生产纯生物柴油免征消费税的通知》(财税[2010]118号)所称“废弃的动物油和植物油”的范围明确如下: 一、餐饮、食品加工单位及家庭产生的不允许食用的动植物油脂。主要包括泔水油、煎炸废弃油、地沟油和抽油烟机凝析油等。 二、利用动物屠宰分割和皮革加工修削的废弃物处理提炼的油脂,以及肉类加工过程中产生的非食用油脂。 三、食用油脂精炼加工过程中产生的脂肪酸、甘油脂及含少量杂质的混合物。主要包括酸化油、脂肪酸、棕榈酸化油、棕榈油脂肪酸、白土油及脱臭馏出物等。 四、油料加工或油脂储存过程中产生的不符合食用标准的油脂。 广义地沟油是废弃食用油脂的俗称,泛指生活中存在的各类劣质油。其来源包括餐厨废油和猪牛羊肉、内脏、皮加工以及提炼后副产的油。而餐厨途径的废油又分为三种:煎炸废弃油俗称“老油”,即用于油炸食品的油使用次数超过规定要求后,再被重复使用或往其中添加一些新油后重新使用的油;“泔水油”指从餐厨垃圾中提炼的油;狭义的“地沟油”是指下水道中的油腻漂浮物。 二、废弃食用油脂的产生主体和主要流向 1.食品生产企业。食品生产企业和食品加工小作坊的废弃食用油脂流

向,没有纳入质量监督部门的监管范围,企业对废弃食用油脂流向缺乏监管,产生的废油部分被收购部分被直接排放入下水道。 2、餐饮企业废弃食用油脂流向。餐饮服务企业的废弃食用油脂流向,没有纳入餐饮服务监管部门的监督范围,餐饮服务者对废弃食用油脂流向缺乏监管,除火锅店自行回收老油外,餐厨潲水多数销售给生猪养殖户,少量含油废水被直接排放入下水道。 餐饮企业产生的餐厨垃圾会由生猪养殖户有偿或免费收取,其收取废弃油脂行为没有纳入城建和环保部门监管范围,收取后对潲水的有效处理也没有纳入畜牧部门的监管范围。餐饮单位从下水道排出的地沟油会有一些个人专门掏挖,其掏挖行为未纳入城建部门、环保部门的监管范围。食品加工企业产生的废弃油脂、潲水油和地沟油多数销往废弃食用油脂加工小作坊,废弃食用油脂收集、运输、加工没有纳入城建和环保部门的监管范围,其加工后的产品流向缺乏监管。少数建有正规废弃食用油脂加工企业的城市也只有少量废弃食用油脂被纳入正规企业的收运体系中。 三、废弃食用油脂制售食用油的严峻形势 废弃食用油脂的回收利用由来已久,但是用地沟油制售食用油的新闻,是在2003年开始频见报端。当时厦门一些地下作坊非法提炼地沟油引起媒体的关注,也得到了工商部门的重视,几家主要涉案作坊被一举查获后,其他黑作坊纷纷关门逃窜。2004年11月福建首例地沟油案一审判决,被告人戴振节因触犯销售有毒、有害食品罪被判处有期徒刑2年,并处罚金10万元,被告人林福安犯生产、销售伪劣产品罪,被判处有期徒刑3年,并处罚金18万元。其后几年间时有地沟油回流餐桌的传闻,但一直未被证实,直

气相色谱法测定大豆油中脂肪酸成份

油脂中脂肪酸含量测定 ―――气相色谱法测定大豆油中脂肪酸成分一、目的与要求 油脂是食品加工中重要的原料和辅料,也是食品的重要组分和营养成分。必需脂肪酸是维持人体生理活动的必要条件,人体所必需的脂肪酸一般取自食品用油,即食用油脂。气相色谱法测定油脂脂肪酸组分是现在最常用的方法,也是一些相关标准(如:GB/T17377)规定应用的检测方法。 甲酯化是分析动植物油脂脂肪酸成分的常用的前处理方法,也是常用的标准方法(GB/T 17376-1998)。 本实验要求了解气相色谱法测食用油脂肪酸组成的原理,掌握样品的前处理方法,学习食用油脂中脂肪酸组分的色谱分析技术。 二、原理 本实验甲酯化方法采用国标--GB/T 17376-1998,甘油酯皂化后,释出的脂肪酸在三氟化硼存在下进行酯化,萃取得到脂肪酸甲酯用于气象色谱分析。 样品中的脂肪酸(甘油酯)经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互用的强弱不同而被逐一分离,分离后的组分,到达检测器(detceter)时经检测口的相应处理(如FID的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一法确定不同脂肪酸的百分含量。 三、仪器与试剂 (一)仪器--------------北京普瑞分析仪器有限公司 1.气相色谱仪:GC---7800主机,配氢火焰离子化检测器(FID)。 2.恒温水浴锅 3.移液管 4.胶头滴管 5.小圆底烧瓶 6.冷凝管 7. 样品瓶

(二)试剂:.石油醚、乙醚、氢氧化钾、甲醇均为AR级。 四、实验步骤 (一)样品预处理 酯化测定: 取0.2g油样于10ml容量瓶中,家5.0ml 4:3石油醚—乙醚,使其溶解,在加4.0ml 0.5mol/L氢氧化钾—甲醇溶液,振摇1分钟,放置8min后加水1.0ml,静止20min使之分层,取上层液注入色谱仪,保留时间定性,面积归一化法定量。 测定: (1)气相色谱条件 ①色谱柱:石英弹性毛细管柱,0.32mm(内径)×30m,内膜厚度0.5um。 ②程序升温:150℃保持3min,5℃/min升温至220℃,保持10min;进样口温度250℃;检测器温度300℃。 ③气体流速:氮气:40mL/min,氢气:40mL/min,空气:450mL/min,分流比30﹕1。 ④柱前压:25kpa (2)色谱分析 自动进样,吸取0.4-1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的性质(定性),利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。 五、鉴别 1.测定常见植物油主要脂肪酸的构成比并查阅有关资料,经统计学处理,不同的植物油主要脂肪酸的组成大部分有相同之处,但是主要脂肪酸的含量是不相同的。根据脂肪酸组成与含量,即可鉴别油品种类。 2.气相色谱法测定脂肪酸,通常用硫酸—甲醇法,和AOAC-IUPAC 标准法,我们采用了氢氧化钾-甲醇法,经试验3种方法测定结果差异无显著性。

α -亚麻酸生物合成方法研究

巴斯德毕赤酵母催化生成α -亚麻酸的工艺条件优化 冯康,葛军军,张昕欣 ( 台州职业技术学院生物与化工学院,浙江台州318000) 摘要: 利用正交实验优化了巴斯德毕赤酵母催化硬脂酸生成α -亚麻酸的工艺条件,结果显示催化时巴斯德 毕赤酵母接种 量对催化效率影响显著,在此基础上得到的最佳催化条件为pH 值6. 5,硬脂酸乙醇饱和溶液加量4 mL, 巴斯德毕赤酵母接种量为 1 mL。在此条件下,以α -亚麻酸甲酯气相色谱积分面积( 18∶3) /硬脂酸甲酯气相色谱积分面积( 18∶0) 为标准计算出的转化率 为7. 16。 关键词: 巴斯德毕赤酵母; α -亚麻酸; 正交试验; 催化 中图分类号: Q815 文献标志码: B 文章编号: 1001 -9677( 2015) 017 -0080 -02 * 基金项目: 台州市海洋科技创新团队子项目( No. MBR2012073) 。 通讯作者: 张昕欣( 1980 -) ,女,讲师,主要从事微生物制药的教学和研发。 α -亚麻酸是人体正常生理活动所必须的不饱和脂肪酸之一[1],它对人的早期营养. 婴儿脑发育. 心脑血管疾病、高血脂症的治疗改善等均有一定的作用[2],还能防止皮肤衰老. 抗炎抗过敏,对人体的健康有非常重要的积极意义[1]。但α -亚麻酸在人体内普遍缺乏,目前我国普通人群体内缺乏α -亚麻酸的比例大于95% ,人均摄入量不到世界卫生组织推荐量( 1 g /d) 的一半[1],各国都在对其高含量生产方法进行研究,以供在药剂,生命科学等方面使用[2]。截止目前,国内外对α -亚麻酸的合成研究很多,但大多数工艺都需要高温、高压条件,工艺复杂,转化率较低[2 -4]。尚无法进行产业化。本研究利用正交实验初步优化了巴斯德毕赤酵母催化硬脂酸生成α -亚麻酸的工艺条件。由于巴斯德毕赤酵母体内具有催化硬脂酸生成α -亚麻酸的完整代谢酶系,可进行高密度发酵,遗传稳定性高,不易染菌。因此利用巴斯德毕赤酵母来催化硬脂酸制备α -亚麻酸成本低,工艺简单,无污染,具有很好的产业可行化,以及重要的经济价值和社会 价值。 1 材料与方法 1. 1 培养基配制 YEPD 培养基的配制: 酵母粉10 g; 葡萄糖20 g; 蛋白胨20 g; 蒸馏水1000 mL,调节PH 为酸性,采用高压蒸汽灭菌113 ℃,灭菌30 min,制成YEPD 培养基。 1. 2 巴斯德毕赤酵母细胞培养

脂肪酸测试

脂肪酸检测--科标检测 通过实验结果,发现在大部分含油脂丰富的食物中,有一半左右的热量是由脂肪和油类提供的。天然的脂肪和油类通常是由一种以上的脂肪酸与甘油形成的各种酯的混合物。脂肪是人体的三大供能营养素之一,对人体有许多重要的生理作用。脂肪的成分中大于90%是脂肪酸,而脂肪酸可分为饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸,其中多不饱和脂肪酸中n-6系和n-3系含有人体的必需脂肪酸,也就是人体无法合成而必须从食物中获取的脂肪酸。所以对食品中脂肪酸的检测十分必要。 在众多脂肪酸检测方法中,GC-MS联用技术发展较早,成熟度较高,其优势在于:微量或痕量分析,灵敏度高,检出限低,分离度好,分辨率高,重复性佳,保留时间稳定;且由于已有成熟的商品化标准谱图数据库,可对未知化合物进行快速检索和鉴定,是一种较为理想的脂肪酸分析技术。 科标化工分析检测中心可依照ISO、ASTM、DIN、GB、HB等标准完成食品、饲料、药品、纺织品、农业、高分子材料、生物产品、建筑材料以及其他产品理化性能、力学性能、电气性能等测试。中心通过了中国国家认证认可监督管理委员会(CMA)实验室认证认可,能出具权威的第三方检测报告。此外,本中心分析能力较强,能对橡胶、塑料、油墨、涂料、各类助剂、胶黏剂、未知物等进行成分分析和鉴定,能对市场上新的产品进行配方分析,为顾客产品研发生产排忧解难。 脂肪酸检测(气相色谱质谱联用法) 一、实验原理 科标中心参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。 二、仪器和试剂 Thermo Trace1310气相色谱质谱联用仪,HH-4数显恒温水浴锅;盐酸、甲醇、氯仿为分析纯试剂,正己烷为色谱纯试剂。 三、试验方法 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃以下超声抽提10min。取出离心管,放于离心机中离心(1800rpm,10min),收集上清液,重复3次;将萃取液在柔和氮气流下吹干。

气相色谱仪应用领域以及有关分析实例

气相色谱仪应用领域以及有关分析实例 气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。 一、应用领域: 1、石油和石油化工分析: 油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。 2、环境分析: 大气污染物分析、水分析、土壤分析、固体废弃物分析。 3、食品分析: 农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析。 4、药物和临床分析: 雌三醇分析、儿茶酚胺代谢产物分析、尿中孕二醇和孕三醇分析、血浆中睾丸激素分析、血液中乙醇/麻醉剂及氨基酸衍生物分析。 5、农药残留物分析: 有机氯农药残留分析、有机磷农药残留分析、杀虫剂残留分析、除草剂残留分析等。 6、精细化工分析: 添加剂分析、催化剂分析、原材料分析、产品质量控制。

7、聚合物分析: 单体分析、添加剂分析、共聚物组成分析、聚合物结构表征/聚合物中的杂质分析、热稳定性研究。 8、合成工业: 方法研究、质量监控、过程分析。 二、分析实例: (一) 天然气常量分析: 选用热导检测器,适用于城市燃气用天然气O2、N2、CH4、CO2、C2H6、C3H8、i-C40、n-C40、i-C50、n-C50等组分的常量分析。分析结果符合国标GB10410.2-89。 (二) 人工煤气分析: 选用热导检测器、双阀多柱系统,自动或手动进样,适用于人工煤气中H2、O2、N2、CO2、CH4、C2H4、C2H6、C3H6等主要成分的测定。分析结果符合国标GB10410.1-89。 (三) 液化石油气分析①: 选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2-C4及总C5烃类组成的分析(不包括双烯烃和炔烃)。分析结果符合SH/T10230-92。 液化石油气分析②: 选用热导检测器,填充柱系统、阀自动或手动切换,并配有反吹 系统,适用于液化石油气中C5以下气态烃类组分的分析(不包括炔烃)。分析结果符合GB10410.3-89。

废弃油脂制备生物柴油成套技术

工业固体废物综合利用先进适用技术目录七、石化及化工固体废物综合利用技术(6项) 编号技术 名称 技术简介技术经济指标技术应用情况及推广前景 36 废弃油 脂制备 生物柴 油成套 技术 该技术利用废弃油脂经脱杂、酸炼、脱胶、 水洗、沉降、干燥脱水和过滤后制得精制油,利 用催化剂使精制油与甲醇进行酯交换反应,生成 脂肪酸甲酯。反应过程中对未反应的甲醇回收循 环利用,并将生成的甲酯处理后得到混合粗甲 酯,再利用三塔连续真空精馏方式分离混合粗甲 酯,得到燃料油、生物柴油、棕榈酸甲酯、重油。 关键技术为油脂改性均质化预处理技术、新型化 学助剂脱胶技术、高压电场脱水技术、两步酸催 化的生物柴油合成技术、有机酸催化生物柴油合 成技术及混合甲酯三塔连续精馏分馏技术。 该技术年处理废弃油脂20万吨,成品收率达 到95%;成品酸值达到0.5mgKOH/g以下,混合脂 肪酸甲酯的精确分离精度达到99%。总投资6.4876 亿元,经济效益2.25亿元/年,投资回收年限3年。 该技术2009年应用于生产。此技 术突破了原有技术对原料利用率低、 成本高、选择性强的技术难题;解决 了酸值与产品收率存在矛盾的问题和 因原料变化而造成生物柴油质量变化 的难题。使生物柴油的品质、附加值 和产量得到极大提升,为拓展生物柴 油的应用领域、开发生物柴油产业链 奠定坚实的基础。

三十六、废弃油脂制备生物柴油成套技术 1.技术名称:废弃油脂制备生物柴油成套技术 2.技术简介 2.1基本原理 废弃油脂经脱杂、酸炼、脱胶、水洗、沉降、干燥脱水和过滤后得到精制油。在催化剂存在的条件下精制油与甲醇进行酯交换反应,生成脂肪酸甲酯。反应过程中,未反应的过量甲醇与生成的水以气相形式进入甲醇回收塔,回收甲醇循环利用。反应生成的脂肪酸甲酯经甘油分离、脱酸、水洗、干燥后得到混合粗甲酯。采用三塔连续真空精馏方式,利用混合甲酯各组分的沸点不同,将混合粗甲酯进行分离,得到了燃料油、生物柴油、棕榈酸甲酯、生物重油。 2.2工艺路线 2.3关键技术 A、油脂改性均质化预处理技术。该专有技术主要针对国内废弃油脂质量指标严重参差不齐的的现状,利用在助剂存在的条件下,三甘酯酯键可发生酰氧键取代反应的机理,将原料油中的甘三酯、甘油、脂溶性杂质含量调整到统一的范围内,使得各种不同指标的油脂均匀

脂肪酸甲酯化方法

一、主题内容与适用范围本标准适用于所有的动植物油脂和脂肪酸。 二、目的油脂及脂肪酸(特别是12 碳以上的长碳链脂肪酸) 一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。 三、BF3甲酯化法 1、仪器 (1)50ml及100ml磨口圆底烧瓶 (2)回流冷凝器(长度20?30cm,有磨口连接,与烧瓶配套) ( 3) 250ml 分液漏斗 ( 4)滴管 ( 5)带磨口玻璃塞的试管 ( 6) 10ml 移液管 ( 7)沸石 2、试剂 ( 1 )正庚烷,色谱纯 (2)轻汽油(沸程40?60 C) ( 3)无水硫酸钠,分析纯 ( 4) 0.5M 的氢氧化钠甲醇溶液(不用标定) ,配制如下: 称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。 (5)12?25%( m/m ) BF3的甲酯溶液; (6)饱和的NaCI水溶液 (7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液 ( 8)氮气:含氧量低于5mg/kg 3、操作方法, (1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。 (2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5?10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。 (3)然后从冷凝管上端加入2?5ml 正庚烷后,再回流 1 分钟。 (4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCI溶液,轻轻上下颠 倒数次后,静置分层。 (5)从烧杯内的上层溶液中取出约1ml 转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。 4、注解; (1)BF3有毒,因此该试验应在通风厨中进行,同时,用后的所有玻璃仪器应立即清洗; ( 2)如果待测脂肪酸或构成油脂的脂肪酸含有 2 个以上的双键,建议反应的烧 杯中先充氮处理; ( 3)若样品为纯脂肪酸,则试验可省去皂化,直接取一定量的脂肪酸,加入适 量的BF3甲醇溶液,煮沸2分钟,然后同上方法的3、4、5、6步骤操作;

脂肪酸检测

生物样品中脂肪酸检测--科标技术 科标技术分析中心简称“科标技术”,是青岛科标(检测)研究院旗下的专业分析研发品牌,由科标技术研发中心(青岛)有限公司独立运营。科标技术依托科标检测品牌旗下的技术、设备、人员、平台等优势资源,地处化工行业产学研示范基地,可利用资源包括气相色谱质谱联用仪、液相色谱仪、ICP-OES等200余台/套先进的研发分析配套设备、5000平方米的实验室,保证分析的精度,为客户提供一站式的分析技术服务和整套解决方案。 科标技术作为“科标检测”品牌重点投资建设的专业研发品牌,可共享科标检测品牌旗下的优势团队资源。专业研发团队150余人,其中教授(高级工程师、研究员)共9人,研究生以上学历共90余人,专业实验人员60余人。 科标品牌的发展得到了国家、省、市的大力支持与认可,是国家化工行业产学研示范基地分析研发板块支撑单位、科技部中小企业公共分析检测与科研创新资源共享服务平台、青岛市技术转移服务机构、青岛市名牌单位、青岛市“专、精、特、新”计划单位。 科标技术专业提供生物、环境、药品、精细化工、能源、材料等领域分析研发技术服务,专业解决国内外企业、高校院所、科研机构的分析方法开发与优化、课题外包、项目攻关等服务,致力于为客户提供最专业的分析研发解决方案,支撑科技进步,成为社会尊重、客户信赖的研究型分析研发机构。 科标技术始终引领分析研发行业的科学化、标准化发展,秉承“敢为人先、开拓创新、同心协力、勇承重载”的科标精神,以服务赢得信任,以品质铸就辉煌。 科标技术——“让研发更简单”。 脂肪酸在生物中广泛存在,脂肪酸的检测是生物研究者常做项目,我中心利用GC-MS联用技术开发了脂肪酸检测方法,该方法比同行中常用的方法存在以下优势:需要样品量较少、灵敏度高、检出限低、可用于微量或痕量分析、数据准确。 脂肪酸检测(气相色谱质谱联用法) 一、实验原理 科标技术研发中心参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。 二、仪器和试剂 Thermo Trace1310气相色谱质谱联用仪,HH-4数显恒温水浴锅;盐酸、甲醇、氯仿为分析纯试剂,正己烷为色谱纯试剂。 三、试验方法 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃

用餐饮业废弃油脂制备生物柴油的研究

用餐饮业废弃油脂制备生物柴油的研究 摘要:利用餐饮业废弃油脂在甲醇气相进料情况下合成生物柴油,研究了反应温度?醇油摩尔比?催化剂用量和反应时间的变化对合成生物柴油的影响?采用正交试验得出餐饮业废弃油脂酯交换的最佳反应条件为反应温度95℃,醇油摩尔比20∶1,催化剂(AR级浓硫酸)用量7%(占油重的7%,下同),反应时间14 h,在此反应条件下生物柴油产率可达到95%以上? 关键词:生物柴油;餐饮业废弃油脂;酯交换反应;正交试验 Study on the Synthesis of Biodiesel from Waste Cooking Oil Abstract: Biodiesel was synthesized from waste cooking oil with gaseous feeding of methanol. The effects of reaction temperature, methanol / oil molar ratio, amount of catalyst and reaction time were studied. According to the orthogonal experiment, the optimal transesterification conditions for waste cooking oil were reaction temperature at 98℃,methanol to oil ratio 20∶1 (mol: mol), dosage of catalyst was 7% of the oil weight and reacting for 14 h. The yield could be over 95% under these conditions. Key words: biodiesel;waste cooking oil;transesterification;orthogonal experiment 生物柴油是目前全球解决能源危机的热点研究方向之一[1]?生物柴油有很多优 点,它的原料来自于生物质,均可再生[2];它可以有效降低柴油机的排气污染物,尤其是有毒有机物?颗粒物和CO2等,对环境污染比柴油小[3];它还可以直接用于现有的柴油发动机[4]等?从化学成分上讲,生物柴油是一系列长链脂肪酸甲酯[5]? 目前,用餐饮业废弃油脂合成生物柴油的报道较多,例如姚亚光等[6]以浓硫酸为催化剂,用废弃油脂与甲醇(乙醇)反应,合成生物柴油产率达到80%;韩秀丽等[7]在碱性催化剂作用下,用废弃油脂与乙醇反应合成生物柴油,得到的产率最高为91.4%? 本试验针对回收的餐饮业废弃油脂,拟以AR级浓硫酸为催化剂,并采用甲醇气相进料的方式,探讨其最佳反应条件,变废为宝,为其日后工业化生产提供依据? 1材料与方法 1.1主要试剂与仪器 AR级浓硫酸(武汉市中天化工责任有限公司)?AR级甲醇(天津市科密欧化学试

脂肪酸甲酯分析色谱柱的选择

作者 Frank David Research Institute for Chromatography President Kennedy Park 20B-8500 Kortrijk, Belgium Pat Sandra University of Gent Krijgslaan 281 S4,B-9000 Gent Belgium Allen K. Vickers Agilent Technologies, Inc.91 Blue Ravine Road Folsom, CA 95630-4714USA 摘要 食品中的脂肪酸甲酯(FAME )的分析对食品的表征过程是十分重要的,正常情况下脂肪酸甲酯的分析使用涂渍极性固定相色谱柱,例如聚乙二醇或氰丙基聚硅氧烷固定相,这种固定相可以按脂肪酸的碳数、不饱和度、顺反构象以及双键的位置对它们进行分离。 脂肪酸甲酯分析色谱柱的选择应用报告 本应用报告比较三种不同固定相对脂肪酸甲酯的分离的情况。聚乙二醇柱对不太复杂的样品可以得到很好的分离;但不能分离顺-反异构体的样品。而中等极性的氰丙基聚硅氧烷柱(DB23)对复杂的FAME 混合物可以得到很好的分离,对一些顺反异构体也可以得到分离; 要使顺反异构体分离的更好,就要使用更高极性的HP-88 氰丙基色谱柱。 前言 FAME 的分析用于食品中脂类部分含量的表征,也是食品分析中极为重要的一项内容,脂类主要包括甘油酸酯,它们是一个甘油分子和三个脂肪酸分子的酯,绝大多数食用脂肪和油主要含有的脂肪酸是从月桂酸(十二碳酸)到花生酸(二十碳酸),除直链饱和脂肪酸外,也有支链脂肪酸、单不饱和脂肪酸、双不饱和脂肪酸以及多不饱和脂肪酸。表1 是最重要的脂肪酸 及其的缩写。 食品分析

油脂中脂肪酸含量测定

实验四油脂中脂肪酸含量测定 ―――气相色谱法测定大豆油中脂肪酸成分一、目的与要求 油脂是食品加工中重要的原料和辅料,也是食品的重要组分和营养成分。必需脂肪酸是维持人体生理活动的必要条件,人体所必需的脂肪酸一般取自食品用油,即食用油脂。气象色谱法测定油脂脂肪酸组分是现在最常用的方法,也是一些相关标准(如:GB/T17377)规定应用的检测方法。 甲酯化是分析动植物油脂脂肪酸成分的常用的前处理方法,也是常用的标准方法(GB/T 17376-1998)。 本实验要求了解气相色谱法测食用油脂肪酸组成的原理,掌握样品的前处理方法,学习食用油脂中脂肪酸组分的色谱分析技术。 二、原理 本实验甲酯化方法采用国标--GB/T 17376-1998,甘油酯皂化后,释出的脂肪酸在三氟化硼存在下进行酯化,萃取得到脂肪酸甲酯用于气象色谱分析。 样品中的脂肪酸(甘油酯)经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互用的强弱不同而被逐一分离,分离后的组分,到达检测器(detceter)时经检测口的相应处理(如FID的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一法确定不同脂肪酸的百分含量。 三、仪器与试剂 (一)仪器 1.气相色谱仪:具氢火焰离子化检测器(FID)。 2.恒温水浴锅 3.移液管 4.胶头滴管 5.小圆底烧瓶 6.冷凝管 7. 样品瓶 (二)试剂 1.正己烷:分析纯,沸程60~90℃或30~60℃,重蒸。 2.氢氧化钾甲醇溶液

3.三氟化硼甲醇溶液 4.饱和食盐水 5.市售大豆油 四、实验步骤 (一)样品预处理 甲酯化: 取2~4滴大豆油样品于xml的圆底烧瓶中,加入3ml的KOH甲醇溶液,70℃水浴加热回流5min;取出冷却至室温(可用水冷),加入5ml三氟化硼溶液,70℃水浴加热回流5min;取出冷却至室温,加入3ml正己烷,70℃水浴加热回流5min;取出冷却至室温,加入适量饱和食盐水溶液,静止3~5min,取上层油样1ml于试样瓶中,进GC分析。 测定: (1)气相色谱条件 ①色谱柱:石英弹性毛细管柱,0.25mm(内径)×60m,内膜厚度0.32。 ②程序升温:150℃保持3min,5℃/min升温至220℃,保持10min;进样口温度250℃;检测器温度300℃。 ③气体流速:氮气:40mL/min,氢气:40mL/min,空气:450mL/min,分流比30﹕1。 ④柱前压:25kpa (2)色谱分析 自动进样,吸取1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的性质(定性),利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。 五、注意事项 1.本法检测灵敏度高,在分析时应注意防止由于色谱柱中高沸点固定液、样品净化不完全及载气不纯等带来的污染,使其灵敏度下降。 2.本方法采用极性色谱柱,样品处理时应尽力保证脱水彻底。 3.本实验采用自动进样,序列采集,工作站在序列运行之后不再允许更改序列采集方法,所以在运行某一序列之前应确认程序编辑无误。 4.为了保护毛细管柱,一定要确认升温程序在该型号色谱柱的温度允许范围内。 七、思考题 1.气象色谱的原理,适用范围

油脂中脂肪酸的组成

1.油脂 (1)天然高级脂肪酸 组成油脂的脂肪酸绝大多数是含碳原子数较多,且为偶数碳原子的直链羧酸,约有50多种。油脂中常见的脂肪酸见表4-1。 表4-1油脂中常见的脂肪酸 天然存在的高级脂肪酸具有如下的共性: ①绝大多数为含有偶数碳原子的一元羧酸,碳原子数目在十几到二十几个。 ②绝大多数多烯脂肪酸为非共轭体系,两个双键之间由一个亚甲基隔开;不饱和脂肪酸的双键多为顺式构型。 ③不饱和脂肪酸的熔点比同碳数的饱和脂肪酸的熔点低,双键越多熔点越低。例如,十八碳的硬脂酸69 ℃,油酸13 ℃,花生四烯酸-50 ℃。 ④十六碳和十八碳的脂肪酸在油脂中分布最广,含量最多;人体中最普遍存在的饱和脂肪酸为软脂酸和硬脂酸,不饱和脂肪酸为油酸。高等植物和低等动物中,不饱和脂肪酸含量高于饱和脂肪酸。 (2)油脂的皂化值及碘值 1 g油脂完全皂化时所需氢氧化钾的毫克数称为皂化值。根据皂化值的大小,可以判断油脂中三羧酸甘油酯的平均相对分子质量。皂化值越大,油脂的平均相对分子质量越小,表示该油脂中含低相对分子质量的脂肪酸较多。皂化值是衡量油脂质量的指标之一。

含有不饱和脂肪酸成分的油脂,其分子中含有碳碳双键。油脂的不饱和程度可用碘值来定量衡量。100 g油脂所能吸收碘的克数称为碘值。碘值与油脂不饱和程度成正比,碘值越大,油脂中所含的双键数越多,不饱和度也越大。由于碘与碳碳双键加成的速度很慢,所以常用氯化碘或溴化碘的冰醋酸溶液作试剂。有些油脂可作为药物,如蓖麻油用作缓泻剂,鱼肝油用作滋补剂。 表4-2几种常见油脂中的脂肪酸的含量(%)和皂化值及碘 值 (3)食用油的变质 油脂是人体必需的营养物质之一。我们都知道油脂和含油较多的食品(例如香肠、腊肉、糕点等)放置时间过长,会产生辣、带涩、带苦的不良的味道,有些油脂还有一种特殊的臭味。这种油脂在空气中放置过久变质,产生难闻的气味的现象,称为酸败。发生了油脂酸败的食物不仅吃起来难于下咽,而且还有一定的毒性。长期食用酸败了的油脂对人体健康有害,轻者呕吐、腹泻,重 者能引起肝脏肿大造成核黄素(维生素)缺乏,引起各种炎症。油脂的酸败 是因为在空气中的氧、水和微生物的作用下,油脂中不饱和脂肪酸的双键被氧化成过氧化物,这些过氧化物继续分解或氧化生成有臭味的低级醛、酮和羧酸等。光、热或潮气可加速油脂的酸败。为防止油脂的酸败,必须将油脂保存在低温、避光的密闭容器中。还可以在油脂中加入少量的抗氧化剂。维生素E是一种良好的抗氧化剂,一般在油脂中加入0.02%的维生素E,就可以抑制其氧化反应的进行。 油脂的酸败程度可用酸值来表示。油脂酸败有游离的脂肪酸产生,它的含量可以用KOH中和来测定,中和1 g油脂所需的KOH的毫克数称为酸值。酸值越小,油脂越新鲜;一般来说,酸值超过6的油脂不宜食用。 (4)脂类的生理功能 脂类以各种形式存在于人体的各种组织中,是构成人体组织细胞重要成分之一,在人体内具有重要的生理功能。 ①供给和贮存热能。每克脂肪在体内氧化可释放出约38 kJ的热量,比等质量的碳水化合物或蛋白质的供热量大一倍多。脂肪贮存占有空间小,能量却比较大,所以贮存脂肪是储备能量的一种方式。人类从食物中获得的脂肪,一部分贮存在体内,当人体的能量消耗多于摄入时,就动用贮存的脂肪来补充热

几种新型油脂的脂肪酸组成及特性

几种新型油脂的脂肪酸组成及特性 中国是世界油料生产大国,油菜籽、花生、棉籽、芝麻的产量均居世界首位,大豆、葵花籽的产量也名列前茅。但面对巨大的人口压力和不断增加的植物油消费量,国内油料生产的植物油远远不能满足需求,因而不得不从国外进口大量的油料和植物油,由此可见,要想满足人们对食用油脂日益增长的需求,光靠大宗油料的生产是不够的。我国油料资源极其丰富,除了大宗油料外,其它木本油料、草本油料和野生油料的种类也非常之多,而这些油料大部分都未开发应用。因此,根据我国油料资源丰富的特点,研究开发新油源,从而对人们油脂消费水平的提高将产生重要影响。 1.松籽油松籽油是从松籽中提取的油脂,它具有独特的芳香气味,且理化指标好,营养性能佳,具有滋补功能,是一种尚待开发利用且极具潜力的新型油脂。松籽在我国有丰富的资源,全国各地基本都有,但以东北、西南地区最为丰富且大多数尚未利用。 油松籽油脂肪酸种类较多,饱和脂肪酸含量较低,仅为13%;不饱和脂肪酸含量高达87%,其中单不饱和脂肪酸含量近22%,多元不饱和脂肪酸含量为65%。松籽含壳67.15%,含仁32. 85%,全籽含油22.96%,提取的松籽油色泽浅而清亮,脂肪酸组成主要以不饱和脂肪酸为主,其中油酸含量为28.81%、亚油酸含量为46.13%、松油酸含量为13.23%。松籽油中甘三酯含量为97.64%,甘二酷含量为1.37%,甘一酷含量为0.49%,甘油含量为0.1%。[10]不饱和脂肪酸对人体具有益智、软化血管、降低低密度脂蛋白、增强视力等。[2] 同时,松籽油有松籽的独特香味,可望成为高价值的保健食用油资源。 2.元宝枫油元宝枫油是从元宝枫树的种仁中提取的一种食用油脂。元宝枫是械树科械属落叶乔木。元宝枫是我国的特有树种,主要分布在西北、华北地区,是绿化观赏、保持水土的优良树种,并且在食品、医药力一面有着巨大的开发价值。在陕西、河北,民间早有食用元宝枫种仁的习惯,其味道与花生仁相似。元宝枫的种仁结实量大,含油量高。[3] 元宝枫油属于半干性油,其理化特性与大豆油、花生油、核桃仁油相似,可作为食用油使用。元宝枫油在脂肪酸组成中不饱和脂肪酸含量达92%以上,是制备营养保健油的优原料。医学研究表明不饱和脂肪酸有明显降低高密度脂蛋白血清胆固醇作用,进而减少高血压,心脏病及中风等疾病的发病率。同时元宝枫油中亚油酸含量较高,亚油酸是人体必需脂肪酸,它与平滑朋的收缩、脂类代谢中酶的活性、中枢神经系统的活动、脉搏与血压的调节、类固醇激素的生理功能,前列腺素的合成及其他的生命机能有关。此外亚油酸还具有营养脑细胞、调节植物神经的作用。为一种富含不饱和脂肪酸的油脂,元宝枫油具有营养保健和药疗功效。

气相色谱-质谱联用法分析羊脂油的脂肪酸成分

气相色谱-质谱联用法分析羊脂油的脂肪酸成分 摘要目的采用气相色谱-质谱联用(GC-MS)对羊脂油的脂肪酸成分进行分析,为其质量标准的制订提供实验依据。方法将羊脂油样品甲酯化后,用GC-MS对其脂肪酸类成分进行分析,面积归一化法测定各成分的相对含量。结果羊脂油中含16种脂肪酸成分,包括不饱和脂肪酸9种,占54.48%,主要为油酸(34.45%)、反式9-十八碳烯酸(10.16%),还有少量的亚油酸(1.37%);饱和脂肪酸有7种,占40.13%,主要为棕榈酸(21.59%)、硬脂酸(13.49%),肉豆蔻酸(2.15%)。结论该结果确定了羊脂油的成分组成,有助于对其进行进一步的研究。 【关键词】羊脂油脂肪酸气相色谱-质谱联用 羊脂油来源于牛科动物山羊Capra hircus Linnaeus或绵羊Ovis aries Linnaeus的脂肪油,甘、温,具有补虚、润燥、祛风、解毒的功效,主要治疗虚劳羸瘦、久痢、口干便秘、肌肤皲裂等症[1]。用本品炮制药材能够达到“增效”的目的,如羊脂油炙淫羊藿,可以增强淫羊藿的温肾助阳作用[2]。 羊脂油作为常用炮制辅料,尚未制订其药用质量标准,仅在食品标准中对其外观形状等制订了一些理化指标限度要求。为了规范羊脂油的使用,本研究首次采用气相色谱-质谱联用(GC-MS)技术对其脂肪酸类成分进行分析,以期对其质量标准研究提供实验数据 1 仪器与材料 Trace GC-MS气质联用色谱仪,FID检测器。 色谱条件:HP-5(0.25 μ m × 30 m, 0.25 mm)毛细管柱;程序升温,初始温度100 ℃,保持5 min,以8 ℃/min升至180 ℃,再以28 ℃/min升至230 ℃;进样口温度250 ℃;载气N2;检测器温度250 ℃;分流比为20∶1;进样量0.1 μl。 质谱条件:离子源为EI;电子能量70 eV;离子源温度200℃;接口温度250℃;溶剂切割4 min;扫描质量范围m/z 35~688;扫描周期0.6 s/dec,用NIST标准质谱库检索。 羊脂油购自北京清真食品公司,经本文作者鉴定为牛科动物绵羊Ovis aries linnaeus的脂肪油。 2 方法与结果 2.1 样品制备取羊脂油样品200 g切成小块,于120℃炼制,待出油量不再增加,去渣取油,备用。 2.2 供试品溶液制备取0.4 g 羊油样品,置于50 ml锥形瓶,加入15 ml 0.5 mol/L的KOH-MeOH溶液,于60 ℃水浴20~30 min,至黄色油珠完全消失为止,冷却后,再加10 ml 14 %的三氟化硼乙醚溶液,水浴5 min,取出冷却后,加入10 ml正己烷和10 ml氯化钠饱和溶液,振摇,取上层溶液备用。 2.3 样品测定对羊脂油样品的总离子流色谱图通过NIST标准质谱库进行检索,并结合相关资料进行人工解析,确认了18种成分,归一化法计算出各峰面积的相对百分含量。见表1。表1 羊脂油的脂肪酸类成分组成 3 讨论

食品中脂肪酸的测定

食品中脂肪酸的测定 基础知识: 油脂就是食品的重要组分与营养成分。油脂中脂肪酸组分的测定最常用的方法就是气相色谱法。样品前处理采用酯交换法(甲酯化法),图谱解析采用归一化法。 气相色谱(GC) 就是一种把混合物分离成单个组分的实验技术它被用来对样品组分进行鉴定与定量测定。 一个气相色谱系统包括: ? 可控而纯净的载气源能将样品带入GC系统 ? 进样口同时还作为液体样品的气化室 ? 色谱柱实现随时间的分离 ? 检测器当组分通过时检测器电信号的输出值改变从而对组分做出响应 ? 某种数据处理装置 氢火焰离子化检测器(FID) :氢气与空气燃烧所生成的火焰产生很少的离子。在氢火焰中,含碳有机物燃烧产生CHO+离子,该离子强度与含量成正比。该检测器检出的就是有机化合物,无机气体及氧化物在该检测器无响应。 当纯净的载气(没有待分离组分)流经检测器时产生稳定的电信号就就是基线。

1——载气(氮气); 2——氢气; 3——压缩空气; 4——减压阀(若采用气体发生器就可不用减压阀); 5——气体净化器(若采用钢瓶高纯气体也可不用净化器); 6——稳压阀及压力表; 7——三通连接头; 8——分流/不分流进样口柱前压调节阀及压力表; 10——尾吹气调节阀; 11——氢气调节阀; 12——空气调节阀; 13——流量计(有些仪器不安装流量计); 14——分流/不分流进样口; 15——分流器; 16——隔垫吹扫气调节阀; 17——隔垫吹扫放空口; 18——分流流量控制阀; 19——分流气放空口; 20——毛细管柱; 21——FID检测器; 22——检测器放空出口;

方法来源: GB 5009、168-2016 食品安全国家标准食品中脂肪酸的测定 1、范围 本方法规定了食品中脂肪酸含量的测定方法。 本方法适用于游离脂肪酸含量不大于2%的油脂样品的脂肪酸含量测定。 2、原理 样品中的脂肪酸经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度与压力下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互作用的强弱不同而被逐一分离,分离后的组分到达检测器(detceter)时经检测口的相应处理(如FID 的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一化法确定不同脂肪酸的百分含量。 3、试剂与材料 除非另有说明,本方法所用试剂均为分析纯,水为GB/T6682规定的一级水。 3、1石油醚:沸程30℃~60℃。 3、2甲醇(CH3OH):色谱纯。 3、3正庚烷[CH3(CH2)5CH3]:色谱纯。 3、4无水硫酸钠(Na2SO4)。 3、5异辛烷[(CH3)2CHCH2C(CH3)3]:色谱纯。 3、6硫酸氢钠(NaHSO4)。 3、7氢氧化钾(KOH)。 3、8氢氧化钾甲醇溶液(2mol/L):将13、1g氢氧化钾溶于100mL无水甲醇中,可轻微加热,加入无水硫酸钠干燥,过滤,即得澄清溶液,有效期3个月。 3、9混合脂肪酸甲酯标准溶液:取出适量脂肪酸甲酯混合标准移至到10mL容量瓶中,用正庚烷稀释定容,贮存于-10℃以下冰箱,有效期3个月。 3、10单个脂肪酸甲酯标准溶液:将单个脂肪酸甲酯分别从安瓿瓶中取出转移到10mL容量瓶中,用正庚烷冲洗安瓿瓶,再用正庚烷定容,分别得到不同脂肪酸甲酯的单标溶液,贮存于-10 ℃以下冰箱,有效期3个月。 3、11丙酮:色谱纯。 5、仪器与设备 5、1实验室用组织粉碎机或研磨机。 5、2气相色谱仪:具有氢火焰离子检测器(FID)。 5、3毛细管色谱柱:聚二氰丙基硅氧烷强极性固定相,柱长100m,内径0、25mm,膜厚0、2μm。

相关文档
最新文档